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Abstract: Operating system (OS), as a significant system software, provides services and security protection to a variety 

of applications. Thus, the correctness of OS is a core issue of computer systems. To ensure the correctness of operating 

systems, it is a recognized way to use the rigorous formal methods. In this paper, we apply B method to design a formal 

model of OS called fmC/OS. The process is split into two phases. At first, software document specifications are formal-

ized into an abstract model and then the abstract model is implemented into the concrete model. The concrete model is the 

base of translating executable code. Operating System based on B method can strengthen validity and security of the system. 
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1. INTRODUCTION 

Operating system (OS) is a significant system software as 
well as the support and base of all applications. Because of 
the enormous size and complexity of OS, the accuracy is not 
easy to describe and illustrate. Despite intensive testing, the 
bugs in OS do occur over time, which can be seen from the 
fact that the current mainstream commercial OSs continually 
release the update patches. How to ensure the correctness of 
OS is the direction of industry and academia efforts. Using 
formal method for OS development is an effective way of 
achieving this aim.  

Formal methods have rigorous mathematic semantics to 
do formal description and verification, so they can guarantee 
the correctness of the software program. A literature search 
for publications describing the use of formal methods, in the 
context of OS, identifies the following work in this area. 

To start with, [1] and [2] presented formal models and re-
finement of operating system kernels using Z. [3] proposed 
further a simple and correct specification of an OS kernel in 
Z which simplified the understanding and verification of 
operating system components. Besides, [4] applied Event B 
to develop a formal model of the API of the L4 microkernel. 
The goal was to evaluate the possibility to model such soft-
ware with formal techniques. By contrast, [5] and [6] focus 
on correctness verification of OS. Specifically, [5] intro-
duced an OS state automaton model as a link between the 
system design and verification, and described the correctness 
specifications of the system based on this model. Then it 
implemented the verified trusted operating system as a proto-
type, to illustrate the method of consistency verification of 
system design and safety requirements with formalized theo-
rem prover Isabelle/HOL. As to [6], there presented a  
 

detailed coverage of the comprehensive formal verification 
of the seL4 microkernel, from its initial functional correct-
ness proof to more recent results, which extended the assur-
ance argument up to higher-level security properties and 
down to the binary level of its implementation. Different 
from existing research, this paper employs B method to de-
sign a formal model of OS. 

B method covers software development process from ab-
stract specification to an implementation through successive 
refinement steps [7]. Taking the precise mathematics seman-
tics as the foundation, B method supports rigorous develop-
ment process. With the top-down formal specifications and 
related proofs, the developers may find and get rid of many 
design and implementation errors in the early development 
stages so the resulting software can be more coherent and 
reliable [8]. Furthermore, there exist industrial software tools 
that support the B method. By the use of tools supporting the 
B method, we are able to formally verify and refine systems 
with higher speed and accuracy. These are main advantages 
of B over other formal methods such as using Z or VDM. 

Based on the advantages of B method, it is worth re-
searching to apply B method for the rigorous development of 
OS. Therefore, this paper takes Micro-Controller Operating 
Systems-II ( C/OS-II) as a reference and uses B method to 
design a formal model of OS called fmC/OS. The paper 
shows the fmC/OS development process from abstract speci-
fication to an implementation. 

The remainder of this paper is organized as follows. At 
first, section 2 presents the μC/OS-II system. Then section 3 
details the Abstract Model. Section 4, afterwards, describes 
the Concrete Model. And finally section 5 summarizes and 
concludes the paper. 

2. MICRO-CONTROLLER OPERATING SYSTEMS-II 

PRESENTATION 

Micro-Controller Operating Systems-II ( C/OS-II) is a 
real-time operating system designed by embedded software 
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developer, Jean J. Labrosse in 1998. It is priority-based pre-
emptive real-time for microprocessors, written mainly in the 
C programming language [9]. C/OS-II is applied in the 
following embedded systems: Avionics, Medical equip-
ment/devices, Data communications equipment, White 
goods, Mobile phones, PDAs, Industrial controls, Consumer 
electronics and Automotive. 

