
Send Orders for Reprints to reprints@benthamscience.ae

 The Open Cybernetics & Systemics Journal, 2015, 9, 1125-1129 1125

 1874-110X/15 2015 Bentham Open

Open Access

A Formal Specification in B of an Operating System

Chen Danmin
1
, Sun Yue

2
 and Chen Zhiguo

3,*

1
School of Software, Henan University, Kaifeng, Henan, 475004, P.R China;

2
School of Information Engineering,

Kaifeng University, Kaifeng, Henan, 475004, P.R China;
3
Institute of Data and Knowledge Engineering, Henan Univer-

sity, Kaifeng, Henan, 475004, P.R China

Abstract: Operating system (OS), as a significant system software, provides services and security protection to a variety

of applications. Thus, the correctness of OS is a core issue of computer systems. To ensure the correctness of operating

systems, it is a recognized way to use the rigorous formal methods. In this paper, we apply B method to design a formal

model of OS called fmC/OS. The process is split into two phases. At first, software document specifications are formal-

ized into an abstract model and then the abstract model is implemented into the concrete model. The concrete model is the

base of translating executable code. Operating System based on B method can strengthen validity and security of the system.

Keywords: B method, formal design, operating system, specification.

1. INTRODUCTION

Operating system (OS) is a significant system software as
well as the support and base of all applications. Because of
the enormous size and complexity of OS, the accuracy is not
easy to describe and illustrate. Despite intensive testing, the
bugs in OS do occur over time, which can be seen from the
fact that the current mainstream commercial OSs continually
release the update patches. How to ensure the correctness of
OS is the direction of industry and academia efforts. Using
formal method for OS development is an effective way of
achieving this aim.

Formal methods have rigorous mathematic semantics to
do formal description and verification, so they can guarantee
the correctness of the software program. A literature search
for publications describing the use of formal methods, in the
context of OS, identifies the following work in this area.

To start with, [1] and [2] presented formal models and re-
finement of operating system kernels using Z. [3] proposed
further a simple and correct specification of an OS kernel in
Z which simplified the understanding and verification of
operating system components. Besides, [4] applied Event B
to develop a formal model of the API of the L4 microkernel.
The goal was to evaluate the possibility to model such soft-
ware with formal techniques. By contrast, [5] and [6] focus
on correctness verification of OS. Specifically, [5] intro-
duced an OS state automaton model as a link between the
system design and verification, and described the correctness
specifications of the system based on this model. Then it
implemented the verified trusted operating system as a proto-
type, to illustrate the method of consistency verification of
system design and safety requirements with formalized theo-
rem prover Isabelle/HOL. As to [6], there presented a

detailed coverage of the comprehensive formal verification
of the seL4 microkernel, from its initial functional correct-
ness proof to more recent results, which extended the assur-
ance argument up to higher-level security properties and
down to the binary level of its implementation. Different
from existing research, this paper employs B method to de-
sign a formal model of OS.

B method covers software development process from ab-
stract specification to an implementation through successive
refinement steps [7]. Taking the precise mathematics seman-
tics as the foundation, B method supports rigorous develop-
ment process. With the top-down formal specifications and
related proofs, the developers may find and get rid of many
design and implementation errors in the early development
stages so the resulting software can be more coherent and
reliable [8]. Furthermore, there exist industrial software tools
that support the B method. By the use of tools supporting the
B method, we are able to formally verify and refine systems
with higher speed and accuracy. These are main advantages
of B over other formal methods such as using Z or VDM.

Based on the advantages of B method, it is worth re-
searching to apply B method for the rigorous development of
OS. Therefore, this paper takes Micro-Controller Operating
Systems-II (C/OS-II) as a reference and uses B method to
design a formal model of OS called fmC/OS. The paper
shows the fmC/OS development process from abstract speci-
fication to an implementation.

The remainder of this paper is organized as follows. At
first, section 2 presents the μC/OS-II system. Then section 3
details the Abstract Model. Section 4, afterwards, describes
the Concrete Model. And finally section 5 summarizes and
concludes the paper.

2. MICRO-CONTROLLER OPERATING SYSTEMS-II

PRESENTATION

Micro-Controller Operating Systems-II (C/OS-II) is a
real-time operating system designed by embedded software

1126 The Open Cybernetics & Systemics Journal, 2015, Volume 9 Danmin et al.

developer, Jean J. Labrosse in 1998. It is priority-based pre-
emptive real-time for microprocessors, written mainly in the
C programming language [9]. C/OS-II is applied in the
following embedded systems: Avionics, Medical equip-
ment/devices, Data communications equipment, White
goods, Mobile phones, PDAs, Industrial controls, Consumer
electronics and Automotive.

