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Abstract: To build a time sequence prediction model with excluded seasonality out of the sequence with prominent 

seasonal features, primary treatment of seasonality exclusion shall firstly be done, to obtain the pass of stationary test; and 

then, by integrating autocorrelogram, partial autocorrelogram and AIC codes, ARMA model shall be identified and be 

able to pass residual correlation test and the optimum hydrological probability distribution function shall be finally 

determined. In accordance with the daily runoff of the Three Gorges from 1950-2009, the predicted daily runoff in 2010 

via R software has small error compared with the observed daily runoff, obtaining good prediction performance. 
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1. INTRODUCTION 

In recent years, the frequency analysis method for non-
uniformity hydrological sequence under varying conditions 
has been studied, in hope of successful analysis on the 
evolvement mechanism of hydrological statistics discipline 
under varying conditions, from the hydrological features that 
are under variation [1] out of climate change and human ac-
tivities. As a part of hydrological frequency analysis, daily 
runoff prediction bears practical significance in the micro-
management, optimized dispatching, development and utili-
zation as well as flood control and drought relief decision of 
regional water resource. As for the current study on models 
for daily runoff sequence prediction, there are such models 
available as seasonal auto regression model, staged smooth 
auto regression model, artificial neural network model [2], 
and maximum likelihood method and least square method 
models for non-stationary hydrological frequency analysis. 

Therein, the seasonal auto regression model features 
simple principles and convenient computing; however, spe-
cifically for the daily runoff of the Three Gorges, there are 
365 sets of parameters to be considered, thus leading to 
lengthy and complex computing [3]. The staged smooth auto 
regression model, despite of its explicit concept and simple 
structure, bears big error in predicting certain mutational 
sites of daily runoff sequence curve. As for artificial neural 
network model, there is certain motility in parameter deter-
mination and no defined algorithm, nullifying the practical 
significance of parameters [4]. For the treatment of non-
stationary hydrological elements (tendency elements) in 
Flood Frequency Model (FHM), Strupczewski et al. put for-
ward the maximum likelihood method and least square 
method models for non-stationary hydrological frequency  
 

 

 
 

analysis and successfully applied the two methods in the 
hydrological analysis on Polish River [5-7]. This thesis, 
based on work of Strupczewski et al., observed the tendency 
of the mean value and variance for daily runoff sequence of 
the Three Gorges that varies from time, found out the reason 
for varying hydrological regime of the Three Gorges, 
adopted seasonality exclusion method to modify non-
uniformity and maximum likelihood method to estimate the 
tendency function and hydrological distribution parameters, 
and integrated autocorrelogram, partial autocorrelogram and 
AIC codes to identify ARMA model and finally determine 
the optimum hydrological probability distribution. 

2. BUILDING OF ARMA MODEL 

2.1. Seasonality Exclusion of Sequence  

In general, the hydrological sequence features tendency, 
periodicity and seasonality, among which the strong season-
ality is the main reason for the non-linearity of the whole 
sequence, which will influence the accuracy of time se-
quence analysis and thus require seasonality exclusion. 
Normally, there are three methods for seasonality exclusion 
[8]: Seasonality Auto regression Integrated Moving Average 
(SARIMA) model, ARMA model with excluded seasonal 
factors and periodical ARMA model. Based on the variation 
features of hydrological sequence, ARMA model is used in 
this thesis for seasonality exclusion, as shown below: 
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Therein, r means the year, m means the certain time 
within a year (in case of daily data, m may be maximally 
taken as 366; in case of monthly data, m is taken as 12 for 
maximum), xr.m means the original sequential value at time 
point m in year r, μm means the average value at time point m 
in each year, m means the standard deviation at time point m 
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in each year, and μr.m means the sequential value at time 
point m in year r after seasonality exclusion. 