Main function units of C/OS-II include task scheduler, 
task management, inter-task synchronization and communi-
cation, and memory management. C/OS-II is a multitasking 
operating system. Each task is an infinite loop and can be in 
any one of the following five states: Dormant, Ready, Run-
ning, Waiting and Interrupted. Additionally it can manage up 
to 64 tasks. Task priorities can range from 0 (highest prior-
ity) to a maximum of 63 (lowest possible priority). Each task 
runs at a different priority, and thinks that it owns the CPU. 
Lower priority tasks can be preempted by higher priority 
tasks at any time. The system user of C/OS-II is able to 
control the tasks by using features as follows: Task Feature, 
Task Creation, Task Stack & Stack Checking, Task Deletion, 
Change a Task’s Priority, Suspend and Resume a Task, and 
Get Information about a Task. In order to avoid 
fragmentation, C/OS-II allows your application to obtain 
fixed-sized memory blocks from a partition made of a con-
tiguous memory area. All memory blocks are in the same 
size and the partition contains an integral number of blocks. 
Inter-task or inter-process communication in C/OS-II takes 
place using Semaphores, message mailbox, message queues, 
tasks and Interrupt service routines (ISR). They can interact 
with each other when a task or an ISR signals a task through 
a kernel object called an Event Control Block (ECB). The 
signal is considered to be an event. 

3. ABSTRACT MODEL 

We take C/OS-II as a chief reference and apply B 

method to develop a formal model of Operating System 

named fmC/OS. The abstract model architecture is based on 

the functional breakdown provided by the informal descrip-

tion. Hence, we divide the Operating System into eight sub-

systems. Afterwards, we use “INCLUDES” to construct the 

machine, OS, which is the formal model of C/OS-II. Table 

1 lists names and functions of these sub-systems’ models.  

Table 1. Names and functions of the sub-systems. 

Names Functions 

Task Task management 

OS_Sched Task scheduler 

Event_Control_Blocks Management of Event Control Blocks 

Semaphore Semaphore management 

Mutex Mutex semaphore management 

Mailbox Mailbox management 

Mailqueue Mail queue management 

Memory Memory management 

Due to limited space, only the machine, OS_Sched, of 
eight sub-systems is expressed in this paper and the descrip-
tion of specifications uses Atelier B4.0’s syntax and nota-
tion. 

The machine, OS_Sched, is in charge of the ready queue 
and all the waiting queues. C/OS-II is a priority-based pre-
emptive real-time operating system so the ready queue and 
all the waiting queues sort by priority of tasks. That is, tasks 
with high priority are placed in the front of a queue while 
those with low priority are at the back. It has to be noted that 
operations of ready queue are rather similar to those of wait-
ing queues so we introduce a machine named Queue to de-
scribe relevant operations of sorted queues in order to im-
prove reuseability.  

The machine, Queue, can provide operations including: 
inserting a task into a sorted queue (Insert_element), reading 
the first task from the queue (Nextfromqueue) and deleting 
the first task of the queue (Delete_element). Fig. (1) shows 

the specification of Insert_element. 

newqueue<--Insert_element(queue,did)= 

PRE 

did:tid& 

queue:iseq(tid)& 

did/:ran(queue) 

THEN 

SELECT queue=[] THEN  

newqueue:=[did] 

WHEN prio(did)>prio(first(queue)) THEN  

newqueue:=did->queue 

WHEN prio(did)<prio(last(queue)) THEN  

newqueue:=queue<-did 

ELSE 

ANY s1,s2 

WHERE 

s1:iseq(tid)& 

s2:iseq(tid)& 

queue=s1^s2&  

s1/=[]& 

s2/=[]& 

prio(last(s1))>prio(did)& 

prio(did)>prio(first(s2)) 

THEN 

newqueue:=s1^[did]^s2 

END 

END 

END  

Fig. (1). Operation insert_element of the machine queue. 

The machine, OS_Sched, needs to see sets, constants and 
variables of the machine, Task, the set of the machine, Basic 
Status, and the set of the machine, Event_Control_Blocks. 
To switch tasks, OS_Sched needs to call the operation, 
osctxsw, of the machine, OS_Task_SW. It is why OS_Sched 
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includes OS_Task_SW. It is a common operation to delete a 
task from one queue and then add the task into the other 
queue in OS_Sched so OS_Sched also includes two copies 
of the machine, Queue. 

OS_Sched defines four variables: readyqueue, waitqueue, 
current and eventwaitqueue which represent ready queue, 
commonly waiting queue, current task and queue waiting for 
certain event respectively.  