Main function units of C/OS-II include task scheduler,
task management, inter-task synchronization and communi-
cation, and memory management. C/OS-II is a multitasking
operating system. Each task is an infinite loop and can be in
any one of the following five states: Dormant, Ready, Run-
ning, Waiting and Interrupted. Additionally it can manage up
to 64 tasks. Task priorities can range from 0 (highest prior-
ity) to a maximum of 63 (lowest possible priority). Each task
runs at a different priority, and thinks that it owns the CPU.
Lower priority tasks can be preempted by higher priority
tasks at any time. The system user of C/OS-II is able to
control the tasks by using features as follows: Task Feature,
Task Creation, Task Stack & Stack Checking, Task Deletion,
Change a Task’s Priority, Suspend and Resume a Task, and
Get Information about a Task. In order to avoid
fragmentation, C/OS-II allows your application to obtain
fixed-sized memory blocks from a partition made of a con-
tiguous memory area. All memory blocks are in the same
size and the partition contains an integral number of blocks.
Inter-task or inter-process communication in C/OS-II takes
place using Semaphores, message mailbox, message queues,
tasks and Interrupt service routines (ISR). They can interact
with each other when a task or an ISR signals a task through
a kernel object called an Event Control Block (ECB). The
signal is considered to be an event.

3. ABSTRACT MODEL

We take C/OS-II as a chief reference and apply B

method to develop a formal model of Operating System

named fmC/OS. The abstract model architecture is based on

the functional breakdown provided by the informal descrip-

tion. Hence, we divide the Operating System into eight sub-

systems. Afterwards, we use “INCLUDES” to construct the

machine, OS, which is the formal model of C/OS-II. Table

1 lists names and functions of these sub-systems’ models.

Table 1. Names and functions of the sub-systems.

Names Functions

Task Task management

OS_Sched Task scheduler

Event_Control_Blocks Management of Event Control Blocks

Semaphore Semaphore management

Mutex Mutex semaphore management

Mailbox Mailbox management

Mailqueue Mail queue management

Memory Memory management

Due to limited space, only the machine, OS_Sched, of
eight sub-systems is expressed in this paper and the descrip-
tion of specifications uses Atelier B4.0’s syntax and nota-
tion.

The machine, OS_Sched, is in charge of the ready queue
and all the waiting queues. C/OS-II is a priority-based pre-
emptive real-time operating system so the ready queue and
all the waiting queues sort by priority of tasks. That is, tasks
with high priority are placed in the front of a queue while
those with low priority are at the back. It has to be noted that
operations of ready queue are rather similar to those of wait-
ing queues so we introduce a machine named Queue to de-
scribe relevant operations of sorted queues in order to im-
prove reuseability.

The machine, Queue, can provide operations including:
inserting a task into a sorted queue (Insert_element), reading
the first task from the queue (Nextfromqueue) and deleting
the first task of the queue (Delete_element). Fig. (1) shows

the specification of Insert_element.

newqueue<--Insert_element(queue,did)=

PRE

did:tid&

queue:iseq(tid)&

did/:ran(queue)

THEN

SELECT queue=[] THEN

newqueue:=[did]

WHEN prio(did)>prio(first(queue)) THEN

newqueue:=did->queue

WHEN prio(did)<prio(last(queue)) THEN

newqueue:=queue<-did

ELSE

ANY s1,s2

WHERE

s1:iseq(tid)&

s2:iseq(tid)&

queue=s1^s2&

s1/=[]&

s2/=[]&

prio(last(s1))>prio(did)&

prio(did)>prio(first(s2))

THEN

newqueue:=s1^[did]^s2

END

END

END

Fig. (1). Operation insert_element of the machine queue.

The machine, OS_Sched, needs to see sets, constants and
variables of the machine, Task, the set of the machine, Basic
Status, and the set of the machine, Event_Control_Blocks.
To switch tasks, OS_Sched needs to call the operation,
osctxsw, of the machine, OS_Task_SW. It is why OS_Sched

A Formal Specification in B of an Operating System The Open Cybernetics & Systemics Journal, 2015, Volume 9 1127

includes OS_Task_SW. It is a common operation to delete a
task from one queue and then add the task into the other
queue in OS_Sched so OS_Sched also includes two copies
of the machine, Queue.

OS_Sched defines four variables: readyqueue, waitqueue,
current and eventwaitqueue which represent ready queue,
commonly waiting queue, current task and queue waiting for
certain event respectively.

