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Abstract: Symmetry is a universal structural property of networks and many real networks have this characteristic. Pres-

ently, reducing an original network to a small-size quotient network by means of network symmetry is a promising 

method for network reduction. This paper studies the synchronization relationship between an original network and its 

quotient network and concludes that the network and its quotient network reach frequency synchronization simultane-

ously. We analyze the conclusion in theory and validate it with several simulations on synthetic networks. 
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1. INTRODUCTION 

The topologies of real complex networks have been ex-
tensively studied [1-11], and many ubiquitous structural 
characteristics are discovered, such as small-world [1-3], 
scale-free [4], assortative mixing [7], motif [8] and symmet-
ric structures [9, 10]. Systematical investigation of the net-
work structural effects on their dynamical processes is of 
both theoretical and practical importance. One of widely 
observed phenomena in networked systems is their synchro-
nization behavior, which has received a great deal of atten-
tion in the past few decades. Intensive research effort is 
made towards uncovering the effect of network structure on 
the network’s synchronization behavior, such as the effects 
of average distance [11, 12], heterogeneity [13], clustering 
[14], and weight distribution. In addition, the relationship of 
network failure with synchronization [15], generalized syn-
chronization [16], and synchronization performance [16], 
were also extensively studied.  

However, the real networked systems generally have a 
large size, which makes it difficult to perform theoretical 
analysis or numerical simulation to explore their synchroni-
zation behavior. In a real network, nodes play different roles 
in the contribution to synchronization behavior of the whole 
network. Thus, it is desirable if we can find the significant 
nodes playing important roles for the network synchroniza-
tion. Network reduction provides us such a way to find these 
significant skeleton nodes. In a typical network reduction 
process, we expect to construct a reduced network with 
smaller size but containing the significant nodes and preserv-
ing the important structural properties of the original net-
work. Therefore, as long as a reduced network is constructed 
with the same synchronization behavior as its original net-
work, the network synchronization behavior can be directly 
investigated on this reduced network. Computations and 
analyses on the reduced network will be much easier than on 
 

 

 
 

the original network. However, little effort towards this task 
is known so far. 

In this paper, we contribute to constructing a reduced net-

work that can preserve the synchronization behavior of the 

original network. We find that the quotient network, a 

reduced network obtained by collapsing the network symme-

try structure, can preserve the synchronization behavior of 

the original network. Besides, when a quotient network 

achieves synchronization, its original network also achieves 

synchronization. We demonstrate this by both theoretic 
analyses and simulation results. 

2. GRAPH SYMMETRY AND QUOTIENT NETWORK  

In this section, we first introduce the preliminary con-
cepts on graph symmetry, then, we illustrate how to obtain 
the reduced network: quotient network. 

2.1. Graph Symmetry 

A graph or network is denoted by 
  
H = (V , E) , where V  

is the set of vertices and  E  is the set of edges. A one-to-one 

mapping   a : v v  is called a permutation on v. Obviously, 

there exists overall   N !(where 
  
N =|V | ) permutations on  V . 

Among them, some permutations can preserve the adjacency 

relations for vertex pairs. Such permutations are referred to 

as automorphism of the graph. More formally, an automor-

phism of a graph H is a one-to-one mapping   a : v v  such 

that (U ,V ) E  if and only (a(u),a(v)) E  let Aut(H )  be 

the set of all automorphisms of  H . For any graph H, there 

exists at least one automorphism: identity automorphism, 

which maps each vertex to itself. This automorphism is triv-

ial. If a graph has at least one non-trivial automatism, this 

graph is symmetric. The more automorphisms can be found, 

the more symmetric the network is.  

As an example, we illustrate one symmetric graph in Fig. 
(1). We can find overall 8 automorphisms in this graph, 
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where seven of them are non-trivial. Three non-trivial auto-

morphisms are listed as follows:  

a
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2
)(v

3
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4
)(v

5
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Fig. (1). An example for symmetric network. 