MACHINE 

OS_Sched 

SEES 

Task,Basic_Status,Event_Control_Blocks 

INCLUDES 

OS_Task_SW,xx.Queue,yy.Queue 

VARIABLES 

readyqueue,waitqueue,current,eventwaitqueue 

INVARIANT 

readyqueue:iseq(Tid)& 

readyqueue/=[]& 

waitqueue:iseq(Tid)& 

eventwaitqueue:Event_Block+->iseq(Tid)& 

current:ran(readyqueue)& 

idletask=last(readyqueue)&  

ran(readyqueue)/\ran(waitqueue)={}& 

!(xx,yy).(xx:dom(eventwaitqueue)&yy:dom(eventwaitqueue) 

&xx/=yy=> 

ran(eventwaitqueue(xx))/\ran(eventwaitqueue(yy))={})& 

!xx.(xx:dom(eventwaitqueue)=>ran(eventwaitqueue(xx))/\ran 

(readyqueue)={})& 

!xx.(xx:dom(eventwaitqueue)=>ran(eventwaitqueue(xx))/\ran 

(waitqueue)={})  

INITIALISATION  

readyqueue:=[idletask]||waitqueue:=[]|| 

current :=idletask||eventwaitqueue:={} 

OPERATIONS  

dispatch= 

PRE 

readyqueue/=[] 

THEN  

IF current/:ran(readyqueue) or 

prio(current)<prio(first(readyqueue)) 

THEN 

current:=first(readyqueue)||  

osctxsw 

END  

END;  

... 

Fig. (2). The machine OS_Sched. 

As Fig. (2) indicates, the machine, OS_Sched, has to sat-
isfy many constraints which are showed in its invariant. The 
invariant not only restricts types of variables but also de-
scribes the relationship between variables and constants. 
Specifically, the type of ready queue is injective sequence of 
the set, Tid. It ensures that the same task will never appear 
twice in the ready queue. So is commonly waiting queue. 
Then, ready queue cannot be null. That is, there is always 
one idle task in the queue. The idle task, due to its lowest 
priority, is the last one of the ready queue. Besides, current 
task also comes from the ready queue. One task, further-
more, cannot appear simultaneously in both ready queue and 
waiting queue. Similarly, the same task will never exist in 
any two different waiting queues at the same time, either. 

The machine, OS_Sched, has thirteen operations of 

which only the operation, dispatch, is presented in Fig. (2). 

In the similar way to develop OS_Sched, we develop 

other seven subsystems which are described by seven ma-

chines respectively as follows: Task, Memory, 

Event_Control_Blocks, Mailqueue, Semaphore, Mutex and 

Mailbox. We can, further, construct a big specification 

named OS. Fig. (3) illustrates part of OS. 

MACHINE 

OS 

SEES 

Message,Basic_Status 

INCLUDES 

Task(0..63),OS_Sched,Memory(1..1024), 

Event_Control_Blocks,Mailqueue, Mutex,Mailbox, 

Semaphore 

PROMOTES  

Createidletask,TaskQueryStatus, MemPut, MemGet, 

MemCreate,MemDelete, MemQuery, TaskQueryPri 

Fig. (3). Part of the machine OS. 

The clause, PROMOTES, as Fig. (3) shows, lists opera-

tions of the machine, Task: Createidletask, TaskQueryStatus 

and TaskQueryPri and operations of Memory: MemCreate, 

MemDelete, MemGet, MemPut and MemQuery. All the op-

erations are promoted as operations of OS. Besides these 

operations mentioned above, the machine, OS, can also pro-

vide another thirty-four operations of which definitions are 

not stated here. 

We can find from the clause, includes, that parameters of 

Task and Memory are assigned. Values of these parameters 

can alter according to actual conditions of system. This ap-

proach, on the one hand, improves flexibility of design to the 

maximum extent and postpones detail decision-making as 

long as possible. It facilitates us to handle different kinds of 

problems arising in the process of development such as 

changes of requirements. On the other hand, the method not 

only lowers complexity of software but also enhances modi-

fiability and extendibility of software. 
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B method can generate proof obligations in every stage 
of the development and prove the obligations by rigorous 
mathematical proof. In the initial stage of specifications, the 
proof obligations are invariant theorems and are used to 
check whether the operations of the specification satisfy the 
invariant. In the refinement stage, the proof obligations are 
refinement relationship theorems and verify that the refine-
ment is consistent with the original abstract model. Errors 
may be found during the process of the proof, like misunder-
standing, false demand and incongruous system design. With 
related proof, the developers may find and avoid many de-
sign and implementation errors so the resulting software can 
be more coherent and reliable. 