MACHINE

OS_Sched

SEES

Task,Basic_Status,Event_Control_Blocks

INCLUDES

OS_Task_SW,xx.Queue,yy.Queue

VARIABLES

readyqueue,waitqueue,current,eventwaitqueue

INVARIANT

readyqueue:iseq(Tid)&

readyqueue/=[]&

waitqueue:iseq(Tid)&

eventwaitqueue:Event_Block+->iseq(Tid)&

current:ran(readyqueue)&

idletask=last(readyqueue)&

ran(readyqueue)/\ran(waitqueue)={}&

!(xx,yy).(xx:dom(eventwaitqueue)&yy:dom(eventwaitqueue)

&xx/=yy=>

ran(eventwaitqueue(xx))/\ran(eventwaitqueue(yy))={})&

!xx.(xx:dom(eventwaitqueue)=>ran(eventwaitqueue(xx))/\ran

(readyqueue)={})&

!xx.(xx:dom(eventwaitqueue)=>ran(eventwaitqueue(xx))/\ran

(waitqueue)={})

INITIALISATION

readyqueue:=[idletask]||waitqueue:=[]||

current :=idletask||eventwaitqueue:={}

OPERATIONS

dispatch=

PRE

readyqueue/=[]

THEN

IF current/:ran(readyqueue) or

prio(current)<prio(first(readyqueue))

THEN

current:=first(readyqueue)||

osctxsw

END

END;

...

Fig. (2). The machine OS_Sched.

As Fig. (2) indicates, the machine, OS_Sched, has to sat-
isfy many constraints which are showed in its invariant. The
invariant not only restricts types of variables but also de-
scribes the relationship between variables and constants.
Specifically, the type of ready queue is injective sequence of
the set, Tid. It ensures that the same task will never appear
twice in the ready queue. So is commonly waiting queue.
Then, ready queue cannot be null. That is, there is always
one idle task in the queue. The idle task, due to its lowest
priority, is the last one of the ready queue. Besides, current
task also comes from the ready queue. One task, further-
more, cannot appear simultaneously in both ready queue and
waiting queue. Similarly, the same task will never exist in
any two different waiting queues at the same time, either.

The machine, OS_Sched, has thirteen operations of

which only the operation, dispatch, is presented in Fig. (2).

In the similar way to develop OS_Sched, we develop

other seven subsystems which are described by seven ma-

chines respectively as follows: Task, Memory,

Event_Control_Blocks, Mailqueue, Semaphore, Mutex and

Mailbox. We can, further, construct a big specification

named OS. Fig. (3) illustrates part of OS.

MACHINE

OS

SEES

Message,Basic_Status

INCLUDES

Task(0..63),OS_Sched,Memory(1..1024),

Event_Control_Blocks,Mailqueue, Mutex,Mailbox,

Semaphore

PROMOTES

Createidletask,TaskQueryStatus, MemPut, MemGet,

MemCreate,MemDelete, MemQuery, TaskQueryPri

Fig. (3). Part of the machine OS.

The clause, PROMOTES, as Fig. (3) shows, lists opera-

tions of the machine, Task: Createidletask, TaskQueryStatus

and TaskQueryPri and operations of Memory: MemCreate,

MemDelete, MemGet, MemPut and MemQuery. All the op-

erations are promoted as operations of OS. Besides these

operations mentioned above, the machine, OS, can also pro-

vide another thirty-four operations of which definitions are

not stated here.

We can find from the clause, includes, that parameters of

Task and Memory are assigned. Values of these parameters

can alter according to actual conditions of system. This ap-

proach, on the one hand, improves flexibility of design to the

maximum extent and postpones detail decision-making as

long as possible. It facilitates us to handle different kinds of

problems arising in the process of development such as

changes of requirements. On the other hand, the method not

only lowers complexity of software but also enhances modi-

fiability and extendibility of software.

1128 The Open Cybernetics & Systemics Journal, 2015, Volume 9 Danmin et al.

B method can generate proof obligations in every stage
of the development and prove the obligations by rigorous
mathematical proof. In the initial stage of specifications, the
proof obligations are invariant theorems and are used to
check whether the operations of the specification satisfy the
invariant. In the refinement stage, the proof obligations are
refinement relationship theorems and verify that the refine-
ment is consistent with the original abstract model. Errors
may be found during the process of the proof, like misunder-
standing, false demand and incongruous system design. With
related proof, the developers may find and avoid many de-
sign and implementation errors so the resulting software can
be more coherent and reliable.