The above seasonality exclusion method is similar to the 

evaluation of variable coefficient, which is the characteristic 

number to measure the evaluation fluctuation degree of ran-

dom variables in mathematical expectation, thus being a di-

mensionless quantity, the influence exclusion of which can 

indirectly lead to the exclusion of seasonality of daily runoff 

sequence to make it more stationary. 

2.2. Discrimination of Sequence Correlation 

Usually, there are three approaches for sequence correla-

tion test [8]: autocorrelation coefficient, partial autocorrela-

tion coefficient and Ljung-Box Q statistics, among which the 

former two are used for identifying the ARMA model order, 

while the latter is used for testing the correlation of sequen-

tial residual. 

Assume that ut means the treated sequence, its autocorre-

lation coefficient of the lagged order k shall be estimated in 

the following formula: 
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Therein, u  is the sample average of the sequence; rk is 

stated as the autocorrelation coefficient of order k for time 

sequence ut, and such coefficient can represent the partial 

correlation among adjacent data of sequence ut. Partial auto-

correlation coefficient means the conditional correlation be-

tween ut and ut-1 under the given ut-1, ut-2 and Lut-k-1. The de-

gree of correlation is measured by partial autocorrelation 

coefficient k,k, the estimation of which under lagged order k 

is shown in the following calculation formula: 
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The expression of Ljung-Box Q statistics is as follows: 
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Therein, rj is the autocorrelation coefficient of order j, T 
is the sample size, and p is the set lagged order. The original 
assumption of QLB statistics is that no autocorrelation of or-
der p for the sequence exists, instead, such sequence subjects 
to the x

2
 distribution. Usually, QLB statistics requires large 

sample size to ensure its validity. 

2.3. Identification of ARMA Model 

The stationary ARMA model of the treated sequence is 
generally composed of auto regression model and moving 
average model and marked as ARMA (p, q), wherein p 
means the maximum order of autoregressive process, and q 
means the maximum order of moving average. The expres-
sion of ARMA (p, q) is as follows: 
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Therein, c is the constant, 1,…, p are parameters of auto 
regression model, p is the order of auto regression model, 

1,…, q are parameters of moving average model, q is the 
order of moving average model, and 

t
 is the white noise 

sequence with the mean value of 0 and variance of definite 
value. 

Generally, during the identification of ARMA model, 
Autocorrelogram (ACF) and Partial Autocorrelogram 
(PACF) of the sequence are observed, and the model order is 
determined by trailing or truncation. The specific decision 
rules are shown in Table 1. 

Generally, the models can be well identified through the 

above methods; however, the residual correlation test will 

always not be passed when the characteristics of original 

sequence is too complex. Such problem can be solved 

through integrated decision method, and the specific steps 

are as follows:  

(1) By observing partial autocorrelogram, the maximum 

orders p and q, which are respectively greater than 2 times of 

positive and negative standard deviation [9], are determined. 

Calculate AICp
1
,q
1
, wherein p1 (1, p),q

1
(1,q) . 

(2) Make the value of 
  
AIC

p
1
,q

1  
to be minimum, and the 

corresponding p and q as the orders for model identification. 

Therein, AIC refers to the Akaike Information Criterion [9, 

10], with the calculation formula being: 

  
AIC = 2 log(ML)+2k

            (6) 

If the model involves an intercept or a constant term, 
then 1k p q= + + ; or else, k p q= + . 

Table 1. Rules of ARMA model decision. 

 AR(p) MA(q) ARMA(p, q) 

ACF Trailing Truncation after lagging for order q Trailing 

PACF Truncation after lagging for order p Trailing Trailing 
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2.4. Calculation Process 

 

 

3. SOLUTION OF MODEL 

Yichang Hydrologic Station, located in Yichang City, 

Hubei Province, China with controlling drainage area of 

1,005,500 km
2
, is an outlet control station in the upper 

reaches of the Yangtze River, with the perennial average 

runoff volume (1950-2010) being 13634m
3
/s. The daily  

runoff data from 1950 to 2010 at the Station is selected in 

this thesis for time sequence analysis and analog prediction, 

wherein the data from 1950 to 2009 will be used for model-

ing and the data of 2010 will be used for testing model preci-

sion. 

