
Send Orders for Reprints to reprints@benthamscience.ae

904 The Open Cybernetics & Systemics Journal, 2014, 8, 904-912

 1874-110X/14 2014 Bentham Open

Open Access

A Genetic Algorithm Using Infeasible Solutions for Constrained
Optimization Problems

Yalong Zhang
1,*

, Hisakazu Ogura
2
, Xuan Ma

3
, Jousuke Kuroiwa

2
 and Tomohiro Odaka

2

1
College of Electrical and Information Engineering, Quzhou University, Quzhou 324000, China;

2
Graduate School of Engineering, University of Fukui, Fukui 910-8507, Japan;

3
Faculty of Automation and Information Engineering, Xi'an University of Technology, Xi'an 710048, China

Abstract: The use of genetic algorithms (GAs) to solve combinatorial optimization problems often produces a population

of infeasible solutions because of optimization problem constraints. A solution pool with a large number of infeasible

solutions results in poor search performance of a GA, or worse, the algorithm ceases to run. In such cases, the methods of

penalty function and multi-objective optimization can help GAs run to some extent. However, these methods prevent

infeasible solutions from surviving in the solutions pool. Infeasible solutions, particularly those that are produced after

several generations, exhibit some achievements in evolutionary computation. They should serve as a positive function in

the process of evolution instead of being abandoned from the solution pool. In this study, we extract excellent gene

segment for infeasible solutions with a function operation to increase the search performance of GAs. Simulation results

on zero-one knapsack problems demonstrate that applying infeasible solutions can improve the search capability of GAs.

Keywords: Constrained Optimization, Genetic Algorithm, Infeasible Solution, Artificial Immune Operation.

1 INTRODUCTION

 Over the last two decades, as a result of high global

search performance and robust performance, genetic

algorithms (GA) have been widely applied to large-scale

combinatorial optimization problems. Several optimization

problems have constraint conditions. With respect to the

constrained optimization problem, GA searches the feasible

solutions that satisfy the constraint conditions with the

objective function over the entire genetic space. The

solutions that do not satisfy the constraint conditions are

referred to as infeasible solution whose encoding referred to

as lethal chromosomes (LCs).

 In the population of GA, due to crossover and mutation

operations, LCs are sometimes produced at high rates,

especially in combinatorial optimization problems having

severe constraints. The greater the number of LCs in the

population, the worse the search performance of the GA, in

the worst case, the algorithm ceases to run.

 Iima Hitoshi [1] (1995) investigated the effects of LCs on

the performance of the GA but did not propose a method for

handling these problems. If LCs were found to follow some

rules, it would be possible to avoid creating LCs. However,

designing a genetic operation to avoid the generation of LCs

is generally difficult. Generally, LCs are eliminated from the

population. However, after evolution through several

generations, the LCs may contain useful traits. Therefore, Z.

Michalewicz [2] (1995) concluded that "Do not kill

unfeasible individuals". If a GA uses the LCs instead of

abandoning them, then the search performance of the

algorithm may be improved. Mengchun Xie [3] (1996)

proposed an algorithm model called the double islands

model to revive the LCs by random crossover and mutation

operations. Due to its randomness, and without using

characteristic information, the efficiency of the double

islands model algorithm must be improved.

 Research focusing on problems associated with infeasible

solutions has advanced in recent years. Yu and Zhou [4]

(2008) theoretically showed that the use of infeasible

solutions could change the “hardness” of a task. Lyndon

While and Philip Hingston [5] (2013) proposed new

empirical and mathematical analyses of the usefulness of

infeasible solutions in evolutionary search. They also tested

a multi-objective approach [5] to constraint handling, and an

additional test problem demonstrated the superiority of this

multi-objective approach over previous single-objective

approaches. Deepak Sharma [6] (2013) proposed an

infeasibility-driven approach for bi-objective evolutionary

optimization, in which some extreme solutions are allowed

to recombine only with extreme infeasible solutions.

Tapabrata Ray [7] (2009) maintained a small percentage of

infeasible solutions close to constraint boundaries during its

course of evolution for constrained optimization. Patryk

Filipiak [8] (2011) and Maristela OliveiraSantos [9] (2010)

A Genetic Algorithm Using Infeasible Solutions for Constrained Optimization The Open Cybernetics & Systemics Journal, 2014, Volume 8 905

separately proposed an infeasibility-driven evolutionary

algorithm and infeasibility-handling approach in genetic

algorithm (GA). Both techniques use infeasible solutions in

evolutionary computation.

 Studies focusing on GA and knapsack problems are

common [10-19]. In the present paper, we propose an

immune genetic algorithm (IGA) to revive and use the LCs,

which combine the evolutional information of the

chromosome with the characteristic information of the

problem. Applying the proposed algorithm to the typical

multidimensional knapsack problem (MDKP) and

comparing the results to those obtained by a GA without

immune operation (SGA) reveals the validity of the proposed

method.

