
Send Orders for Reprints to reprints@benthamscience.ae

The Open Cybernetics & Systemics Journal, 2014, 8, 302-308 302

1874-110X/14 2014 Bentham Open

Open Access

An Efficient Distributed B-tree Index Method in Cloud Computing

Huang Bin1,* and Peng Yuxing2

1School of Mathmatic and Computer Science, Guizhou Normal University, Guiyang 550001, China; 2School of Com-
puter, National University of Defense Technology, Changsha 410073, China

Abstract: To support online index and range queries, the Distributed B-tree is adopted to index the mass and rapidly in-
creasing data in cloud computing. But current Distributed B-tree has three defects: low degree of concurrency, frequent
node splitting and high cost of updates in clients. For above mentioned defects, this paper presents efficient distribute B-
tree index in cloud computing environment, which effectively enhances the performance of the distributed B-tree index.
First, it improves concurrent access by the distributed B-tree high concurrency access method based on node split history.
Second, it reduces the splitting frequency by the method of dynamic changing node size. Finally, it reduces node update
cost in all client buffers by the regional delayed update method. Experimental results show that, this method has high per-
formance in cloud computing environments.

Keywords: Cloud computing, distributed B-tree, efficient, splitting frequency, splitting histories.

1. INTRODUCTION

Now, a lot of Internet applications that are based on mas-
sive data and provide various types of information services
arise in cloud computing environment, such as Delicious [1],
Flickr [2], Google Base [3], etc., and these massive applica-
tion data rapidly increase [4]. In these systems, the keys of
each data are processed by hash method, and accordingly all
of the data are distributed to multiple storage nodes, so as to
realize scalable storage for rapidly increasing massive data.
Therefore, the hash function becomes the main index of data,
and the required data can be quickly accessed according to
the hash value of keys [5, 6, 7]. However, in addition to the
data query via keys, users also turn to other properties for
point search or range search [8]. For example, in an online
video system (such as Youtube [9]), each video contains a
variety of information, including video ID, program name,
upload time, times of plays. The users can quickly access the
video via its ID that is the key of each video, but they can
also search for video by inputting program name or defining
upload time range. Constructing secondary index is an im-
portant method to improve the query efficiency of non-key
attribute. At present, in the cloud computing environment,
inverted index, the commonly used secondary index, can
scan all storage nodes by multiple MapReduce [10] proc-
esses and generate inverted files. Inverted index is an off-line
batch process, and it cannot realize timely query of newly
inserted data [8]. For example, the record inserted into Goo-
gle Base cannot be accessed by users until it is re-indexed
next time (maybe one day later). Therefore, the application
system needs to provide an index method with online con-
struction and range queries.

*Address correspondence to this author at the School of Mathematics and
Computer Science, Guizhou Normal University, Guiyang 550001,
P.R. China; Tel: 18874501373; E-mail: hb415@163.com

B-tree index can realize online indexing and range que-
ries; however, because of the massive data in cloud comput-
ing environment, centralized B-tree cannot meet the demand
in storage of mass index data, while distributed B-tree [11,
12] can meet this demand by distributing all nodes into stor-
age servers. But existing method to construct distributed B-
tree shows low performance, for the following reasons: (1)
low degree of concurrency. For transaction method, when
multiple users’ concurrently operate B+ tree, these operated
nodes and their ancestor nodes will be locked, which leads to
all users serially operating B-tree, seriously affecting the
operation efficiency. (2) High cost of update. Firstly, the
node size of existing distributed B-tree is fixed, which will
cause nodes to frequently split. The existing distributed B-
tree needs to update all internal nodes in client buffers when
some node is spited, which greatly affects the system per-
formance.

According to the existing defects of the traditional dis-
tributed B-tree, including low degree of concurrency, fre-
quent node splitting and high update cost, this paper presents
efficient distribute B-tree (mark as EDB) index in cloud
computing environment, including distributed B-tree high
concurrency access method based on node split history and
the regularly changing method of node size and regional
delayed update, effectively enhancing the performance of
distributed B-tree index.

2. RELATED RESEARCH

2.1. Distributed B-tree

In a traditional distributed B-tree [12], all nodes are dis-
tributed into multiple servers, and all internal nodes are buff-
ered in each client, to realize multi-user concurrent access
and improve the access efficiency. With delayed update, the
node in client buffer can be updated accordingly to the corre-
sponding node in servers, so that the synchronous update

303 The Open Cybernetics & Systemics Journal, 2014, Volume 8 Bin and Yuxing

costs are distributed to many operations, to reduce delayed
time for some update operation.