Given a graph 
  
H = (V , E) , for any pair of vertices 

u,  v V , if there exists an 
  

Aut(H )
 

such that 

  
(u) = v , then  u  is autographically equivalent to v. Note 

that such a relation on the vertex set is an equivalence rela-

tion. Thus, we can construct a partition on the vertex set by 

this equivalence relation. Such a partition is called automor-

phism partition, each cell of which is called an orbit of 

  
Aut(H ) . An orbit is trivial if it only contains a single ver-

tex; otherwise, the orbit is non-trivial. In the example shown 

in Fig. (1), the automorphism partition of the graph is 

  
={{v

1
,  v

2
,  v

3
},{v

4
},{v

5
},{v

6
,  v

7
}} . Vertices in the same 

orbit are marked with the same color in Fig. (1). 

2.2. Quotient Network 

Actually, the vertices in the same orbit or cell have the 
same neighborhood structure, and thus they tend to share 
similar properties, such as degree, eigenvector centrality and 
clustering coefficient. Therefore, vertices in the same orbit 
are structurally equivalent to each other. For many real net-
works with a non-trivial automorphism, those vertices in the 
same orbit are redundant in the sense that they play the same 
structural roles. Hence, these vertices are replaceable with 
each other from the perspective of structure. Thus, structural 
equivalence implicated by the automorphism partition offers 
us a convenient way to reduce network size by coarse-
graining the vertices within the same orbit. The reduced net-
work derived in this way is referred to as quotient network 
[17]

.
 By only coarse-graining equivalent vertices in the same 

orbit, all the structural information of the original network 
are reserved in the quotient network. The quotient network is 
thus the structural skeleton of its original network, and many 
characteristics of the original network are preserved in the 
quotient network. 

More formally, let 
1 2, ,  ...,{ }

s
=Ä

 
be the automor-

phism partition of graph H. Clearly, the number of neighbors 

in 
 j  

of a vertex 
 
v

i  
is 

i j
q , which is constant. Then, the 

quotient network Q of  H  under the action of 
  
Aut(H )

 
es-

sentially is an edge-weighted multi-digraph (i.e., there may 

exist multiple edges among a pair of vertices and each edge 

is weighted and directed) with orbits of H  as the vertex set 

and adjacency matrix consisting of 
ij
q . It was already 

shown that many real networks can be reduced to non-trivial 

quotient networks, each of which is significantly smaller 

than the size of the original network but preserves the most 

important structural characteristics of the original network 

[17]. In this sense, the quotient network is a good reduction 

of the original network. 

A graph’s quotient network can be easily constructed if 
the automorphism partition of this graph is already given. In 
this paper, NAUTY [17] tools are adopted to obtain the 
automirphism partition of a graph, and thus we just need to 
coarse-grain each orbit of the graph into a single vertex so as 
to construct the quotient network. Take the graph shown in 
Fig. (1) for example, we give out its quotient network in Fig. 
(2). The quotient network is obtained by coarse-graining 
orbits as follows:  

  
{v

1
,  v

2
,  v

3
} v

1
,{v

4
} v

2
,{v

5
} v

3
,{v

6
,  v

7
} v

4
,  

Where the left parts are orbits in the original graph and 
the right parts are vertices in the quotient network. Note that 
each edge is directed and weighted in the quotient network, 
which represents the number of the neighbors for a vertex in 
one orbit directed to another orbit. 

 

Fig. (2). Quotient network. 

3. SYNCHRONIZATION OF NETWORK 

Kuramoto model
 
[18] is described by a simple model of 

N  mutually coupled oscillators having different intrinsic 

frequencies. For a graph 
  
G(V , E)

 
with 

  
|V |= N

 
vertices, we 

can define a connectivity matrix 
  
A =  [a

i j
] (1 i,  j N )

 
such that 

  
a

i j
=  1

 
if vertices 

  
i, j  are connected and 

  
a

i j
=  0

 
otherwise. Let 

i  
be the phase of vertex i,

i
[0,2 )

 
and 

 

d
i

dt  

be the  i th  phase rate of change. Then, the Kuramoto 

model for graph G can be formally given by the dynamic 

equation of 

 

d
i

dt

as

  

d
i

dt
=

i
N

a
ij

j

sin(
i j

), i =1,2...N

 

where, 
 i  

is the intrinsic frequency of vertex  i  and  is the 

coupling strength of connected oscillators. In general, 

  i
[ 0.5,0.5]  is chosen from the Gaussian distribution 

with unit variance. 