2. DESIGN OF MDKP

 The proposed algorithm, IGA, is mainly composed of a

GA and an immune operation module and runs on the double

islands model. Immune operation is used to replace the

means of performing the genetic operations again to obtain

non-lethal chromosomes. Immune operation involves

extracting the useful features from the LCs, training a

vaccine during evolution, and vaccination of LCs. We

introduce these operations one by one in the following.

2.1. Multidimensional Knapsack Problem

 The MDKP is first described so that we can explain the

proposed algorithm using the MDKP as an example. The

MDKP is an NP-hard problem that has several practical

applications, such as processor allocation in a distributed

system, cargo loading, stock cutting, project selection, or

capital budgeting. The goal of the MDKP is to find a subset

of objects that maximizes the total profit while satisfying

some resource constraints, which can be formulated as:

=

n

j

jj xvMaximize
1

 (1)

),~1(}1,0{

)~1(..
1

n jx

micxwts

j

n

j

ijij

=

=

=

 (2)

where n is the number of objects, m is the number of

resources, vj is the value associated with object j, wij is the

consumption of resource i for object j, ci is the available

quantity of resource i (capacity of knapsacks for the i
th

resource), and xj is the decision variable with object j and is

set to 1 if j is selected (and is otherwise set to 0). Constraints

ci (i = 1,…,m) described in Eq.(2) are referred to as knapsack

constraints, so the MDKP is referred to as the m-dimensional

knapsack problem. A number of authors also include the

term zero-one when referring to the problem, e.g., the

multidimensional zero-one knapsack problem.

2.2. Algorithm Model

 The proposed GA, which uses LCs based on immune

operation, has two types of chromosome pools, namely, the

living island, which contains chromosomes, referred to as

non-lethal chromosomes, that satisfy all constraints, and a

lethal island, which contains LCs. In the living island,

chromosomes are evolved by genetic operations, and in the

lethal island, LCs are revived by immune operations.

 In the IGA model, after initializing the population, the

population is divided into two islands according to whether

the chromosome is lethal or non-lethal. In the living island,

LCs are created by genetic operations and are moved to the

lethal island. In the lethal island, chromosomes are revived

by the immune operation and are moved to the living island.

A flowchart of the double islands model is shown in Fig. (1).

Fig. (1). Flowchart of the double islands model.

 As shown in Fig. 1, in the double islands model, the

process of the algorithm consists of two main process lines,

one is the process of GA and the other is the process of the

immune operation. Section 2.3 describes the immune

operations in detail.

 Binary value coding is adopted in the present paper as a

general method. Binary value encoding has been proven to

be well suited for different combinatorial optimization

problems. We do not present the proof here. Since the

proposed IGA faces primarily constrained combinatorial

optimization problems, we explain the problem using an

example of the MDKP. In the initial population, we perform

the initialization for each chromosome using following

algorithm:

(Algorithm: initialization for chromosomes)

1: let: I=(1,2,…,m);

2: set: chromosome l1l2…ln (0,0,…,0);

3: Wi 0, i I;

4: while(Wi<ci, i I) do:

5: select one lk=0 randomly;

6: if (Wi+wik ci, i I) then

7: set (lk 1; Wi Wi +wik, i I);

906 The Open Cybernetics & Systemics Journal, 2014, Volume 8 Zhang et al.

8: else break while;

9: end if

10: end while;

 The initial population and the initial lethal island contain

no LCs at the beginning of process of the GA. The LCs

primarily appear as the process of the GA evolves the

population through genetic operations. The closer the

solution is to the optimal solution, the more LCs will be

produced by genetic operations when forming the next

generation. The following is the definition of fitness for

chromosome l1l2…ln,

=

=

=

==

)~1(> ,0

)~1(,

1

11

miclw

miclwlv

f

i

n

j

jij

i

n

j

jij

n

j

jj

(3)

Where f 0 when the chromosome is non-lethal, and f = 0

when lethal.

2.3. Deal with the LCs through Immune Operations

 In order to facilitate the description, we first present

several definitions. A chromosome is denoted by a binary

value string composed of n items, each of which is referred

to as a gene. Some genes can make up an incomplete

chromosome, which is a part of all genes in the chromosome.

We refer to these genes as a chromosome block. The useful

traits contained in the LCs are blocks of LCs. We refer to

such a block as an excellent block of an LC. An excellent

block that has been extracted from an LC is referred to as an

extracted excellent block.

 In solving the MDKP, the GA would produce a number

of LCs, which produces an unsatisfactory solution. However,

in the evolution process, the LCs contain a number of useful

traits, which are similar to the parts of the optimal solution

and should be used for resource conservation. In order to use

these traits, we should first determine methods by which to

these traits and vaccinate the LCs with a trained vaccine.