Similarly, with B-tree in stand-alone environment, con-
current modification will also occur to distributed B-tree,
namely, when data is inserted to the distributed B-tree, a leaf
node and its several ancestor nodes may split. For example,
in the distributed B-tree shown in Fig. (1), when an index
value is inserted into node h, if the node h is full, then h will
split, and then an index value will be inserted to node d; if
the node d is full, then d will split, which may cause the
nodes b and a to split. Node splitting can cause failure of
concurrent modification operation. For example, when nodes
h and i split simultaneously, data x and y will be inserted to
node d, but it is possible that, node d will split into two
nodes d and d' (when it is full). d' is distributed to another
storage node, when y (or x) arrives, because of x (or y) can-
not find the insertion position and fail to complete the insert
operation.

2.2. B-tree Concurrency Control Method

In the stand-alone environment, the link established
among nodes can eliminate concurrent modifications, but it
is not suitable for distributed B-tree in cloud computing en-
vironment, because of delayed update mode, in the interval
when a client visits the same node again, the corresponding
node in server may split several times. According to the dis-
tribution strategy, the new split nodes may be distributed to
other storage nodes, therefore, the second visit won’t be real-
ized unless the client passes through multiple server nodes.

A distributed B-tree concurrency construction method
based on optimistic transaction concurrency control [13, 14]
can eliminate the necessity to pass through multiple server
nodes. But when the index data is inserted each time, distrib-
uted transaction will lock all the nodes distributed from the
root to a leaf node, so the concurrent ability is low. For ex-
ample, in Fig. (1), client 2 and client 1 insert index values
respectively into nodes j and o. Client1 will lock node a in
server 1, node b in server 2, node e in server 3 and node j in
server 1 in sequence; Client 2 will lock node a in server 1,
node c in server 3, node g in server 1 and node o in server 1
in sequence. If the client 1 locks node a first, then client 2
must wait for a moment.

By analyzing the process of client 1’s and client 2’s con-
current insert index value, we conclude that the entire path
will be locked in each insertion operation, so all operations
request to lock the root node, and the sequentially locking
root node leads to serial operation of insertion into B-tree,
leading to quite a low efficiency of construct index.

2.3. Method of Synchronous Update

With the lazy update method [15], the operation costs to
update an object and its copies are distributed into the fol-
lowing subsequent operations, reducing the high costs of an
update operation. However, for existing distributed B-tree
when the nodes in client buffer are updated, all nodes buff-
ered will be updated, thus high cost of update is still re-
quired.

3. THE CONCURRENCY ACCESS METHOD BASED
ON NODE SPLIT HISTORY

3.1. The Recording Method of Node Split History

Each server contains a splitting log of B-tree nodes to re-
cord the split history in the server. According to the log
structure shown in Fig. (2), each split of node is recorded in
the log, in the structure of <LowValue, UpValue, ServerIP,
IndexFileName, Version, preRecord>. LowValue and Up-
Value are respectively the minimum and maximum values of
the index nodes; ServerIP is the machine number of storage
node; IndexFileName is the name of the index node; Version
is the version number of the index node; preRecord is a
pointer pointing to the previous splitting record. In the log,
the split histories of all nodes are connected into a linked list.

3.2. High Concurrency Access Algorithm of Distributed
B-tree

In a distributed B-tree, each node in server is endowed
with a version number, and each node in client’s buffer also
contains corresponding version number. Due to the delayed
update strategy, the buffer’s version number is smaller than
that of the corresponding node sometimes, which shows the
modification of the node in the server is not synchronized to
the corresponding node in the buffer.

Fig. (1). Distributed B-tree.

An Efficient Distributed B-tree Index Method in Cloud Computing The Open Cybernetics & Systemics Journal, 2014, Volume 8 304

In this paper, high concurrent access to distributed B-tree
is realized according to the version number and node split
history. Specifically, if the version number of accessed node
is the same as that of the client buffer, the data of the node
will be directly accessed to, or, this node’s splitting log is
accessed for finding the accessed node of next hop and its
version number, and then transmits the access request to the
next-hop node.