The paper applies Atelier B to develop the system. The 
Atelier B, as computer software developed by ClearSy com-
pany, can be used to support the B method. The Atelier B 
has numerous tools such as a powerful editor with the ability 
to warn the user in the case of mistyping or even potential 
typing errors, automatic proof obligation generator, auto-
matic prover, and an interactive prover. The automatic 
prover of the Atelier B is very effective. As Table 2 indi-
cates, the proportion of proof obligations discharged by auto-
proof varies by machines and overall is about 69.2 % (283 
out of 409). When the abstract model is fully proved, we are 

sure that the abstract model complies with invariant theo-
rems. 

4. CONCRETE MODEL 

The concrete Model phase consists in completing the Ab-
stract Model to get to a completely implementable B project. 
The only input of this phase is the abstract model and the 
goal is to implement it completely through refinement and 
importation breakdown. When the concrete model is fully 
proved, we are sure that the concrete model complies with 
the abstract model. 

The paper takes implementation of the machine, OS, as 
an example. OS_i, as showed by Fig. (4), is implemented by 
importing machines: Task, OS_Sched, Memory, Mailqueue, 
Semaphore, Mutex, Event_Control_Blocks, Mailbox and 
Query and calling operations of these machines.  

The operations of the machine, OS_i, are deterministic 
and very close to the structure of specific programming lan-
guage. They can, thus, correspond to statements of the clas-
sical programming language like the order of statement, 
conditional statement and procedure call. It establishes a 
good foundation for translating the model into executable 
code. 

Table 2. Automatic proof rate of machines. 

Component 
Proof 

Obligations 
Proved Unproved Automatic Proof Rate % 

AddressData 2 2 0 100 

Basic_Status 0 0 0 100 

Event_Control_Blocks 8 8 0 100 

Mailbox 6 6 0 100 

Mailqueue 87 71 16 81.6 

Memory 46 40 6 86.9 

Message 0 0 0 100 

Mutex 6 6 0 100 

OBJECT 6 6 0 100 

OS 6 2 4 33.3 

OS_Sched 172 74 98 43.0 

OS_Task_SW 0 0 0 100 

Query 0 0 0 100 

Queue 0 0 0 100 

Sched_Query 0 0 0 100 

Semaphore 6 5 1 83.3 

Setobject 2 2 0 100 

Task 62 61 1 98.3 

Total 409 283 126 69.2 
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IMPLEMENTATION 

OS_i 

REFINES 

OS 

SEES 

Message,Basic_Status 

IMPORTS 

Task(0..63),OS_Sched,Memory (1..1024), 

Event_Control_Blocks,Mailqueue, 

Semaphore,Mutex,Mailbox,Query 

PROMOTES  

Createidletask,TaskQueryStatus, MemGet, MemPut, 

TaskQueryPri,MemCreate, MemRelease, MemQuery 

OPERATIONS  

OSTaskChangePrio(did,newpri)= 

VAR bb1,bb2,bb3,eid IN 

bb1<--isnot_idletask(did); 

IF bb1=TRUE 

THEN  

ChangePri(did,newpri);  

bb2<--inreadyqueue(did);  

IF bb2=TRUE 

THEN 

delete_from_readyqueue(did); 

add_to_readyqueue(did); 

dispatch 

ELSE 

bb3<--inwaitqueue(did); 

IF bb3=TRUE 

THEN 

delete_from_waitqueue(did); 

add_to_waitqueue(did) 

ELSE 

eid<--ineventwaitqueue(did); 

delete_from_eventwaitqueue(eid,did); 

add_to_eventwaitqueue(eid,did) 

END 

END  

END  

END 

… 

Fig. (4). The implementation OS_i. 

CONCLUSION 

The paper uses B method to design a formal model of OS 

and shows the fmC/OS development process from abstract 

specification to an implementation. We have obtained ab-

stract model and properties of the system and for each opera-

tion its prerequisites as well as the invariant must be satis-

fied. Every verification stage of B method is useful and leads 

to error detection: analysis of software document specifica-

tion, type checking, inspections, proof of abstract model 

safety properties, refinement proof of correct implementa-

tion. Therefore, Operating System based on B method can 

enhance accuracy and security of the system. 
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