(1) Extract the Useful Traits of the LC

 In order to extract the excellent block from the LCs,

l1l2…ln, a three-value string f1f2…fn is used to denote the

block of l1l2…ln, where i (1,2, … ,n), fi = 0 or 1 denotes

the original value li of the LC, and fi = * denotes the i
th

 gene

that does not belong to the block. For example,

“01*0*001*0**110*00*1” is a block of chromosome

“01101001001011010001”. Each chromosome has several

blocks. We provide an estimate for the block as basis for

extracting the excellent block from the LC:

1 2

(1-)
()n

v
e f f f

k

μ
=

(4)

Where

,

,

=

j

jjvfv

 (),

j ij i

j

i
i

n
f w c

k
max

c
μ =

the value v is

different from the fitness value of the chromosome and is not

bounded by ci of the knapsack, and k is the number of 0 or

1(except *) in the block f1f2…fn and is also referred to as the

length of block.

 There exists at least one optimal solution (chromosome)

to a combinatorial optimization problem. The purpose of

extracting the excellent block is to obtain a block from LCs

that is similar to a corresponding block of an existent optimal

chromosome. The shorter the length of the block, the higher

probability of being identical to corresponding block of

optimal chromosome. However, the longer block is helpful

for improving the speed of the immune operation in dealing

with the LC. Since a randomly generated gene has a 50%

probability of being identical to the corresponding gene of

the optimal chromosome for binary value coding, a

randomly generated chromosome has a greater likelihood to

obtain half of the genes of the optimal chromosome. In the

present paper, the excellent block is searched the block with

the length of block from n/2 to n.

The steps for extracting the excellent block from the LCs are

outlined as follows:

(Algorithm: extract the excellent block from the LCs)

1: r 0;

2: for (j=n/2 to n) do:

3: t1t2…tn l1l2…ln;

4: select n-j genes randomly from t1t2…tn and set them as

*;

5: if(e(t1t2…tn)>r) then

6: f1f2…fn t1t2…tn;

7: r e(t1t2…tn);

8: end if

9: end for

10: get the f1f2…fn as the extracted excellent block form

l1l2…ln;

(2) Vaccine Training

 By extracting the excellent block, we introduce the

immune theory to the GA to revive the LCs created by the

genetic operation. According to immune theory, it is

necessary to train the vaccine during evolution. As a result,

we can vaccinate the LCs when they appear during the

evolution of the GA.

 In the beginning of the evolutional process, we construct

vaccine schema, s1s2…sn, and set si = 0 (i = 1,…,n). During

evolution, when each LC, l1l2…ln, appears as a genetic

operation, the following operations are performed to train the

vaccine:

(Algorithm: train vaccine with lethal chromosomes)

1: for i=1 to n do:

2: if li =1 then

3: si si+1;

4: end if

5: end for

A Genetic Algorithm Using Infeasible Solutions for Constrained Optimization The Open Cybernetics & Systemics Journal, 2014, Volume 8 907

 Therefore, the vaccine is actually composed of the

statistics of the genes from the LC, where si(i = 1,…,n) will

increase as the evolution progresses, and si and sj(i j) are

usually different from each other. We refer to s1s2…sn as the

vaccine, which plays an important role in vaccination.

(3) Vaccination

 Both of excellent block and vaccine can be used as

available resources to revive a valuable LC. The immune

operation extracts the excellent block from the LCs and

then restructure the remaining genes marked as * in the

extracted excellent block. To restructure the remaining

genes, immune operation sets the remaining genes, with

the exception of the genes of the extracted excellent block,

to 1 firstly, and then, according to the tendency of the

vaccine to set the genes one-by-one to 0 until the LCs

become to non-lethal chromosome. The pseudo-code is

explained as follows:

(Algorithm: vaccination with vaccine)

1: set the LCs for vaccination as l1l2…ln ;

2: extract the excellent block and record it with f1f2…fn ;

3: for i=1 to n do:

4: if(fi=*) then li 1;

5: end for

6: while(l1l2…ln is still lethal) do:

7: in l1l2…ln select one gene from all genes whose

value=1 and corresponding fi=* by roulette according to

the value of si in the vaccine s1s2…sn;

8: Set the selected gene to 0;

9: end while;

 The vaccination of the LCs keeps the genes of the

extracted excellent block unchanged, and resets residual

genes (fi = *) by immune operation based on the vaccine.

2.4. Steps of the IGA

 The IGA is a GA with immune operation, which uses the

immune operation of reviving the LCs to replace the means

of retrying the genetic operations repeatedly to obtain non-

lethal chromosomes. In order to use the LCs, the immune

operation first extracts the excellent block of LCs, and then

vaccinates LCs with vaccine. The IGA works under the

framework of the GA. Under the double islands model, the

steps of IGA are summarized as follows:

(Algorithm: steps of the IGA under the double islands

model)

1) Initialize population

 Move the non-lethal chromosomes into the living island

and the lethal chromosomes into the lethal island.

