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Abstract: In this paper, we first construct a one-round Diffie-Hellman key exchange protocol based on Ring-LWE. The 

security of our construction is based on the hardness of the Ring-LWE problem. Second, we adaptively extend our con-

struction from Ring-LWE to LWE. Finally, we efficiently implement our key exchange protocols based on Ring-LWE 

and LWE. 
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1. INTRODUCTION 

Key exchange protocol is one of the fundamental crypto-
graphic primitive. This protocol allows two or more parties 
to exchange information over an insecure public network and 
agree upon a common session key, which can be used for 
later secure communication between them. So, secure key 
exchange protocols work as basic building block for con-
structing other higher-level secure protocols.  

Constructing secure key exchange protocol has received 
much attention [1]. Diffie and Hellman [2] proposed the first 
2-party one-round key exchange protocol, whose security 
depends on the hardness of the discrete logarithm problem. 
Similarly, one can directly construct a Diffie-Hellman key 
exchange protocol based on the discrete logarithm over ellip-
tic curve. The breakthrough in key agreement is that Joux [3] 
constructed a one-round 3-party key agreement protocol us-
ing pairings on elliptic curve. But these protocols are inse-
cure in quantum computing setting [4]. 

Designing lattice-type key exchange protocol is a feasible 
approach. Ding, Xiang and Lin [5] described a simple 
provably secure key exchange protocol using a variant of 
learning with errors (LWE), which is called a small LWE 
problem. However, their construction is not one-round, but 
rather a 2-round protocol. Georgescu [6] described a one-
round Diffie-Hellman key exchange protocol using the LWE 
and SIS (short integer solution) problems. 

Nevertheless, their protocol cannot be extended to Ring-
LWE, and its efficiency is very low and impractical. On the 
other hand, Garg, Gentry and Halevi [7] recently described a 
plausible multilinear map using ideal lattices, and con-
structed a one-round multipartite Diffie-Hellman key agree-
ment protocol based on their multilinear map. But the secu-
rity of their construction relies on the graded DDH problem, 
which is a new unconventional assumption. Thus at present, 
there does not exist LWE-based (or Ring-LWE) one-round 
Diffie-Hellman key exchange protocol. 

Our main contribution is to describe a one-round 2-party 
Diffie-Hellman key exchange protocol based on Ring-LWE. 
Our scheme uses a new method to generate a shared infor-
mation using integers that are close to each other. Namely, 
our construction is to extract the most significant bits from 
every coefficient of ring element, whereas their scheme in 
[5] is to extract the least significant bits. Due to this differ-
ence, our scheme is a one-round protocol, whereas their 
scheme is a two-round protocol.  

Our second contribution is to extend our construction 
from Ring-LWE to LWE. Moreover, we also implement our 
protocol based on Ring-LWE/LWE. 

2. PRELIMINARIES 

2.1. Notations 

Let  be the security parameter. For any positive integer 

n , we define [ ] {1,..., }n n= , n  the bit length of n . By 

convention, all vectors are in column form and are named 

using bold lower-case letters (e.g. u ), and 
i
u  denotes the i-

th component of u . Matrices are named using bold capital 

letters (e.g. U ), and 
i
u  denotes the i-th column vector of U . 

Let [ ] / ( 1)n
R Z x x= + , /

p
R R pR= . For u R , u  de-

notes the infinity norm of its coefficient vector. Let 
R
n=  

be the expansion factor of R , that is, u v n u v , 

where “ ” is multiplication in R . We also denote by u  the 

bit length of the coefficient of u . 

For simplicity, we use the absolute minimum residual 

system modulo p  throughout this paper. For integers ,p a , 

[ ]
p

a  denotes [ ]/ 2 / 2
p

p a p< . Similarly, for n
Zu  or 

u R , [ ]
p

u  or [ ]
p

u  is defined as [ ]i p
u  for every compo-

nent of u  or every coefficient of u . 

Let r S  denote to choose an element r  in S  accord-

ing to the distribution . For the distributions ,A B , 
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c
A B  is computationally indistinguishing by arbitrary 

probabilistic polynomial time algorithm. 

