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Abstract: Several mathematical methods are discussed in this paper, which are applied in image compression and restora-
tion. Singular value decomposition (SVD) is used in compressing image. Conjugate gradients (CG) method and truncated 
Singular value decomposition (TSVD) regularization method are applied in image restoration. From the experience results 
we can see that those methods are effective in image compression and image restoration. 
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1. INTRODUCTION 

If an image to be transmitted has m×n pels, we need to 
transmit m×n data, which often has huge data quantity. So 
we expect to transmit relatively less date, which can be used 
to restore original image, this process realizes image com-
pression, which is very important in a information society. 
Moreover, images are often blurred by outside condition, so 
more and more people pay attention to effective image resto-
ration, nowadays image restoration technology [1] has been 
used in radio astronomy, secondary planet remote sensing, 
physic Imaging, industry vision and so on. 

2. SINGULAR VALUE DECOMPOSITION APPLIED 
IN IMAGE COMPRESSION 

2.1. Basic Theory About Singular Value Decomposition 

Lemma1: (SVD about matrix) Let  A! R
m"n , then there 

exist orthogonal matrix  U ! R
m"m  and  V ! R

n"n  such that  

 A =U!V
T  (or A =U!V

H ). 
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) , whose diagonal elements are 

arranged in the following form [2]: 
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> 0, r = rank( A).  

When SVD is applied in image compression, we often 
need a low order matrix to approach a disturbed matrix or a 
matrix contained noise. The following lemma will give out 
appraisement standard about approach quality. 
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Lemma2: Let the matrix’s  A! R
m"n  SVD given by 
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" , then the approach quality 

can be measured by the following spectrum norm and Fro-
benius norm; 
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where 
  
q = min{m, n} . 

2.2. Compressing Ratio and Reconstruction Formula 

We can use a matrix which has m×n element to denote 
m×n original pels to be transmitted, then SVD is applied in 
the matrix. If we choice  k  large singular value in the SVD 
result and corresponding left and right vectors to the  k  large 
singular value to approach original image, we can use 

  
k(m+ n+1)  numerical value to replace m×n image data. 
The 

  
k(m+ n+1)  new data to be selected are the former  k  

singular values of matrix  A , the former  k  columns of m×m 
matrix  U  which contain left singular vectors and the former 
 k  columns of n×n matrix  V  which contain right singular 
vectors. Ratio is called image compressing ratio. Clearly, the 
quantity  k  of large singular values should satisfy the condi-

tion 
  
k(m+ n+1) < mn  or 

  

k <
mn

m+ n+1
. Therefore, in the 

process of image transmission, we need only transmit 

  
k(m+ n+1)  data related to singular values and singular vec-
tors to replace m×n original data. In the sink, when we incept 
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singular values, left singular vectors and right singular vec-
tors, we can make use of truncated Singular value decompo-
sition (TSVD) formula to reconstruct original image. As the 
singular values downward arranged, many small singular 
values have no influence on the image restoration, so we can 
drop the small singular values [3, 4] to reduce the storage 
request: 
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2.3. Peak Value SNR 

As a standard, Peak value SNR(whose unit is decibel) 
which uses the following formula [5] to carry out calculation 
is often used to scale image quality: 
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2.4. Experimentation Result  

In the Fig. (2), the image (1) is the original input image 
which contains128×128 pels, a 128×128 matrix can be used 
to denote the image (1), the distribution of the 128 singular 
values about the denotation matrix is shown in the Fig. (1), 
clearly, the singular values turn to zero gradually, thereout, a 
sense estimate about the image quality corresponding differ-
ent  k  will be displayed. 

The following images are reconstructed by selecting dif-
ferent quantity of singular values, it is clearly to see from the 
images that we are not necessarily to utilize all of the singu-
lar values to take part in the calculation.  

In the Fig. (2) the compression ratios of image (2) to im-
age (6) are 12.75, 6.38, 3.19, 1.06, 0.64, it is clearly to see 
that less singular values whose quantity is  k  means large 

compression ratio and poor image reconstruction. Whereas, 
too many singular values whose quantity is also denoted by 
 k  means small compression ratio and slow transmission of 
images. Therefore, it is necessary for us to select fit com-
pression ratio, which can give attention to both transmission 
efficiency and reconstruction quality when deal with differ-
ent kinds of images. 

In the Fig. (2) the Peak value SNR of image (2) to image 
(6) are 32.98, 34.33, 36.17, 41.82, 48.64, it is clearly to see 
that along with the increasing of  k , the Peak value SNR 
( PSNR ) are also increased and higher quality reconstructed 
images can be gotten, but the compression ratio of images 
decrease clearly. 