2) Evolve population

(In the living island):

 All of the chromosomes in the living island evolve into

the next generation by genetic operations, and the new lethal

chromosomes move to lethal island. In this process, the

vaccine must be trained.

(In the lethal island):

 Each chromosome in the lethal island is revived by

immune operations and is then moved to the living island.

3) Repeat step 2 until the termination conditions of the GA

are satisfied.

3. COMPUTATIONAL EXPERIMENTS

 In order to check the practical performance of the IGA,

we tested the IGA on the classical constrained combinatorial

optimization problem, the MDKP. A set of standard test data

of the MDKP was proposed by Chu and Beasley [10] and is

publicly available from the OR-Library. For the experiment,

we adopted instances of the MDKP from the OR-Library and

changed its constraint conditions, i.e., the knapsack

capacities, by following way:

ci ci*l, i=(1,2,…,m)

Where l is a variable used to control ci. To describe the

tightness ratio of the constraints condition, we introduce the

parameter for the MDKP instance, which is defined as

follows:

= ==

=

m

i

n

j

ij

m

i

i
wc

1 11

 (5)

Where ci and wi,j are as defined in Section 2.1. The purpose

of the present paper is to obtain a method for the GA using

the LCs, so we would rather observe the effects of the LCs

by changing the tightness ratio of the constraint condition

to the same test instance. We present the results of the

experiments for small- and large-scale problems with

different .

 The present research proposes a method by which to deal

with the LCs, replacing the present means of retrying genetic

operations to obtain non-lethal chromosomes for the GA.

This does not contradict other methods which are reported to

improve the performance of the GA in other literatures [11-

19]. Therefore, we compare the proposed IGA with the GA

without using the LC and the SGA, in order to investigate

the ability of the IGA.

3.1. Experiments on the Small-scale MDKP

 We performed computer experiments for the IGA, taking

the instances of the MDKP from the OR-Library and

changing the tightness ratio , and compared with the

experimental results of the SGA. Ordinarily, the evolutional

curve of the GA is plotted with respect to the number of

generations of the GA. In the case of the present study, since

the IGA has greater time complexity for one generation than

the SGA, we set the terminating CPU time and plotted the

evolutional curves with respect to the CPU time instead of

the generation in order to compare the results of the IGA and

the SGA and examine their performances. We refer to this

type of evolutional curve as the time evolutional curve.

 Table 1 summarizes the results of the experiments on the

IGA and the SGA for a small-scale MDKP for the cases of

908 The Open Cybernetics & Systemics Journal, 2014, Volume 8 Zhang et al.

= 0.5, 0.25, and 0.125. The time evolutional curves are

shown in Figs. (2), (3), and (4). The problem parameters for

each case and the experimental parameters of the IGA and

the SGA are summarized in Table 1.

 In Table 1, the experimental data were obtained by

applying several algorithms to the same problems. The item

“average number of completed generations” indicates the

average number of generations completed by the IGA and

the SGA in a given CPU time. The “average of number of

LCs” indicates the average of the sum of the LCs for all

completed generations for several simulation runs. The

“average CPU time for LCs” indicates the CPU time spent to

revive the LCs with the immune operation in the IGA. The

item “average of best solutions” is the average fitness value

of the best solutions obtained for all simulation runs of the

algorithm. The items “range of best solutions” and “SD of

best solutions” are the range and standard deviation of the

fitness value of the best solution for all runs. The “number of

exact solutions obtained” indicates how many simulation

runs converge to the exact solution.

 For the SGA, the “average of number of retries for LCs”

indicates the average number of rerun operations of the GA

to obtain a non-lethal chromosome when the LCs appeared

in the chromosome pool after the genetic operations. The

“average CPU time of retry” indicates the CPU time spent on

the above rerun operations of the GA for the LCs. The other

items have the same meaning as those described for the IGA.

Fig. (2). Time evolutional curve of = 0.5 on the small-scale

MDKP.

 From Table 1, the IGA evolves generations no faster than

the SGA. In the other words, the immune operations to

revive the LCs in the IGA require more CPU time than

rerunning the genetic operations to obtain the non-lethal

chromosome in the SGA. However, during the given CPU

time, the IGA can find a better solution than the SGA and

has a smaller SD of the best solution compared to the SGA,

especially for small values of .

 In order to investigate the ability to obtain an exact

solution, we select test instance as possible as large scale for

Table 1. Experimental results for the small-scale MDKP.