Based on the above idea, a <key, pointer> is inserted into
a B-tree and the access is conducted according to the key, the
distributed algorithm 1 and 2 are respectively explained
below:

Algorithm 1: Insert (Key, Pointer)

 For client:

1. Search for insertion position (host, node) and the node’s version num-
ber (v) in the B-tree of client buffer;

2. Send the insertion request and v to the server host;

For server:

1. if (node. version==v) {

2. insert <key, pointer> into node;

3. if (node is full)

4. update its ancestor node;

5. }else{

6. search for the accessed object’s position (host ', node') and v in the
node’s splitting log;

7. send the access request and v to the server host';

8. }

Algorithm 2: Lookup (key)

For client:

1. Search for index node position (host, node) and its version number (v)
in the B-tree of client buffer;

2. Send the search request and v to the server host;

For server:

1.search in node;

2 if (success) {

3. return the results to client;

6. }else{

7. search for the accessed object’s position (host', node') and v' in the
node's splitting log;

8. if (success)

9. send the access request and v to the server 'host';

10. else

11 Return "Not exist" to the client;

12. }

According to the above algorithm, when modifying B-
tree node, only the leaf node to be accessed is locked, thus
the trouble that the path from root node to accessed leaf node
will be locked in each access is eliminated; similarly, if
modification of leaf node causes the modification of the in-
ternal node, only this node should be locked in each node
modification, so this algorithm can greatly improve the effi-
ciency of concurrent access.

4. METHOD TO CHANGE NODE’S SIZE
At present, the node’s size of distributed B-tree (or order)

is fixed. If the order is set smaller, there are a large number
of nodes in B-tree, which means more frequent node splitting

Fig. (2). Structure of node splitting logs.

305 The Open Cybernetics & Systemics Journal, 2014, Volume 8 Bin and Yuxing

and lower performance of B-tree. Accordingly, the method
to regularly adjust node size is designed, which contains two
alternately performing processes, namely node quantity in-
crease and node expansion, which effectively reduces the
node split frequency and ensures even distribution of data.

(1) Node quantity increase process
In this process, fixed capacity (C) leaf node is set. With

the data insertion, the leaf nodes split, and the quantity of
leaf nodes (LN) gradually increases, until the quantity of
new leaf nodes is the same as that of stored nodes (SN). It is
assumed that this increase process is the ith times, then LN =
× SN.

(2) Node expansion process
This process allows doubled leaf node capacity. It is as-

sumed that this expansion process is ith times, and then the
capacity of leaf node is C = 2i-1 × CD. Because of incomplete
data after leaf node expansion, each leaf node can receive data.
This process won’t terminate until some leaf node will split.

5. REGIONAL DELAYED UPDATE METHOD

When a client accesses a leaf node, and if this leaf node
has split or merged after the last visit, the parent node of this
leaf node in this client should be updated. If the parent node
in the server also has split or merged, the same update opera-
tion should be conducted. The nodes in client buffer will be
updated with the following two strategies: (1) if n keys ki+1,
ki+2,…, ki+n, (split by child nodes on server) are added be-
tween key ki and kj, sub-trees of B (ki+1),… , B (ki+n) with n
keys as roots will be buffered, and sub-tree B (Ki) and B (Kj)
individually pointed by ki and kj will be respectively de-
ducted by sub-tree B (ki+1),… B (ki+n); (2) if n keys ki+1,
ki+2,…, ki+n, (split by child nodes on server) are reduced
from between key ki and kj, then sub-trees B (ki+1),… , B
(ki+n) with n keys as roots will be eliminated, and ki sub-tree
B (ki) pointed by ki will be buffered.

Below, we prove the correctness of the regional sub-tree
delayed update method.

Proof:
The following four situations to discuss:
(1) When the nodes in buffer remain in the same state

with those in server, the user can correctly locate data;

(2) In the server, node b and its sub node c are updated,
but in buffer only the node b is updated, which is caused by
other descendant nodes’ splitting. According to our update
strategies, the update of node c will cause no changes in
node b, or, the update of node b in buffer will also cause the
change of node c. With the help of node splitting history log,
whether leaf node splits or not, the data can still be correctly
accessed.

(3) In the server, node b and its ancestors a are both up-
dated, but in buffer only the node b is updated and the split-
ting of node b does not lead to that of node a. There is one
path from a to b in buffer, thus a can access to all of b’s leaf
nodes.

(4) In the server, node b, its ancestor a and descendant c
are all updated, but in buffer only the node b is updated,

which is similar to case (2) and (3), and accordingly, the data
can be properly accessed to.

To sum up, regional sub-tree delayed update method can
guarantee the correctness of access to data in each client.

Comparative to traditional delayed update method, all of
the entire B+ tree’s internal nodes in buffer are compared
and updated; while with regional sub-tree delayed update
method, only a sub-tree’s nodes are compared and updated,
with the implication of greatly reduced updated nodes,
thereby greatly improving the access performance.

