
Send Orders for Reprints to reprints@benthamscience.ae 

110 The Open Cybernetics & Systemics Journal, 2015, 9, 110-114  

 1874-110X/15 2015 Bentham Open 

Open Access 

Matching Similar Splits between Unrooted Leaf-labeled Trees 

Li Shuguang
1, 2,*

 and Xin Xiao
3
 

1
Key Laboratory of Intelligent Information Processing in Universities of Shandong (Shandong Institute of Business and 

Technology), Yantai, 264005, China; 
2
College of Computer Science and Technology, Shandong Institute of Busi-

ness and Technology, Yantai, 264005, China; 
3
College of Foreign Studies, Shandong Institute of Business and Tech-

nology, Yantai, 264005, China 

Abstract: Tree comparison is ubiquitous in many areas. The simplest way for tree comparison is to define a pairwise dis-

tance measure. In a more refined comparison, one can establish a mapping between similar parts in two trees according to 

certain similarity measure. The best match problem for rooted leaf-labeled trees has been studied in the literature. How-

ever, no result has been found for the best match problem for unrooted leaf-labeled trees. The problem of mapping similar 

splits between unrooted leaf-labeled trees is considered in this paper. Based on a new similarity measure obtained from 

the classical Jaccard coefficient, the mapping can be computed in quadratic time.  
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1. INTRODUCTION 

Trees are suitable structures for representing data for 
which hierarchical relations can be defined. They have been 
utilized in many areas, such as bioinformatics [1], image 
processing [2], natural language processing [3, 4], document 
analysis [5], to name just a few. A leaf-labeled tree is a tree 
labeled only at the leaves. More precisely, each leaf of a leaf-
labeled tree is assigned a distinct label. Such trees arise in 
the areas such as music comparison and retrieval [6, 7], 
classfication [8-10], phylogenetics [11-13], etc.  

Comparison of trees is a recurrent task in many areas 
mentioned above. The most popular method for tree com-
parison is to define a pairwise distance measure. Many such 
distance measures for leaf-labeled trees have been proposed 
in the literature [11, 14-19]. However, in many situations, a 
single distance value is not adequate. It is better to establish 
a mapping between similar parts in two trees according to 
certain similarity measure. Such a mapping is useful in de-
termining corresponding parts in compared trees, especially 
in the analysis of large trees [20-23]. 

In a rooted leaf-labeled tree, each vertex associates with a 

cluster, i.e., the set of leaves under it. Hence, it is quite natu-

ral to establish the mapping between similar clusters in two 

rooted trees. The consensus tree method [24, 25] only com-

putes the mapping between perfectly matching vertices, the 

pairs of vertices with identical clusters. For vertices having 

no perfectly matching vertices, the mapping is undefined. 

The s-consensus tree method [26, 27] computes the mapping 

between best matching vertices instead of perfectly matching 

vertices. The measure used in [26, 27] is the classical Jaccard  

 

coefficient [28, 29]: the similarity 
  
J ( A, B)  between two sets 

  
A, B  is defined to be the size of their intersection divided by 

the size of their union. One nice property of Jaccard coeffi-

cient is that 
  
1 J ( A, B) is a metric [30, 31]. L Zhang [32] 

studied the following best match problem for rooted leaf-

labeled trees: computes for every vertex in a tree the best 

matching vertex in another tree according to Jaccard coeffi-

cient. He presented two algorithms whose worst case time 

complexities are O(n2 log n)  and O((n log n)1.5 )  respec-

tively, where  n  is the number of leaves in a tree.  

In an unrooted leaf-labeled tree, each edge associates 

with a split (a bipartition of the label set). Hence, it is natural 

to establish the mapping between similar splits in two un-

rooted trees rather than between vertices or clusters in rooted 

trees. We introduce the following best match problem for 

unrooted leaf-labeled trees: computes for every split in a tree 

the best matching split in another tree according to certain 

similarity measure. To the best of our knowledge, this prob-

lem has not been studied so far. In this paper, we define a 

new similarity measure for comparing pairs of splits. The 

proposed measure can be regarded as an extension of Jaccard 

coefficient, and also has the nice property that the function 

defined by one minus it is a metric. We propose two algo-

rithms to solve the best match problem for unrooted leaf-

labeled trees according to this measure, with worst case time 

complexity O(n3 ) and O(n2 )  respectively, where  n  is the 

number of leaves in a tree.  