Experimental parameters Population size: 30, termination time: 20 s, number of simulations: 30

m = 5, n = 39

 0. 5 0.25 0.125 problem

value of exact solution 8,244 4,296 2,562

average number of completed generations 7,308.83 5,763.77 4,907.6

average number of LCs 201,840 199,646 223,696

average CPU time for LCs 17.5098 (s) 17.9638 (s) 18.3162 (s)

average of best solutions 8,238.97 4293.97 2559.97

range of best solutions 8,181~8,244 4,285~4,296 2,501~2,562

SD of best solutions 12.4592 3.72812 10.9498

IGA

number of exact solutions obtained 14 20 29

average number of completed generations 23,789.8 14,634.1 4,577.63

average of number of retries for LCs 754,389 714,875 480,826

average CPU time of retry 12.368 (s) 15.266 (s) 18.509 (s)

average of best solutions 8,209.93 4,263.5 2,519.27

range of best solutions 8,144~8,244 4,244~4,296 2,505~2,562

SD of best solutions 33.2174 23.6203 16.8225

SGA

number of exact solutions obtained 8 8 4

A Genetic Algorithm Using Infeasible Solutions for Constrained Optimization The Open Cybernetics & Systemics Journal, 2014, Volume 8 909

which the exact solution can be obtained using the branch

and bound method (BBM) within the available CPU time.

For the three cases of = 0.5, 0.25, and 0.125, the BBM

requires CPU times of 200, 60, and 8 hours, respectively, to

obtain the exact solution.

Fig. (3). Time evolutional curve of = 0.25 on the small-scale

MDKP.

Fig. (4). Time evolutional curve of = 0.125 on the small-scale

MDKP.

3.2. Experiments on the Large-scale MDKP

 For the large-scale MDKP experiments, we selected an

instance with m = 30 and n = 500 from the OR-library and

applied the IGA and the SGA. We also change the value of

to 0.5, 0.25, and 0.125. In the GA simulations, we set the

population size of the chromosomes to 50 and the

termination CPU time to 3,600 seconds, and we performed

the simulations 10 times to obtain the results for each case of

the MDKP for the IGA and the SGA.

 Table 2 summarizes the results for the IGA and the SGA

at different constraint ratios . Figs. (5), (6), and (7) show

the average time evolutional curves for different values of .

 When = 0.5, within 3,600 seconds, IGA finished, on

average, no more than 1,200 generations, in contrast to the

SGA, which finished, on average, over 32,000 generations.

Approximately 67,000 LCs were generated by genetic

operations in the IGA, most of which were revived by

immune operations, whereas over 1.6 million LCs were

generated by genetic operations in the SGA. Furthermore,

the SGA retried the genetic operations 4.5 million times, i.e.,

approximately three times (4.5/1.6) per LC, to obtain a

non-lethal chromosome.

Fig. (5). Time evolutional curve of = 0.5 on the large-scale

MDKP.

Fig. (6). Time evolutional curve of = 0.25 on the large-scale

MDKP.

Fig. (7). Time evolutional curve of = 0.125 on the large-scale

MDKP.

 In the SGA, the average probability of an LC being

generated from one chromosome in the child generation pool

910 The Open Cybernetics & Systemics Journal, 2014, Volume 8 Zhang et al.

by the crossover and mutation operation is approximately 0.5

[(1.6 10
6
 LCs)/(3.2 10

4
 generations)/(50 chromosomes)/

(2 child chromosomes)], which is less than 0.58 (

67,689.9/1,158.7/50/2)in the IGA. In addition, for the cases

of = 0.25 and 0.125, the probability of LCs appearing is

larger for the IGA than for the SGA, which implies that the

population of the IGA is closer to the boundary of the

constraints of the problem, making the generation of LCs by

genetic operations easier than that for the SGA. The

computational complexity of the IGA is greater than that of

the SGA, and the IGA requires more CPU time to process

one generation than the SGA. However, the performance of

the IGA for obtaining higher fitness chromosomes is high.

 For small , the constraints are more severe, so the

genetic operations break down the non-lethal chromosomes

to the LCs more easily than for large . For small , the SGA

could finish less than 700 generations, which is a significant

decrease from over 32,000 generations for = 0.5, whereas

the IGA could finish almost the same number of generations,

over 500, which is over 50% of the generations processed for

the case of = 0.5. The ability of the IGA is clear for the

case in which is small, i.e., the case in which the

constraints were severe. These facts are shown in Figs. 6 and

7. As shown in Fig. 7, when = 0.125, the SGA could not

evolve the chromosomes in the pool after 300 seconds,

whereas the IGA could evolve the chromosomes gradually as

the generation progresses. In addition, the SD of the best

solution of the IGA for 10 iterations was smaller than that of

the SGA, which also shows the higher performance of the

IGA. On the whole, the IGA is significantly different from

the SGA, which works especially well for the optimization

problem with very severe constraints.