In the Fig. (2) the Frobenius norms of image (2) to image 
(6) are 4186.50, 3066.82, 2006.88, 542.16, 85.11, it is 
clearly to see that along with the increasing of  k , the Fro-
benius norms are decreased, higher quality reconstructed 
images can be gotten and the compression ratio of images 
decrease clearly. 

3. IMAGE RESTORATION 

The first kinds of Fredholm integral equation (IFK) is 
usually used in image restoration, which has the following 
expression; 

 
Fig. (1). The distribution of the singular values about the original 
image. 

 
  (1) Original image (2) Image iterating 5 times (3) Image iterating 10 times 

 
     (4) Image iterating  

     20 times 
(5) Image iterating 60 times (6) Image iterating 100 times 

Fig. (2). The results of different singular values used for image compression.  
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g(x, y) = k(x, y;s, t) f (s, t)dsdt

a

b

!
a

b

!         (6)  

where the function 
  
g(x, y)  is the image which can be ob-

served, the function 
  
f (s, t)  is original image, the function 

  
k(x, y;s, t) is blurring operator. It is not a good choice to use 
the formula (1) to analyse the problem directly, when the 
space domain of function 

  
k(x, y;s, t)  do not change, it has 

the following expression: 

  
k(x, y;s, t) = k(x ! s)"( y ! t)           (7)  

Based on the formula (7), we can obtain the discretiza-
tion of the formula (1), which can be expressed by the fol-
lowing formulas; 

 

g = Kf

K = H ! H
               (8)  

where 
  
g, f  denote two   1! N

2  column vectors which piled 
by poor quality image and original image.  K  is the blurring 
operator (a   N 2

! N
2  matrix), as to the case the space domain 

do not change,  K  is a block circulation matrix, which can be 
expressed by the form of Kronecker product,  H  and  H  are 
the Toeplitz matrixes. 

IFK is the continuous model of image restoration, it is 
one kinds of equations which are very sensitive to disturber 
data, which is also means that the discretization of IFK is 
seriously ill-posed. We can not find effective result of equa-
tion (8) if we adopt normal method; furthermore the  K  is 
usually a large matrix, so iterating methods are often used in 
obtaining the approximate value of 

 
f . In this paper, conju-

gate gradients (CG) method and regularization method are 
applied in image restoration. 

We firstly construct the right side 
 
g  when the real solu-

tion 
 
f  and blurring operator  K  are given, which will be 

taken as the research object needed to be cleared away. The 
most familiar blurring equation is the gauss pulse function, 
whose expression is given by the following formula (9), and 
the space domain of the function do not change, moreover it 
has convolution kernel which has divided form, and has the 
same blurring degree to the image which will be dealt with 
in the  x  and 

 
y  directions: 
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The gauss pulse function can be described by the follow-
ing band Toeplitz matrix: 
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Only the element of the matrix  T  whose distance to the 

diagonal is band－1 are nonzero, 
  
K2 !" 2( )

#1

T$ T ,  K  is 

symmetry positive sparse matrix. The function of !  is to 
control the shape of the gauss pulse function, along with the 
increase of the ! ’s values the ill-posed problems [6, 7] be-
come more and more difficult to deal with. 

3.1. The Application of Conjugate Gradients (CG) 
Method in Image Restoration 

We let   N =128 , band=6, ! =10, here the matrix  K ’s 
condition number is infinite. In Fig. (3), the blurring image 
(2) can be obtained by blurring original image (1). At this 
time the problem is to how to effectively restore original 
image, when the blurring image and blurring operator are 
given.  K  is a seriously ill-posed matrix, if we solve the 
problem by using direct method, a restoration image can be 
given by the following image (3) in Fig. (3), which can not 
clearly denote the original image. 

Now conjugate gradients (CG) method will be used in 
image restoration: 

Firstly, let initial vector 
  
f

0
= 0  which will take part in it-

eration, 
  
p

0
= r

0
= g ! Kf

0
= g , 

 
p
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 is the search direction, 
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is the survival difference, conjugate gradients (CG) method 
is given as follows: 
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Fig. (3). The direct method applied in image restoration.  

           
（1）Original image                  （2）Blurring image      （3）Restoration image obtained by direct method 
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(5) 
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(6)   i = i+1  

End the 3d step. 
Conjugate gradients (CG) method [8] is applied in the 

above ill-posed problem, which has taken the effect of regu-
larization, the following image in the Fig. (4) is the result 
which has iterated 5000 times. 

 
Fig. (4). The restoration image obtained by using CG method. 