The remainder of this paper is organized as follows. In 

Section 2, after reviewing terminology needed, we define a 

new similarity measure, and prove that the function defined 
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by one minus this measure is a metric. In Section 3, we pre-

sent two algorithms to solve the best match problem for un-

rooted leaf-labeled trees according to this similarity measure. 

We conclude this paper in Section 4. 

2. PRELIMINARIES 

A tree is a connected undirected graph with no cycles. A 

leaf-labeled tree is a tree whose leaves are labeled bijectively 

by a set L  and each non-leaf vertex is unlabeled and has 

degree at least 3. Let 
 
L = n . Denote by 

 
T

n
 the set of leaf-

labeled trees over  L . 

Let  T  be a leaf-labeled tree over  L . Any two vertices of 

 T are connected by a unique path. Cutting an edge from  T  

induces a split (bipartition), i.e., a partition of L into two 

non-empty sets. Denote the split whose blocks are  A  and  B  

by 
  
A | B . Since the position of A  and B  is arbitrary, we 

make no distinction between the splits A | B  and B | A . If 

  
min{| A |, | B |}=1 , then 

  
A | B  is trivial, otherwise it is non-

trivial. Clearly, each pedant edge associates with a trivial 

split which must be present in every tree, while each internal 

edge associates with a nontrivial split. Denote by 
  

(T )  the 

collection of the splits induced by the edges of  T . There 

exist efficient algorithms for reconstructing  T from 
  

(T )  

[33, 34]. 

Similarity measure is commonly used in clustering and 

similarity searching of large structure files. One of the most 

popular similarity measures is Jaccard coefficient, which is 

defined on two sets  A  and  B  as 

  

J ( A, B) =
A B

A B

 [28, 29]. 

Similarity is somewhat opposite to the concept of distance 

between structures. The Jaccard coefficient can be used to 

define a distance 
  
1 J ( A, B)  (the so-called Soergel distance 

[35, 36]), which is indeed a metric. 

Definition 1. [37] A metric on a set S  is a function 

  d : S S R
0 such that, for all 

  
x, y, z S , the following 

hold: 

(i) 
  
d(x, y) = 0  if and only if  

 
x = y  (definiteness);  

(ii) 
  
d(x, y) = d( y, x)  (symmetry);  

(iii) 
  
d(x, z) d(x, y)+ d( y, z)  (triangle inequality). 

The pair 
  
(S , d )  is called a metric space. 

The triangle inequality is a desirable mathematical prop-

erty. It ensures that any two structures having low dissimilar-

ity to a third structure will have low dissimilarity to each 

other.  

Lemma 1. [30, 31] 
  
1 J ( A, B) is a metric. 

We are now ready to define a similarity measure for 
comparing splits between unrooted leaf-labeled trees.  

Let 
   

n
=

T T
n

(T ) . The split similarity of two splits A1 

| B1 and A2 | B2 in 
n

, is defined as follows: 

  

SSi( A
1

| B
1
, A

2
| B

2
)

=
1

2
max{

A
1

A
2

A
1

A
2

+

B
1

B
2

B
1

B
2

,

              
A

1
B

2

A
1

B
2

+

B
1

A
2

B
1

A
2

}.

          (1) 

Theorem 1.   1 SSi  is a metric on 
 n

. 

Proof. The first two properties of Definition 1 
(definiteness and symmetry) are trivially true. Presented here 
is a proof for the triangle inequality. 