2.2. LWE and R-LWE 

Definition 2.1 (Learning With Error (LWE) [8]). Let 

,n p  be integers, and  a distribution over 
p
Z . Given a list 

samples ( , )
i i
a b  of the distribution , ,n p

D  over 
1n

p
Z

+

 such 

that 
n

i p
a Z ,

n

p
s Z , 

i
e  and , modi i ib s a e p=< > + , 

the LWE problem 
, ,n p

LWE  is to distinguish the distribution 

, ,n p
D  from the uniform distribution over 

1n

p
Z

+

. 

For the coefficient vector 0 1 1( , ,..., )T
n

u u u=u  of u R , 

we define the cyclic rotation 1 0 2rot( ) ( , ,..., )T
n n
u u u=u , 

and the circulant matrix 
1Rot( ) ( , rot( ),..., rot ( ))n

=u u u u . 

Rot( )u  is called the rotation basis of the ideal lattice ( )u . 

An ideal I R  is called principal if it only has a single gen-

erator. 

Definition 2.2 (Learning with Errors in a Ring of In-

tegers (Ring-LWE) [9]). Let ,n p  be positive integers, and 

 a distribution over 
p
R . Given a list samples ( , )

i i
a b  of 

the distribution , ,n p
D  over 

p p
R R  such that 

i p
a R ,

p
s R , 

i
e  and 

i i i
b s a e= + , the RLWE 

problem 
, ,n p

RLWE  is to distinguish the distribution , ,n p
D  

from the uniform distribution over 
p p
R R . 

Theorem 2.1 ([8]). For any integer dimension n , prime 

integer ( )p p n= , and ( ) 2b b n n= , there is an efficiently 

samplable b-bounded noise distribution  such that if there 

exists an efficient algorithm that solves 
, ,n p

LWE , then there 

is an efficient quantum algorithm for solving 
1.5( / )pn b -

approximate worst-case SIVP and gapSVP. 

Theorem 2.2 ([9]). For prime integer ( )p p n= , 

( log )b n n= , and ring [ ] / ( 1)n
R Z x x= +  with n  a 

power of 2, there is an efficiently samplable distribution  

that outputs elements of R  of length at most b with over-

whelming probability, such that if there exists an efficient 

algorithm that solves 
, ,n p

RLWE , then there is an efficient 

quantum algorithm for solving 
(1) ( / )n p b -approximate 

worst-case SVP for ideal lattices over R . 

The classical hardness of LWE obtains progress. Peikert 

[10] showed that LWE with 2
n

p =  modulus is as hard as n-

dimensional GapSVP using a classical reduction. Recently, 

Brakerski, Langlois, Peikert, Regev, and Stehlé [11] showed 

that solving n -dimensional LWE with poly( )n  modulus 

implies an equally efficient solution to a worst-case lattice 

problem in dimension n . 

The LWE with small parameters remain to be hard. Ap-

plebaum, Cash, Peikert, and Sahai [12] showed that LWE 

becomes no easier to solve when the secret key s ’s coeffi-

cients are sampled from the noise distribution , rather than 

uniformly at random. Moreover, Micciancio and Peikert [13] 

show the hardness of LWE with small parameters. They 

prove that LWE remains hard even when the errors are 

small, if the number of samples is small enough, whereas 

prior results required the errors to draw from a Gaussian-like 

distribution and to have magnitude at least n . On the other 

hand, there is a sub-exponential time algorithm for the LWE 

with noise less than n  [15], when the number of samples 

is not restricted. 

Theorem 2.3 ([13]). Let n  and (1 (1/ log ))m n n= +  be 

integers, and 
(1)O

p n  a sufficiently large polynomial 

bounded (prime) modulus. Then solving LWE with parame-

ters , ,n m p  and uniformly random errors on set { 1,0,1}  is 

at least as hard as approximating lattice problems in the 

worst case on ( / log )n n -dimensional lattices within a fac-

tor ( )n p= . 

3. ONE-ROUND 2-PARTY DIFFIE-HELLMAN KEY 

EXCHANGE PROTOCOL 

In this section, we will first describe our construction, 

which use a fact that adding a small integer to a large integer 

does not affect the most significant bit of large integer with 

high probability. Then we show the security of our construc-

tion. Next, we will extend the construction from Ring-LWE 

to LWE. Finally, we implement our scheme based on Ring-

LWE. 