The relative error between image (3) and the original im-
age (1) in the Fig. (3) is 0.23451, between image in the Fig. 
(4) and the original image (1) in the Fig. (3) is 0.02591, 
which are easy to calculate. It is clearly to see that the resto-
ration image obtained by using CG method can clearly de-
note the original image.  

3.2. Truncated Singular Value Decomposition (TSVD) 
Regularization Methodapplied in Singular Value De-
composition (SVD) 

Pretreatment techniques are often used in speedup con-
vergent speed, first of all let us consider the following pre-
treatments [9]: 

To deal with matrix  K  by using singular value decom-
position  K =U!V

T , let the pretreatment operator 
 P =U!V

T , that the solution of formula (8) is: 

  
f =V!"1U T g             (11) 

As to the ill-posed problems, it is clearly that using this 
method can not get fitness solution, and the method will 
spread blurring effect, so it is difficult to realize image resto-
ration [10]. 

If we consider using the TSVD to regularize the pre-
treatment operator, then solution will has the following form: 

   

f =V!+U T g

!
+
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,0,L0)
        (12)  

Here the pretreatment operator is  P =U!
+
V

T , and the 
pretreatment operator is singular, when 

  
g ! 0  we can not 

ensure that 
  
f ! 0 , but the pretreatment conjugate gradients 

(CG) method will stop when
  
f = 0.  

To use the truncated singular value decomposition 
(TSVD) regularization method, defining the pretreatment 
operator 

 
P
!
=U"

!
V

T , where; 

   
!
"
= diag(#

1
,L#

k
,1,L1) , 

at this case it is easy to calculate the solution: 

  
f =V!

"

#1U T g             (13)  

As to the pretreatment system   P!1
K  of ①, all of the sin-

gular values are near by the 1 and we can not distinguish 
signal space from noise space; But the pretreatment system 
of ③ is 

   
P
!

"1K =V#V T , # = diag(1,L,1,$
k+1

,L,$
n
)  

whose large singular values are near by the 1, and corre-
sponding to the signal space small singular values corre-
spond to noise space. 

It is easy to see that the method ③ is a feasible method by 
the above analyse, but the difficulty to restore image by us-
ing the method truncated singular value decomposition 
(TSVD) is how to determine a suitable regularization pa-
rameter, the following three methods are in common use.  

Picard condition: The values corresponding to the points 
which make the Fourier coefficients become balanced can be 
taken as regularization parameters. 

L-curve criterion: The inflexion of L-curve is the point 
which can best balance the solution 

  
|| f ! ||  and the surplus 

item 
  
|| g ! Kf " || , and the value of the inflexion can be taken 

as regularization parameter, which is also the largest curva-
ture of L-curve. 

Generalized discrepancy principle (GCV): 

  

!
G
= arg min

Ax
!
" b

2

trace(I " AA
# )

 

The 
  
trace( A)  denotes the sum of the elements on the 

matrix  A ’s diagonal, 
  
A

#
= ( AA

T
+!

G

2
I )"1

A
T , and 

 
!

G
 is the 

regularization parameter. 

Let   N = 20 ,   band = 6, ! = 50,  now the condition num-
ber of the matrix  K  is  8.88284535536596!10

16 . General-
ized discrepancy principle is applied to select regularization 
parameter in this paper. The abscissa of the following Fig. 
(5) is 1 to   N 2 , and the ordinate is the values of double loga-
rithm which correspond to GCV’s function value. 

 
Fig. (5). The double logarithm of the GCV’s function value. 

The regularization parameter 2.689026×10-15 can be ob-
tained through calculation, then the truncated singular value 
decomposition (TSVD) regularization method is applied, and 
the results is shown as following: 

As shown in Fig. (6), the relative error between image (3) 
and original image (1) is 0.26134, and the relative error be-
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tween image (4) and original image (1) is 0.00997, it is 
clearly to see that TSVD regularization method is feasible to 
restore image. 

CONCLUSION 

Singular value decomposition (SVD) has a better effect 
in compressing image, which can give attention to both 
compressing ratio and image quality. We can select different 
compressing ratios according to different requests. 

Conjugate gradients (CG) method can effectively restore 
image, but it has a slowly convergent speed, we need look 
for more effectively pretreatment methods. 

Truncated Singular value decomposition (TSVD) regu-
larization method can also effectively restore image, but it is 
difficult for us to select regularization parameter. 

The mathematic methods discussed above provide new 
paths in Image Processing. 
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(1) Original image (2) Blurring image (3) Restoration image by 

direct method 
(4) Restoration image by 

TSVD regularization method 
Fig. (6). The experimental result. 