 The experiments discussed in subsections 3.1 and 3.2

showed the role LCs in the evolutionary process; thus, we

tested various data for LCs and then compared IGA with

SGA on a single test case. As an algorithm to solve the

MDKP, IGA should be tested on a large number of

experiments rather than an individual test instance. IGA

should also be compared not only with SGA, but also with

other approaches to solve MDKP. We tested IGA on all 270

large-scale MDKP instances provided by the OR-library

[10]. We also compared the results with those of other

algorithms for solving the MDKP [10-19]. These algorithms

include GA with H1 and GA with H2 proposed by Günther R.

Raidl [11], Swap and Insert from Jens Gottlieb [12], and the

Improved GA also proposed by Günther R. Raidl [17]. The

quality of a solution is measured by the percentage gap of

the objective value, fitns, with respect to the optimal value of

the LP-relaxed problem, f
LP

max: %-gap = 100 (f
LP

max fitns)

/ f
LP

max.

 Consistent with the representation in literature [10-19],

various approaches were tested in different running

conditions and with different objectives data. Comparing

IGA with each of the other techniques directly is difficult.

Nonetheless, IGA obtains an average %-gap of 0.54 on 270

instances, whereas those of other algorithms are between a

%-gap of 0.64 and 0.54. IGA shows preliminary superiority

in searching for optimal solutions. In another paper, we will

report exclusively detailed test results on a large number of

large-scale problems, and then compare the results of IGA

with those of other algorithms under different running

conditions.

Table 2. Experimental results for the large-scale MDKP.

Experimental parameters Population size: 50, termination time: 3,600 s, number of simulations: 10

m = 30, n = 500
Problem

 0. 5 0.25 0.125

average number of completed generations 1,158.7 572.9 566.4

average number of LCs 67,689.9 54,805.6 55,510.2

average CPU time for LCs 3,574.95 (s) 3,590.16 (s) 3,589.05 (s)

average of best solutions 193,506 97,272.3 48,097.7

range of best solutions 192,530~194,788 96,528~98,230 47,278~48,827

IGA

SD of best solutions 700.4 460.6 436.8

average number of completed generations 32,857.7 630.5 672.3

average of number of retries for LCs 4.50658 e+06 7.61905e+05 8.11378e+05

average number of LCs 1.65185e+06 55,975.6 63,363.8

average CPU time of retry 2,833.5(s) 3,586.49(s) 3,587.31(s)

average of best solutions 192,413 94,064.4 46,493.1

range of best solutions 190,855~193,369 92,991~95,351 45,112~47,559

SGA

SD of best solutions 668.9 811.4 865.7

A Genetic Algorithm Using Infeasible Solutions for Constrained Optimization The Open Cybernetics & Systemics Journal, 2014, Volume 8 911

4. DISCUSSION

 In recent decades, several studies reported improvements

in the performance of the GA. Various improvements were

applied to the GA to solve a wide range of optimization

problems. The IGA was proposed as a method to replace the

retrying operations of the GA to obtain a non-lethal

chromosome when an LC appeared as a result of the immune

operation. The IGA does not contradict other methods

[11~19] reported to improve the GA. The immune operation

can be applied with other methods simultaneously.

4.1. General Ability of the IGA

 Based on the results of the experiments, we can conclude

that the IGA is better suited to problems with severe

constraints than the SGA.

 In general, for MDKP combinatorial problems, the

constraints of the problem bound the solution space into two

parts, namely, the feasible space, where all of the constraints

are satisfied, and the infeasible space, where at least one of

the constraints is not satisfied. Moreover, the exact solution

of the problem generally exists near the boundary on the

feasible space side. When applying the GA to such

problems, the chromosomes in the pool evolve toward the

exact solution. If the chromosome coding method in the GA

could take all of the constraints into account and the genetic

operations would be designed so as not to generate any LCs

for the child chromosome, all of the chromosomes in the GA

pool were non-lethal and should evolve within the feasible

space. However, in general, it is difficult or too sophisticated

to design such a coding method and genetic operations.

However, when the simple coding method, such as the {0,1}

coding system, is adopted, the genetic operations generate

the LCs at a high rate, especially for severe constraints.

Moreover, in the later stage of the GA, when the

chromosomes evolve and approach the exact solution, and

near the border of the constraints, the genetic operations tend

to generate LCs at a high rate, and, in the worst case, the

generated chromosomes are all lethal. The GA without using

the LCs works on only one side of the boundary, the frequent

appearance of the LCs impairs the ability of the GA to reach

the exact solution within the feasible space.

 The LCs in the infeasible space, that are generated from

the non-lethal chromosomes in the feasible space by genetic

operations, must possess blocks that correspond to valuable

parts composing the chromosome of the exact solution. In

the double islands (non-lethal and lethal islands) model

proposed in a previous study [3], the genetic operations

applied to the LCs in the lethal island can revive an LC and

migrate it to the non-lethal island. In the IGA, the immune

operations can revive the lethal chromosomes at a fairly high

rate compared with the double islands model. Immune

operations provide more channels that lead to optimal

solutions for the LCs.