The order parameter M is usually used to evaluate the 
macroscopic synchronization. M is usually defined as 
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M =
1

N
e
i
i

1 j N  

 

If all of the oscillators are in the same phases, then M = 

1; otherwise, M = 0. When M
limit

t

= ,
 
the network ap-

proaches frequency synchronization, where, 
 
is a positive 

constant. In the following, unless clearly specified, network 

synchronization refers to the frequency synchronization. 

4. SYNCHRONIZABLITY ANALYSIS 

It is very difficult to measure the synchronizablity of Eq. 

(1) either in theoretic analysis or numerical simulation, be-

cause synchronizablity has higher dimensions. It is also very 

difficult to analyze the synchronization when the network 

size is very large. Hence, it is necessary to decompose Eq. 

(1) and make its dimension lower so that the judgment of 

system synchronization would be much easier. To measure 

the synchronized state, we first need to rewrite Eq. (1) with 

some new parameters. Let 
  
 =

t
+

0
, =

i  
be the dif-

ferences of the phases and the average phase, respectively. 

Let 

  

=
1

N
j

1 j N

, =
1

N
j

1 j N

,
i
=

i t
， here is the 

average phase and  is the average frequency rate. Now, 

Eq. (1) can be rewritten as systematic error expression, 

shown in Eq. (3). Zero systematic error is equivalent to the 

synchronization of both the original network and the quotient 

network in the sense that they reach synchronization simul-

taneously. 

  

=
i

N
a

ij

1 j N

sin(
i j

)

 

when, 

  

t ,
i

N
a

ij

1 j N

sin(
i j

) = 0

 

and Eq.(3) 

has solution when the right side of Eq.(3) reaches an equilib-

rium state. Eq. (1) approaches frequency synchronization 

state when Eq. (3) approaches partial stability state on the 

equilibrium point. Here, the concepts of partial stability and 

also partial synchronization are referred to as the definitions 

in [19]. 

Theorem 1 If Eq. (3) satisfies that 

(1) The linearized matrix of Eq. (3) has solution on 

equilibrium point 
  
(

1

* ,
2

* ,...
N

* ) ; 

(2)
   

i* j*
<

2 ; 

Eq. (1) reaches partial frequency synchronization if Eq. 

(3) is partial stable on equilibrium point 
  
(

1

* ,
2

* ,...
N

* )
.
 where 

the linearized matrix on the equilibrium point is as follows: 

  

=

1 j

*

1 j N

12

*
...

1N

*

21

*

2 j

*

1 j N

...
2 N

*

.. .. .. ..

N1

*

N 2

*
...

Nj

*

1 j N  

Here, 

  1 j

*
= a

1 j
*cos(

1

*

j

* ),
12

*
= a

12
*cos(

1

*

2

* ),...
Nj

*
= a

Nj

   
*cos(

N

*

j

* )
, 

If in a connected network and under the 

condition 

  
i

*

j

*
<

2

, we can get the real parts of all eigen-

values 
  i

0  of matrix , and it at most has one zero root, 

then the dynamic network (3) approaches partial stability on 

the equilibrium point [20]. This means that when the dy-

namic network reaches partial stability on the equilibrium 

point, it is equivalent to the original system’s synchronism. 

We call this synchronization the generalized phase synchro-

nism or the generalized frequency synchronization. 

Given the adjacent matrix T =  [t
ij
]

 
of an undirected 

network, its coupling matrix 
  
A = [a

ij
] R

n n

 
is defined 

as

   

a
ij
=

t
ij

1 j N

if i = j,

1 if i and j are connected ,

0 otherwise

 

Given the adjacent matrix 
  
T =  [t

ij
]

 
of an undirected 

network, the coupling matrix of its quotient network can be 

defined as 

b
ij
=

b
Nj

1 j N

if i = j

1 if i and j connected ,

k
i

if r and j connected , and r = i,

0 otherwise
 

Where, 
i
k is the node number of the i-th orbit in the 

original network and the i-th orbit is presented by the node r 
in the quotient network. 