3.1. Our Construction 

Setup. Choose a random element [ ] /p pf R Z x=  

( 1)nx +  with 
2tp n b  and 2t > , output the public pa-

rameters pars ( , )p f= . 

Key Exchange. Assume that Alice and Bob want to de-

cide upon a shared secret key. They perform the following 

steps. 

(1) Alice selects 
1 1
,

p
s e R  according to the noise distri-

bution , that outputs elements of R  of length at most b 

with overwhelming probability, computes 
1 1 1
g s f e= + , and 

sends 
1
g  to Bob. 

(2) Bob selects 
2 2
,

p
s e R  according to the noise distri-

bution , that outputs elements of R  of length at most b 

with overwhelming probability, computes 
2 2 2
g s f e= + , and 

sends 
2
g  to Alice. 

(3) Alice computes a shared key [ ]1 1 2ext( )
p

k s g= , and 

similarly Bob computes a shared secret key 
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[ ]2 2 1ext( )
p

k s g= . Here ext( )k  is a function of bit extract-

ing, which by using half function maps 

( / 2, / 4] ( / 4, / 2] 1p p p p  and ( / 4, / 4] 0p p  for 

each coefficient of k . 

Correctness: Since 
1 2 1 2 1 2
s g s s f s e= +  and f p , 

we have 
1 2
s g p . On the other hand, by 

2

1 2
s e nb , 

the most significant part of every coefficient of 
1 2
s s f  is 

identical to that of the corresponding coefficient of 
1 2
s g  with 

probability at least 
2( ) 2 11 2 1 / 1 1/

p nb tnb p n= . So, 

the probability of 
1 2
k k=  is at least 2

1 1/
t
n . When 

(log log )t O n= , the probability of correctness is almost 1. 

Efficiency. For each party, space required is to store 

logn p  bits, communication round required is 1 and the 

number of bits sent is logn p ; computation taken is 2 multi-

plications and 1 addition over the ring, and extracting one bit 

from every coefficient of one ring element.  

Example 3.1. Let 4n = , 3079p = , 1495 147f = +  

2 3
816 863x x x . For simplicity, we interchangeably use 

ring element and vector without distinction in this example 

(e.g. [ 1495 147 816 863]f = ). 

(1) Alice chooses randomly 
1
[2 3 2 1]s = , 

1
[3 1 1 2]e = , computes 1 1 1

[ 718g s f e= + =  

470 231 570] , and sends 
1
g  to Bob. 

(2) Bob chooses at random 
2
[ 1 3 1 3]s = , 

2
[0 3 1 1]e = , computes 2 2 2

[1380 1318g s f e= + =  

727 236] , and sends 
2
g  to Alice. 

(3) Alice computes [ ]1 2
[528 1272 649 1361]

p
s g =  

and extracts a shared secret key [ ]1 1 2ext( )
p

k s g= = 

[0 1 0 1] . For example, 528 ( / 4, / 4]p p , 1272 

( / 2, / 4] ( / 4, / 2]p p p p , so the first and second bits 

of 
1
k  are 0 and 1. 

Bob computes [ ]2 1
[525 1262 662 1363]

p
s g =  

and extracts a shared secret key [ ]2 2 1ext( )
p

k s g= = 

[0 1 0 1] . So, the shared secret keys 
1 2
k k= . 

3.2. Security 

Theorem 3.1. The above construction is secure against 

passive PPT adversaries, assuming that the 
, ,n p

RLWE  is 

hard. 

Proof. Our proof includes two steps. (1) The hardness of 

RLWE with s  is same as the hardness of 
, ,n p

RLWE  

with 
p

s R . This result is proved in [12, 14]. For com-

pleteness, we here provide a simple proof. Given two sam-

ples ( , ), 1, 2
i i i i
a b a s e i= + =  from 

, ,n p
RLWE , assume 

1
a  

is invertible over 
p
R . Now, we compute 

1

2 1 1 2a a b b =  

1

2 1 1 2( )a a e e= +  and generate a sample 
1 1

2 1 2 1 1( ,a a a a e + 

2( ))e  from RLWE with s . So, we can reduce 

, ,n p
RLWE  with 

p
s R  to RLWE with s . 