 For small , the constraints are more severe, so the

genetic operations more easily break down non-lethal

chromosomes into LCs than for the case of large . For the

MDKP, when is decreased from 0.5 to 0.25, and then to

0.125, the feasible solution space shrinks significantly as
m
.

As decreases, the “average number of completed

generations” of the SGA decreases rapidly, which indicates

that the performance of the SGA is reduced as decreases,

i.e., under the severe constraints. However, the IGA

maintained the “average number of completed generations”

despite the large decrease in , which indicates that the IGA

is weakly affected by and shows a more excellent ability

even under the severer constraints. The IGA has an

advantage in searching the exact solution for problems with

severe constraints.

 For the large-scale MDKP with m = 30, as decreases,

the feasible space shrinks significantly compared to the

small-scale MDKP with m = 5. The performance of the SGA

to search for a better solution is reduced and evolution was

not possible after 300 seconds when = 0.125, whereas the

IGA was able to evolve chromosomes when changed from

0.5 to 0.25 or 0.125. This suggests that the constraints do not

significantly affect the immune operation to revive the LCs,

and the IGA may be insensitive to the strength of the

constraints. The IGA can show more remarkable ability in

the cases of severe constraints.

4.2. Vaccine and Vaccination in the IGA

 With the vaccine, the vaccination operation transforms

the LCs in the infeasible space and offers higher fitness

values so that the chromosomes will move not only to the

feasible space but will also approach the optimal solution. In

this manner, the IGA expands the search space to the other

side of the boundary and increases the ability of the GA to

reach the optimal solution.

 The method by which to train the vaccine and to

vaccinate the LCs is important in the IGA. As for the method

described in Section 2.3, the trained vaccine records the

statistics information of the LCs. Other types of information

can also be used to compose the vaccine, e.g., the

information of the excellent chromosomes, such as the best

chromosome in the chromosome pool of each generation.

This type of vaccine records the excellent genes of the best

chromosome of every generation.

(Algorithm: train the vaccine with excellent chromosomes)

 Before starting the evolution process, set s1s2…sn

(0,0,…,0). Whenever a new best chromosome l1l2…ln

appears to replace the old best chromosome, perform the

following training steps:

1: for i=1 to n do:

2: if li =1 then

3: si si+1;

4: end if

5: end for

 Here, si(i = 1,…,n) will also increase as the GA evolution

progresses, and si and sj(i j) will usually be different. Note

that s1s2…sn can also be regarded as the vaccine. We refer to

this as vaccine #2, and the vaccine introduced in the

preceding sections is referred as vaccine #1. We performed

computer simulation experiments using the IGA and vaccine

912 The Open Cybernetics & Systemics Journal, 2014, Volume 8 Zhang et al.

#2. Since vaccine #2 can provide more rapid immune

operations than vaccine #1, the IGA with vaccine #2 can

generate more generations within the simulation time and

sometimes obtains better solutions than the IGA with

vaccine #1. However, compared to the IGA with vaccine #1,

the IGA with vaccine #2 failed to obtain better solutions for

all cases. Moreover, compared the IGA with vaccine #2 had

a larger SD of best solutions, despite it obtains a better

solution sometimes for some problems.

5 CONCLUSIONS AND FUTURE RESEARCH

 The present study proposed a method for reviving the

LCs to replace the means of retrying the genetic operations

repeatedly to obtain non-lethal chromosomes based on

immune operations. Applying the IGA to the MDKP

revealed that, in some cases, especially for optimization

problems with severe constraints (small), the IGA is more

effective for dealing with the LCs than the SGA. In addition,

this IGA improved the search performance of the GA in

solving optimization problems with severe constraints. Since

the extracted vaccine is related to the characteristic

information of the problem, for other optimization problems

the vaccine should be extracted according to the

characteristics of the problem.

 In the future, in addition to further improving the double

islands model, the method of immune operations must be

researched further. If the proposed immune operations are

improved to decrease the time complexity and allow rapider

operation, the IGA will be applicable to a wider range of

constraint optimization problems.

CONFLICT OF INTEREST

 The author(s) confirm that this article content has no

conflict of interest.

ACKNOWLEDGMENTS

 This work is supported by the Scientific Research

Foundation (Project No.Y201430654) funded by the

Zhejiang Provincial Education Department (China), by the

Quzhou Science and Technology Plan Projects (Project

No.2013048) funded by the Quzhou Science and Technology

Bureau (China), and by the Talents Cultivation Research

Start-up Foundation (Project No. BSYJ201309) funded by

the Quzhou University.