In a complex network, each node is considered to be os-
cillator in the Kuramoto model. In the original network, if an 
orbit only contains a single oscillator, the orbit is trivial; oth-
erwise, it is non-trivial. If 

i
is the i-th trivial phase rate of 

change, usually its nonlinear equation is 
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i

`

=
i
N

a
ij

1 j N

sin(
i j

)

 

In a non-trivial orbit which contains more than one oscil-
lator, each oscillator interacts with all the others. The oscilla-
tor’s nonlinear equations in the same orbit are 

  
j

`

=
j

N
a

j1
sin(

j 1
)

 

  
j

`

=
j

N
a

j2
sin(

j 2
)

 

j

`

=
j
N
a
j3
sin(

j 3
)

 

 

  
j

`

=
j

N
a

jr
sin(

j r
)

 

Let j
 

be the common coupling vertex of the nodes 

1,2,3,...r . Since the nodes 1,2,3,...r
 
in the same orbit have 

equal state, we have  
i j
=

 
in Eq. (3). The nodes   1,2,3,...r

 
in the same orbit can be replaced by  r , then, we can refor-

mulate the above equation as; 

  
j

`

=
j

N
a

jr
k

i
r sin(

j r
)

 

Based on the stability analysis on the equilibrium point 

and the Theorem 1, we conclude that when the reduced net-

work approaches the synchronized state, the original network 

also approaches synchronization under the given conditions. 

5. ILLUSTRATION EXAMPLE  

We use the network shown in Fig. (1) as an example to 

illustrate our theoretic results. The network coupling matrix 

is: 

   

A =

1 0 0 1 0 0 0

0 1 0 1 0 0 0

0 0 1 1 0 0 0

1 1 1 4 1 0 0

0 0 0 1 3 1 1

0 0 0 0 1 1 0

0 0 0 0 1 0 1
 

The dynamic equations are 

  
1

`

=
1

N
a

41
sin(

4 1
)

  
2

`

=
2

N
a

42
sin(

4 2
)

  
3

`

=
3

N
a

43
sin(

4 3
)

  
4

`

=
4

N
a

54
sin(

5 4
)

5

`

=
5
N
a
65
sin(

6 5
)

6

`

=
6
N
a
56
sin(

5 6
)

  
7

`

=
7

N
a

57
sin(

5 7
)

 

For the linearized dynamic equation, the coupling matrix 

A has the solution  1

*
= 0.725

,  2

*
= 0.1172

, 
 3

*
= 0.4259 , 

 4

*
= 0.2569

, 
 5

*
= 0.6597 , 

 6

*
= 0.3570 , 

 7

*
= 0.7785

 
on the equilibrium point (

1 2 3 4, 5, 6 7
). Moreover, 

  
i

*

j

*

 
are 0.1690, 0.2338, 0.0689, 0.3525, 0.1396, 0.1690, 

and 0.0, respectively, which satisfy 

  
i

*

j

*
<

2  

with only 

one zero root. The dynamic equation of the original network 

has the solutions and 

  
i

*

j

*
<

2  

satisfying Theorem 1, 

which means that the dynamic equation of the original net-

work is partial stable on the equilibrium point 

(
1

* ,
2

* ,
3

* ,
4

* ,
5

* ,
6

* ,
7

* )
.
 

We now reduce the original network to its quotient net-
work. Notice that nodes 1, 2, and 3 are in the same orbit, and 
nodes 6 and 7 are in the same orbit. Hence, nodes 1, 2, and 3 
can be replaced by node 1, and node 4 with 2; 5 with 3; and 
6, and 7 with 4. Weighted and directed network topology of 
the quotient network is shown as Fig. (2). The coupling ma-
trix B of the quotient network are 

  

B =

1 1 0 0

3 4 1 0

0 1 3 2

0 0 1 1
 

The dynamic equations of the quotient network are 

  
1

`

=
1

N
a

21
sin(

2 1
)

  
2

`

=
2

3
N

a
12

sin(
1 2

)
  

3

`

=
3

2
N

a
43

sin(
4 3

)