(2) Assume a passive PPT adversary A  can distinguish 

the distribution 1 2( , , )f g g  from the uniform distribution 

over 
p p p
R R R , then there is a PPT algorithm B  to de-

cide the 
, ,n p

RLWE  problem. Without loss of generality, 

given 1 1 1( , )a b a s e= +  with 
1 1
,s e , B  chooses 

2 2
,s e , computes 

2 2 2
b a s e= + , and finally calls A  

with 1 2( , , )a b b . This is a contradiction with the assumption 

that RLWE is hard.  

3.3. Extension to LWE 

We directly extend the construction above from Ring-

LWE to LWE by using matrix form. 

Setup. Choose a random matrix 
n n

p
FF  with 

2tp n b  and 2t > . 

Key Exchange: Assume that Alice and Bob want to de-

cide upon a shared secret key. They perform the following 

steps. 

(1) Alice selects 
1 1
,

n n

p
FS E , each of which is sampled 

from  over 
n n

p
F , computes 

1 1 1
= +G S F E , and sends 

1
G  

to Bob. 

(2) Bob selects 
2 2
,

n n

p
FS E , each of which is sampled 

from  over 
n n

p
F , computes 

2 2 2
= +G FS E , and sends 

2
G  to Alice. 

(3) Alice outputs [ ]1 1 2ext( )=K S G , and Bob outputs 

[ ]2 1 2ext( )=K G S . Similarly, ext( )K  is a bit extracting 

function for every entry of K . 

Correctness. It is identical as the construction based on 

Ring-LWE. 

Efficiency. For each party, space required is to store 
2 logn p  bits, communication round required is 1 and the 

number of bits sent is 
2 logn p ; computation taken is 2 ma-

trix multiplications and 1 matrix addition over 
p
F , and ex-

tracting one bit from every entry of matrix. 

Theorem 3.2. The construction based on LWE is secure 

against passive PPT adversaries, assuming that the 
, ,n p

LWE  

is hard. 

Proof. The proof is similar as one of Theorem 3.1. 
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3.4. Implementation 

In this section, we implement our construction based on 

Ring-LWE with small parameters. The parameters of our 

implementation are in Table 1, whose unit of length is bit. In 

Table 1, the first part is to use the origin parameters defined 

in [9] to guarantee provable security of our construction. The 

second part is to use the small parameters defined in [13] to 

improve its efficiency, but its security is based on the hard-

ness of conjecture on Ring-LWE. The third part is to use 

LWE with small parameter defined in [13]. For every dimen-

sion n in Table 1, we test 100 experiments to check the suc-

cess probability of our protocol. The experimentation dem-

onstrates that a shared key in every experiment is generated 

with probability almost 1. 

Under the condition of small parameters, the security of 

our construction based on LWE depends upon the hardness 

of the worst-case lattice problem by Theorem 2.3. However, 

its complexity of communication is increased a factor n. On 

the other hand, the construction based on ring-LWE has 

higher efficient, but its security is only conjectured hard. 

Although the number of samples m  is equal to n  for ring-

LWE, and satisfies to the condition (1 (1/ log ))m n n= +  in 

Theorem 2.3, we cannot generalize the result of Theorem 2.3 

from LWE to Ring-LWE. 

Assumption 3.1. Let n  be integers, and 
(1)O

p n  a suf-

ficiently large polynomial bounded (prime) modulus. Then 

solving Ring-LWE with parameters ,n p  and uniformly ran-

dom errors on set { 1,0,1}  is at least as hard as approximat-

ing ideal lattice problems in the worst case on ( / log )n n -

dimensional lattices within a factor ( )n p= . 

CONCLUSION AND OPEN PROBLEM 

We have constructed a one-round Diffie-Hellman key 
exchange protocol, whose security is based upon the hard-
ness of ring-LWE (or LWE), and is as hard as approximating 
standard ideal lattice (or lattice) problems in the worst case 
with polynomial factor. 

Our construct only works in two-party Diffie-Hellman 
key exchange. One interesting open problem is to construct 
multi-party Diffie-Hellman key exchange using ring-LWE.  
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