3.1. Preliminary Analysis on Sequence 

The daily runoff data from 1950 to 2010 at Yichang Hy-
drologic Station is as shown in Fig. (1): 

It can be seen from Fig. (1) that the sequence bears 
strong seasonality and long periodicity. In order to further 
master the discipline of runoff sequence, perennial daily 
mean value and daily standard deviation shall be calculated, 
with the result as shown in Fig. (2).  

According to Fig. (2), the annual runoff sequence can be 
divided into four seasons, namely dry season prior to flood 
(January-March), transitional season prior to flood (April-
May), flood season (June-October) and dry season after 
flood (November-December). The difference in daily mean 
values of each season shows the tendency of sequence, 
which is consistent with that of the seasonality of sequence. 

3.2. Sequence Stationary Test 

Since the sequence is generally required to be stationary 
when building time sequence model, while practically, it can 
be seen from the preliminary analysis of sequence that the 
runoff sequence is seasonal, periodical, non-stationary and of 
certain tendency, it’s better to make the sequence as station-
ary as possible before building time sequence, to ensure the 
effect of fitting.  

3.2.1. Preliminary Treatment for Sequence 

Specific to the tendency, seasonality and periodicity of 
runoff sequence, we herein conduct seasonality exclusion for 
the original runoff sequence, the result of which is as shown 
in Fig. (3). 

It can be preliminarily judged that the treated runoff se-
quence is almost stationary from Fig. (3); however, ADF test 
and PP test are still required for the treated sequence. The 
original assumption of the two tests is that the sequence is 
non-stationary. The test results are shown in Table 2. 

It can be seen from Table 2. That the tests accept the al-
ternative assumption instead of the original one, i.e. the se-
quence may be deemed as stationary at 95% confidence co-
efficient and thus ARMA model can be built. 

 

Fig. (1). Daily runoff at yichang hydrologic station in 1950-2010. 
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Fig. (2). Changes of mean value and standard deviation of daily runoff at yichang hydrologic station. 

 
Fig. (3). The sequence after exclusion of seasonality. 

 

Fig. (4). Autocorrelogram and partial autocorrelogram of sequence after exclusion of seasonality. 

Table 2. Stationary test of sequence after exclusion of season-

ality. 

Test Method Statistics p-Value 

ADF test -16.5507 0.01 

PP test -1035.042 0.01 

3.2.2. Identification and Solution of Model 

The identification of ARMA model involves the observa-

tion of autocorrelogram and partial autocorrelogram, AIC 

codes and BIC codes. It can be seen from Fig. (4) that within 

95% confidence interval, the autocorrelation coefficients are 

in trailing, while partial autocorrelation coefficients are 

prominent before the first 10 orders except the order 4, i.e. 

Mean Value 

Standard Deviation 
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order 3 is of truncation. If Fig. (4) is the only basis, the AR 

(3) model may be built for the treated runoff sequence data 

from 1950 to 2009. When conducting residual correlation 

test for such model, the Ljung-Box Q statistics 

  P = 9.659 10
15
< 0.01 , the original assumption is denied, 

namely, autocorrelation exists in residual sequence. 

The ARMA model obtained only by observing autocorre-
logram and partial autocorrelogram will not pass residual 
correlation test. To better identify the model to make it pass 
such test, autocorrelogram, partial autocorrelogram and a 
series of codes are integrated in this thesis to identify the 
model order, ensuring the ARMA model passes the test. 