Let A1 | B1, A2 | B2 and A3 | B3 be three arbitrary splits in 

n
. For possible combinations of SSi(A

1
| B

1
, A

2
| B

2
)  and 

  
SSi( A

2
| B

2
, A

3
| B

3
) , we distinguish between the following 

four cases:  

(i) SSi(A
1
| B

1
, A

2
| B

2
) =
1

2
(
A
1
A
2

A
1
A
2

+

B
1
B
2

B
1
B
2

) , 

SSi(A
2
| B

2
, A

3
| B

3
) =
1

2
(
A
2

A
3

A
2

A
3

+

B
2
B
3

B
2
B
3

) . 

(ii) SSi(A
1
| B

1
, A

2
| B

2
) =
1

2
(
A
1
A
2

A
1
A
2

+

B
1
B
2

B
1
B
2

) , 

SSi(A
2
| B

2
, A

3
| B

3
) =
1

2
(
A
2
B
3

A
2
B
3

+

B
2

A
3

B
2

A
3

) . 

(iii) SSi(A
1
| B

1
, A

2
| B

2
) =
1

2
(
A
1
B
2

A
1
B
2

+

B
1
A
2

B
1
A
2

) , 

  

SSi( A
2

| B
2
, A

3
| B

3
) =

1

2
(

A
2

A
3

A
2

A
3

+

B
2

B
3

B
2

B
3

) . 

(iv) SSi(A
1
| B

1
, A

2
| B

2
) =
1

2
(
A
1
B
2

A
1
B
2

+

B
1
A
2

B
1
A
2

) , 

SSi(A
2
| B

2
, A

3
| B

3
) =
1

2
(
A
2
B
3

A
2
B
3

+

B
2

A
3

B
2

A
3

) . 

We choose to prove the triangle inequality for the second 
case. The other three cases can be proved similarly. We need 
to show that  

  

1 SSi( A
1

| B
1
, A

3
| B

3
)

1 SSi( A
1

| B
1
, A

2
| B

2
)+1 SSi( A

2
| B

2
, A

3
| B

3
).

     (2) 

By the definition of the split dissimilarity, we have:  
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)

1
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Since we are proving the second case, we have: 
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By Lemma 1, we have: 

1

A
1
B
3

A
1
B
3

1

A
1
A
2

A
1
A
2

+1

A
2
B
3

A
2
B
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, 

1
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1
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1
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+1

B
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3
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Combining the above inequalities, we get the desired ine-
quality (2).  

3. THE ALGORITHMS 

Given two unrooted leaf-labeled trees T
1

 and T
2

 in T
n
.  

For a split 
  1

(T
1
) , the best match 

  
M (

1
) (T

2
)  of 

1
 is the split that maximizes the split similarity between 

1
and any split in 

  
(T

2
) , i.e., M (

1
) = argmax

2
(T
2
)
 

SSi(
1
,

2
) . The best match problem for unrooted leaf-

labeled trees is to compute for every split in 
  
T

1
 the best 

match in 
  
T

2
 according to the split similarity measure.  

In this section we will present two algorithms to solve 

this problem. Since each trivial split of 
  
T

1
 is also present in 

T
2

, we need only find the best matches for the nontrivial 

splits of 
  
T

1
.  However, it is possible that the best match for a 

nontrivial split of 
  
T

1
 is a trivial split of 

  
T

2
.  Hence, when we 

compute for every nontrivial split of T
1

 the best match in 

T
2

, we have to compare it with every split of T
2
.  

Without loss of generality, we assume that the label set 

   
L ={1,2,…, n} . Since there is a one-one correspondence 

between the leaf set and the label set, we also denote the leaf 

set of a tree by 
   
L ={1,2,…, n} . 

Given an unrooted leaf-labeled tree T T
n
.  We root T  

at the leaf  n  to get a rooted leaf-labeled tree  T . Clearly, 

each vertex  v  of  T  except the root corresponds to a split 

  
L(v) | (L L(v))  of T , where 

  
L(v)  denotes the cluster as-

sociated with  v .  

Algorithm 1: 

Step 1: Root T
1

 and T
2

 at the leaf  n  to get rooted leaf-

labeled trees T
1

 and 
  
T

2
.  