  
4

`

=
4

N
a

34
sin(

3 4
)

 

For the linearized dynamic equation of the quotient net-

work on the equilibrium point (
1 2 3 4
, , , ), the coupling 

matrix B has the solution 
1

*
= 0.2757，

2

*
= 0.1377 , 

 3

*
= 0.6042 , 

4

*
= 0.6044  and 

**

ji
 

are 0.1380, 

0.3285,0.3286, and 0.0, respectively. The equation satisfies 

i

*

j

*
<
2  

and has at most one zero roots. The dynamic 

equation of the quotient network has the solutions and 

  
i

*

j

*
<

2  

which means the dynamic equation of the quo-

tient network achieves partial stability on the equilibrium 
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point (
1

* ,
2

* ,
3

* ,
4

* )
 
and approaches the frequency synchro-

nization state. 

Fig. (3) shows the results with coupling strength 

=  0.5 .  

We can see that  =  0.5  is the smallest coupling 
strength with which both networks reach the frequency syn-
chronization at the same time. From a practical viewpoint, 
we analyzed these parameters  and  as follows  

When phase 
i  

is fixed, we examine the critical point of 

the coupling strength 
c
. Here, 

c
=  0.5

 
is a critical point 

at which the original network and the quotient network reach 

the frequency synchronization simultaneously. When the 

coupling strength satisfies  0.3  < 0.5 , the original net-

work can reach synchronization, but the quotient network 

cannot, as shown in Fig. (4). 

Neither of the networks can reach frequency synchroni-

zation when   < 0.3 . In general, for connected networks, if  
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Fig. (3). The coupled strength vs. time, the coupled strength =  0.5 . The blue line represents the original network and the red line rep-

resents the quotient network. 

 

Fig. (4). The original network and the quotient network cannot reach synchronization simultaneously. The blue line represents the original 

network and the red line represents the quotient network. 

the difference 
i  

is small and the value is moderate, 

then the order parameter  M  tends to be stable at a positive 

constant where the network achieves synchronization. If the 

coupling strength  is too big and the order parameter  M  

is a positive constant, both of the two networks can reach 

frequency synchronization, however, this is of no practical 

significance. Fig. (5) shows the synchronized states of the 

original network and the quotient network. ON represents 
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the original network and QN represents the quotient net-

work. From this numerical simulation, we clearly see that the 

synchronizations of the original network and the quotient 

network have slight phase differences at the early stage. This 

is because there exist a fixed phase difference between the 

two equilibrium points. 

All oscillators in both the original and the quotient net-
works keep the same pace gradually, and both of the two 
networks achieve the same synchronization with the cou-
pling strength  >  

c
=  0.5 . Hence, the original network 

and the quotient network can reach the same frequency syn-
chronization. On the other hand, when both of the two net-
works approach synchronization, the graph shows that the 
order parameter M of the original network is bigger than the 
quotient network. Hence, from the perspective of phase syn-
chronization, the synchronization of the original network is 
slightly better than that of the quotient network when the 
coupling strength of the former is smaller than that of the 
latter. Generally speaking, the synchronization would be 
better if the order parameter M is bigger and the phase dif-
ference is smaller. The phase synchronization is a kind of 
special frequency synchronizations, and the conditions to 
reach synchronization are relatively high. 

CONCLUSION 

Many real networks contain abundant structural equiva-
lence, which enables us to derive the reduce network, quo-
tient network, by collapsing the structural equivalent nodes 
in a symmetric network. In this paper, we conclude that a 
network and its quotient network reach frequency synchroni-
zation simultaneously for most real complex networks. We 
analyze this conclusion in theory and validate it with simula-
tions on synthetic networks. The conclusion implies that we 
can get the synchronization behavior of an original network 
just from its quotient network. Since quotient network size is 
usually smaller than its original network, it is very easy to 

analyze the synchronization and carry out other measure-
ments on it. The numerical simulations show that when the 
quotient network reaches synchronization, the original net-
work also approaches synchronization. The conclusion of 
this paper will help to reduce the cost for studying a net-
work’s synchronization behavior because the quotient net-
works have smaller sizes without sacrificing the structural 
information of their original networks. 
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