6. PERFORMANCE EVALUATION

6.1. Experimental Environment

Our testing infrastructure had 126 machines on 4 racks
connected by Gigabit Ethernet switches. Intra-rack bisection
bandwidth was ≈14Gbps, while inter-rack bisection band-
width was ≈6.5Gbps. Each machine had two 2.4GHz Intel
Xeon CPUs, 4GB of main memory, and two 7200RPM SCSI
disks with 200GB each. Machines ran Red Hat Enterprise
Linux AS 4 with kernel version 2.6.9.

There are total 175 pairs of <Key, Pointer> values in
each node of Tree B. one <key, Pointer> value takes up 22
bytes, including a Key, which is a 8 byte integer with value
range of [0,109], and a pointer, which takes up 14 bytes. It
consists of 2 parts, namely the IP address (4 bytes) and offset
(8 bytes). Before experiment, B Tree has already had 400
nodes and 64,000 <key, pointer> pairs in 4 servers.

The nodes of B Tree are placed in server. Loads are gen-
erated from client, while server and client are located in dif-
ferent computers respectively. The memory of each server
provides 32M buffer to Tree B and each client runs in 4
threads. They all access the same Tree B.

6.2. Concurrency Ability

We now evaluate the concurrency ability of our EDB
strategy. For the purpose of comparison, we implement the
Link strategy and distributed transaction strategy. In the ex-
periment, there are three kinds of loads:

The inserting load: all operations are inserting operation.
New keys are randomly generated uniformly at random from
a space of 109 elements and inserted into the B-tree.

The searching load: all operations are searching opera-
tions. The starting point skey and ending point ekey of each
searching range are all randomly picked up from the key set
in Tree B

The hybrid load: the operations include inserting opera-
tion and searching operation. The key generation method of
these two operations is same as the methods mentioned
above.

With fixed node quantity, and increased server and client
amount, the test results of the three loads (shown in Figs. (3-
5)) displays that EDB method is better than Link method and
transaction method in any of the three cases. EDB method is
better than the transaction method, because, in each visit, all
accessed nodes from the root to the leaf nodes deserve dis-
tributed lock, with the latter method, while only the nodes to

An Efficient Distributed B-tree Index Method in Cloud Computing The Open Cybernetics & Systemics Journal, 2014, Volume 8 306
o
n
s
/
s
)

Fig. (3). Throughput under lookup-type load. n

Fig. (4). Throughput under mixed load.
/
s
)

Fig. (5). Throughput under inserted load.

4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3
x 10

5

Server Number
T

hr
ou

gh
ou

t(
op

er
at

io
ns

/s
)

Transaction

Link
EDB

4 6 8 10 12 14 16 18 20
0

5

10

15
x 10

4

Server Number

T
hr

ou
gh

ou
t(

op
er

at
io

ns
/s

)

Transaction

Link

EDB

4 6 8 10 12 14 16 18 20
0

500

1000

1500

2000

2500

3000

Server Number

T
hr

ou
gh

ou
t(

op
er

at
io

ns
/s

)

Transaction

Link
EDB

307 The Open Cybernetics & Systemics Journal, 2014, Volume 8 Bin and Yuxing

Fig. (6). Comparison of node splitting times.

Fig. (7). Comparison of updated nodes.

be accessed will be locked. EDB method is better than Link
method, because, with EDB method, the number of nodes to
traverse is smaller than that with Link method.

In addition, EDB method and Link method have good
expansibility, and the throughput increases with the increase
in the number of servers in all of the three cases. For EDB,
the growth rate of the throughput decreases with the increase
in the number of servers in the inserting load and the hybrid
load, which is mainly caused by the following two situations:
(1) All of the data modifications are recorded in the log
which thus then becomes bottleneck; (2) Massive insertion
causes more frequent internal node splitting, thus more up-
date in client buffer influences the access performance.

6.3. Split Frequency

In the experiments, traditional B-tree nodes’ size is de-
fined as 2KB, with EDB, nodes’ original size is 2KB too. All
nodes in EDB increase by 2KB in each expansion, and all
data is randomly generated. In different data sizes, node split
times is shown in Fig. (6). As it is shown, with the same data
size, node split times with EDB is much less than that with
traditional method.