REFERENCES

[1] Iima Hitoshi, Sannomiya Nobuo, “The Influence of Lethal Gene on

the Behavior of Genetic Algorithm”, The society of instrument and
control engineers, vol.31, no.5, pp.569-576, 1995.

[2] Z. Michalewicz, “Do not kill unfeasible individuals,” in 4th
Intelligent Information Systems Workshop, 1995, pp. 110-123.

[3] Mengchun Xie, Tetsushi Yamaguchi, Tomohiro Odaka, Hisakazu

Ogura, “An Analysis of Evolutionary States in the GA with lethal
Genes”, The Information and Systems Society, Institute of

Electronics, Information and Communication Engineers, vol.J79-
D-II, no.5, pp.870-878, 1996.

[4] Y. Yu and Z. Zhou, “On the usefulness of infeasible solutions in
evolutionary search: A theoretical study,” in World Congress on

Computational Intelligence. IEEE, 2008, pp. 835-840.
[5] Lyndon While, Philip Hingston, “Usefulness of Infeasible

Solutions in Evolutionary Search: an Empirical and Mathematical
Study”, 2013 IEEE Congress on Evolutionary Computation,

Cancún, México, pp.1363-1370, June 20-23, 2013.
[6] Deepak Sharma, Prem Soren, “Infeasibility Driven Approach for

Bi-objective Evolutionary Optimization”, 2013 IEEE Congress on
Evolutionary Computation (CEC), Cancun, Mexico, pp.868-875,

20-23 June 2013.
[7] Tapabrata Ray, Hemant Kumar Singh, Amitay Isaacs, Warren

Smith, “Infeasibility Driven Evolutionary Algorithm for
Constrained Optimization”, Constraint-Handling in Evolutionary

Optimization Studies in Computational Intelligence, vol.198,
pp.145-165,2009.

[8] Patryk Filipiak, Krzysztof Michalak, Piotr Lipinski, “Infeasibility
Driven Evolutionary Algorithm with ARIMA-Based Prediction

Mechanism”, Intelligent Data Engineering and Automated
Learning - IDEAL 2011, vol.6936, pp.345-352, 2011.

[9] Maristela Oliveira Santos, Sadao Massago, Bernardo Almada-
Lobo, “Infeasibility handling in genetic algorithm using nested

domains for production planning”, Computers &Operations
Research, 37(2010), pp.1113-1122.

[10] P.C. Chu and J.E. Beasley, “A Genetic Algorithm for the
Multidimensional Knapsack Problem”, Journal of heuristics, vol.4,

no.1, pp.63-86, June 1998.
[11] Günther R. Raidl, “Weight-Codings in a Genetic Algorithm for the

Multiconstraint Knapsack Problem”, Proceedings of the 1999 ACM
symposium on applied computing, Texas, United State, no.02,

pp.291-296, February 1999.
[12] Jens Gottlieb, “Permutation-Based Evolutionary Algorithms for

Multidimensional Knapsack Problems”, Symposium on Applied
Computing Proceedings of the 2000 ACM symposium on Applied

computing, Como, Italy, vol.1, pp.408-414, March 2000.
[13] V. Gabrel, M. Minoux, “A scheme for exact separation of extended

cover inequalities and application to multidimensional knapsack
problems”, Operations research letters, vol.30, no.4, pp. 252-264,

August 2002.
[14] Guan-Chun Luh, Chung-Huei Chueh, “Multi-objective optimal

design of truss structure with immune algorithm”, Computers and
structures, vol.82, Issues.11-12, pp.829-844, May 2004.

[15] Farhad Djannaty, Saber Doostdar, “A Hybrid Genetic Algorithm
for the Multidimensional Knapsack Problem”, Int. J. Contemp.

Math. Sciences, vol. 3, no.9, pp.443-456, 2008.
[16] P. C. Chu, J. E. Beasley, “A genetic algorithm for the generalised

assignment problem”, Computers and operations research, vol.24,
no.1, pp.17-23, January 1997.

[17] Günther R. Raidl, “An Improved Genetic Algorithm for the
Multiconstrained 0-1 Knapsack Problem”, Proceedings of the 5th

IEEE International Conference on Evolutionary Computation,
Anchorage, AK, pp.207-211, May 1998.

[18] Alex S. Fukunaga, “A New Grouping Genetic Algorithm for the
Multiple Knapsack Problem”, 2008 IEEE Congress on

Evolutionary Computation (CEC 2008), Hong Kong, China,
pp.2225-2232, June 2008.

[19] Alex S. Fukunaga, Satoshi Tazoe, “Combining Multiple
Representations in a Genetic Algorithm for the Multiple Knapsack

Problem”, 2009 IEEE Congress on Evolutionary Computation
(CEC 2009), Trondheim, Norway, pp.2423-2430, May 2009.

Received: September 16, 2014 Revised: December 23, 2014 Accepted: December 31, 2014

© Zhang et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/)

which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