Step 2: Traverse 
  
T

1
 and T

2
 in post-order respectively. 

During the traversal, compute and store nontrivial splits of 

  
T

1
 and all splits of 

  
T

2
. 

Step 3: For each nontrivial split 
  1

(T
1
) , compute 

the best match of 
1

, 
  
M (

1
) = arg max

2
(T

2
)
SSi(

1
,

2
) . 

We then get the following theorem. 

Theorem 1. Algorithm 1 solves the best match problem 

for unrooted leaf-labeled trees 
  
T

1
 and 

  
T

2
in O(n3 ) time, 

where  n  is the number of leaves in 
  
T

1
 and 

  
T

2
.  

Proof. Steps 1, 2 and 3 can be executed in O(n) , 
  
O(n

2 )  

and O(n3 )  time, respectively. Hence the running time of 

Algorithm 1 is 
  
O(n

3 ) .  

We next modify Algorithm 1 such that the best match of 

each nontrivial split 
  1

(T
1
) can be computed in linear 

time and the time complexity can be reduced to 
  
O(n

2 ).  

Fix a nontrivial split 
  1

= A
1

| B
1

(T
1
) . Suppose that 

  
A

1
| B

1
 corresponds to vertex 

  
v

1
 of 

  
T

1
, where 

  
A

1
= L(v

1
) . 

Traverse 
  
T

2
 in post-order. Suppose that the current vertex 

being checked in 
  
T

2
 is 

  
v

2
, and 

  
v

2
 corresponds to the split 

  2
= A

2
| B

2
(T

2
) , where 

  
A

2
= L(v

2
) . Let 

  
p = A

1
, 

  
q = A

1
A

2
, 

  
r = B

1
A

2
. Store the values of 

  
p, q, r . We 

can use 
  
p, q, r  to calculate the following values, and then 

get 
  
SSi( A

1
| B

1
, A

2
| B

2
)  by (1). 

  

A
1

A
2

A
1

A
2

=
q

p + r
, 

  

B
1

B
2

B
1

B
2

=
n p r

n q
, 

  

A
1

B
2

A
1

B
2

=
p q

n r
, 

  

B
1

A
2

B
1

A
2

=
r

n p + q
. 
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For the leaves of 
  
T

2
, the values of 

 
q  and  r  can be ob-

tained in O(1)  time. For any interior vertex of 
  
T

2
, the val-

ues of 
 
q  and r  can be computed by adding respectively the 

values of 
 
q  and  r of all the children. Hence for each non-

trivial split 
1

(T
1
) , the best match can be computed in 

  
O(n)  time.  

Algorithm 2: 

Step 1: Root 
  
T

1
 and 

  
T

2
 at the leaf  n  to get rooted leaf-

labeled trees T
1

 and 
  
T

2
.  

Step 2: Traverse 
  
T

1
 in post-order, and store nontrivial 

splits of 
  
T

1
.  

Step 3: For each nontrivial split 
  1

(T
1
) , traverse 

  
T

2
 

in post-order, and during the traversal compute M (
1
)  in 

linear time using the method described above. 

We then get the following theorem. 

Theorem 2. Algorithm 2 solves the best match problem 

for unrooted leaf-labeled trees T
1

 and T
2

 in O(n2 ) time, 

where  n  is the number of leaves in 
  
T

1
 and 

  
T

2
.   

CONCLUSION 

We defined a similarity measure for comparing splits be-

tween unrooted leaf-labeled trees having the property that 

the function defined by one minus this measure is considered 

a metric. We studied the best match problem according to 

this measure for unrooted leaf-labeled trees, and presented 

two algorithms with cubic and quadratic time complexities 

respectively. Note that the best match problem for rooted 

leaf-labeled trees can be solved in sub-quadratic time in the 

worst case. It would be interesting to investigate whether the 

best match problem for unrooted leaf-labeled trees can be 
solved in sub-quadratic time. 
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