It can be seen from Table 3 that when the AR order is 10, 
the corresponding Ljung-Box Q test value P=0.153, being 
relatively prominent; the AIC value before order 11 is mini-
mum, thus meeting AIC minimization code [7]. Therefore, 
the order of AR model is taken as n=10. Assume that ut 
means the treated sequence; the following can be obtained 
through R software programming: 

u
t
=1.5352u

t 1
0.7834u

t 2
+ 0.2309u

t 3
0.08u

t 4
+

0.0354u
t 5

+ 0.0032u
t 6

+ 0.0041u
t 7

0.005u
t 8

+

0.003u
t 9

+ 0.0171u
t 10     

(7)
 

As the coefficients of 
6 7 8 9
, , ,

t t t t
u u u u

 
herein are not 

prominent, these coefficients shall be taken as 0. New rela-

tion can be obtained under re-fitting: 

u
t
=1.5343u

t 1
0.7818u

t 2
+ 0.2305u

t 3
0.0808u

t 4
+

0.0399u
t 5

+ 0.0163u
t 10    

(8)
 

3.2.3. Model Test 

The traditional time sequence model also requires no re-
sidual correlation, so Ljung-Box Q test shall be conducted. It 
can be seen from Fig. (5) that:  

 The residual autocorrelation coefficients are all within 
95% confidence interval, i.e. the residual bears no prominent 
autocorrelation; 

 The probability values (i.e p value) of Ljung-Box Q 
statistics are all beyond 95% confidence interval, and the 
original assumption is accepted, namely, the residual se-
quence bears no autocorrelation. 

The conclusion that the residual sequence bears no auto-
correlation can be drawn from  and , further proving the 
validity of the model. 

3.2.4. Prediction of Runoff Sequence 

Prediction is an important application of time sequence. 
The daily runoff volume value of the Three Gorges in 2010 
is herein obtained by multi-step prediction [8] taking the 
runoff from 1950-2009 at Yichang Hydrologic Station as 
original data with AR (10) model. 

It can be seen from Fig. (6) that the predicted results and 
observed results are generally matching. The fluctuation of 
predicted results also reflects seasonality, meaning that the 
AR (10) built can well fit the runoff sequence; from Fig. (7) 
we can see that the bound of predicted value is always an 
interval belt with the same width, which depends on the as-
sumption of AR (10) model, i.e. assume that the residual 
variance is a definite value, and the 95% confidence interval 
is formed from predicted value ±1.96 times of standard de-
viation. Therefore, the width of predicted confidence interval 
will be a definite value when the variance is constant. 

CONCLUSION 

By observing the autocorrelogram and partial autocorre-
logram, general time sequence model can be well identified. 
However, featured by periodicity, tendency and seasonality, 
the daily runoff sequence of the Three Gorges has invali-
dated general model identification methods. Therefore, sea-
sonality exclusion is done for the daily runoff sequence to 
make it more stationary. 

After that, ARMA model is identified by integrating 
autocorrelogram, partial autocorrelogram and AIC codes. 
According to the result of Ljung-Box Q test, such model 
after identification can well fit the daily runoff sequence  
of  the Three Gorges, with small error in prediction of daily  

Table 3. Test the P value and AIC value by Ljung-Box Q test under different AR orders.  

AR Order P Value >0.05 AIC Value Compare with Last Order 

3 9.659E-15 No -1076.21  

4 2.24E-14 No -1074.56 raise 

5 1.12E-04 No -1147.00 decline 

6 5.98E-04 No -1158.30 decline 

7 2.01E-03 No -1166.65 decline 

8 8.51E-03 No -1176.04 decline 

9 0.0937 Yes -1189.79 decline 

10 0.153 Yes -1194.22 decline 

11 0.142 Yes -1193.62 raise 

12 0.375 Yes -1199.40 raise 
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Fig. (5). Residual correlation test. 

 
Fig. (6). Comparison of predicted results and observed results of AR (10) model. 

 

Fig. (7). Predict Results in 95%-confidence interval by AR (10) model. 
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runoff sequence value of 2010 and better predictive effects. 
The prediction method in this thesis can well solve such 
similar problems in sequence prediction under prominent 
seasonality. 
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