6.4. Cost of Update in Buffer
In the experiments, the data are simultaneously inserted

into distributed B-tree by one client, and the other client que-
ries data from the distributed B-tree. In the contrast test,

3 4 5 6 7 8 9 10 11 12 13

x 10
4

0

100

200

300

400

500

600

700

800

S
pl

it
T
im

es

Data Size

DB

EDB

1 2 3 4 5 6
0

10

20

30

40

50

60

70

U
pd

at
e

N
od

e
N

um
be

r

Update Order

DB

EDB

An Efficient Distributed B-tree Index Method in Cloud Computing The Open Cybernetics & Systemics Journal, 2014, Volume 8 308

when the same data value is searched, the quantity of up-
dated nodes in client buffer in each query is recorded (Fig.
(7)). As is indicated, the quantity of nodes to be updated in
client buffer is significantly reduced with EDB method than
that with the traditional distributed B-tree. Because, in the
traditional distributed B-tree, all nodes shall be buffered in
each update, while only some of them will be updated with
EDB method.

CONCLUSION

Our efficient distributed index EDB is used to eliminate
the following questions. (1) Low degree of concurrency.
When multiple users operate nodes, the transaction method
needs lock operated nodes and all their ancestor nodes,
which seriously affect the operational efficiency. EDB only
needs to lock each operated node by recording node split
history. (2) High cost of update. The node size of the exist-
ing distributed B-tree is fixed, which will cause frequent
splitting of nodes. EDB decreases frequent splitting of nodes
by allowing nodes’ size to change regularly. Moreover, tradi-
tional distributed B-tree needs to update all internal nodes in
client buffers when a node is split. EBD only updates some
nodes by our regional delayed update strategy. We have de-
scribed our efficient distributed index EDB and given the
survey of the performance comparisons, and the performance
results are encouraging.

CONFLICT OF INTEREST

The authors confirm that this article content has no con-
flict of interest.

ACKNOWLEDGEMENTS

The authors would like to thank for the support by Na-
tional Basic Research Program of China (973 Program) un-
der Grant No.2011CB302601, National High Technology
Research and Development program of China (863 Program)
under Grant No. 2011AA01A202, Science and technology

program of Hunan Province under Grant 2013FJ4335 and
2013FJ4295.

REFERENCES
[1] http://www. delicious.com.
[2] Flickr website. http://www. flickr.com.
[3] Google base website. http:// base.google.com.
[4] A. Zhou, “Data intensive computing”, Communication of China

Computer Federation, vol. 5, no. 7, pp. 50-53, 2009.
[5] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A.

Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W.
Vogels. “Dynamo: Amazon’s highly available key-value store”, In:
Proceedings of 21st ACM SIGOPS Symposium on Operating Sys-
tems Principles, 2007.

[6] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M.
Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A dis-
tributed storage system for structured data”, In: Proceedings of the
7th USENIX Symposium on Operating Systems Design and
Implementation (OSDI06), pp. 205-218, 2006.

[7] S. Ghemawat, H. Gobioff, and S. T. Leung, “The Google file sys-
tem”, In: Proceedings of 19th ACM Symposium on Opreating Sys-
tems Principles, SOSP, pp. 29-43, 2003.

[8] S. Wu, D. Jiang, B. C. Ooi, and K. L. Wu, “Efficient based index-
ing for cloud data processing”, Proceedings of the VLDB Endow-
ment, vol. 3, no. 1-2, pp. 1207-1218, 2010.

[9] Youtube Website. http://www. youtube.com.
[10] J. Dean, and S. Ghemawat, “Mapreduce: simplified data processing

on large clusters,” In: Proceedings of 6th Conference on Symposium
on Operating Design and Implementation OSDI, 2004.

[11] M. K. Aguilera, W. Golab, and M. A. Shah, “A practical scalable
distributed B-tree”, In: Proceedings of the VLDB Endowment, vol.
1, no. 1, pp. 598-609, 2008.

[12] C. Tang, J. Gao, T. Wang, and D. Yang, “Distributed B+ tree index
system and building method,” C. N. Patent 101576915, Nov. 11,
2009.

[13] B. Yuri, F. K. Henry, and A. Silberschatz, “Concurrency control
protocols for management of replicated data items in a distributed
database system,” U. S. Patent 5999931, Dec. 7, 1999.

[14] D. R. Naphtali, and S. Artyom, “Efficient optimistic concurrency
control and lazy queries for B-trees and other database structures,”
U. S. Patent 5920857, Jul. 6, 1999.

[15] M. Ahmed, S. S. Singh, and M. J. Lee, “Lazy updates to indexes in
a database,” U.S. Patent 20090089334, April 2, 2009.

Received: September 22, 2014 Revised: November 30, 2014 Accepted: December 02, 2014

© Bin and Yuxing; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/-
licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