The paper applies Atelier B to develop the system. The
Atelier B, as computer software developed by ClearSy com-
pany, can be used to support the B method. The Atelier B
has numerous tools such as a powerful editor with the ability
to warn the user in the case of mistyping or even potential
typing errors, automatic proof obligation generator, auto-
matic prover, and an interactive prover. The automatic
prover of the Atelier B is very effective. As Table 2 indi-
cates, the proportion of proof obligations discharged by auto-
proof varies by machines and overall is about 69.2 % (283
out of 409). When the abstract model is fully proved, we are

sure that the abstract model complies with invariant theo-
rems.

4. CONCRETE MODEL

The concrete Model phase consists in completing the Ab-
stract Model to get to a completely implementable B project.
The only input of this phase is the abstract model and the
goal is to implement it completely through refinement and
importation breakdown. When the concrete model is fully
proved, we are sure that the concrete model complies with
the abstract model.

The paper takes implementation of the machine, OS, as
an example. OS_i, as showed by Fig. (4), is implemented by
importing machines: Task, OS_Sched, Memory, Mailqueue,
Semaphore, Mutex, Event_Control_Blocks, Mailbox and
Query and calling operations of these machines.

The operations of the machine, OS_i, are deterministic
and very close to the structure of specific programming lan-
guage. They can, thus, correspond to statements of the clas-
sical programming language like the order of statement,
conditional statement and procedure call. It establishes a
good foundation for translating the model into executable
code.

Table 2. Automatic proof rate of machines.

Component
Proof

Obligations
Proved Unproved Automatic Proof Rate %

AddressData 2 2 0 100

Basic_Status 0 0 0 100

Event_Control_Blocks 8 8 0 100

Mailbox 6 6 0 100

Mailqueue 87 71 16 81.6

Memory 46 40 6 86.9

Message 0 0 0 100

Mutex 6 6 0 100

OBJECT 6 6 0 100

OS 6 2 4 33.3

OS_Sched 172 74 98 43.0

OS_Task_SW 0 0 0 100

Query 0 0 0 100

Queue 0 0 0 100

Sched_Query 0 0 0 100

Semaphore 6 5 1 83.3

Setobject 2 2 0 100

Task 62 61 1 98.3

Total 409 283 126 69.2

A Formal Specification in B of an Operating System The Open Cybernetics & Systemics Journal, 2015, Volume 9 1129

IMPLEMENTATION

OS_i

REFINES

OS

SEES

Message,Basic_Status

IMPORTS

Task(0..63),OS_Sched,Memory (1..1024),

Event_Control_Blocks,Mailqueue,

Semaphore,Mutex,Mailbox,Query

PROMOTES

Createidletask,TaskQueryStatus, MemGet, MemPut,

TaskQueryPri,MemCreate, MemRelease, MemQuery

OPERATIONS

OSTaskChangePrio(did,newpri)=

VAR bb1,bb2,bb3,eid IN

bb1<--isnot_idletask(did);

IF bb1=TRUE

THEN

ChangePri(did,newpri);

bb2<--inreadyqueue(did);

IF bb2=TRUE

THEN

delete_from_readyqueue(did);

add_to_readyqueue(did);

dispatch

ELSE

bb3<--inwaitqueue(did);

IF bb3=TRUE

THEN

delete_from_waitqueue(did);

add_to_waitqueue(did)

ELSE

eid<--ineventwaitqueue(did);

delete_from_eventwaitqueue(eid,did);

add_to_eventwaitqueue(eid,did)

END

END

END

END

…

Fig. (4). The implementation OS_i.

CONCLUSION

The paper uses B method to design a formal model of OS

and shows the fmC/OS development process from abstract

specification to an implementation. We have obtained ab-

stract model and properties of the system and for each opera-

tion its prerequisites as well as the invariant must be satis-

fied. Every verification stage of B method is useful and leads

to error detection: analysis of software document specifica-

tion, type checking, inspections, proof of abstract model

safety properties, refinement proof of correct implementa-

tion. Therefore, Operating System based on B method can

enhance accuracy and security of the system.

CONFLICT OF INTEREST

The authors confirm that this article content has no con-

flict of interest.

ACKNOWLEDGEMENTS

We gratefully acknowledge support by the Foundation

and Forefront Technology Research Project of Henan Prov-

ince (122300410062) and the Natural Science Research Pro-

ject of Education Department of Henan Province

(12A520007).

REFERENCES

[1] Iain D. Craig, Formal models of operating system Kernels,

Springer, 2007.
[2] Iain D. Craig, Formal refinement for operating system Kernels,

Springer, 2007.
[3] Luciano Barreto, Aline Andrade, Adolfo Duran, Caique Lima and

Ademilson Lima, “Abstract specification and formalization of an
operating system kernel in Z,” Operating Systems Review, vol.

45(1), pp. 156-160, Jan. 2011.
[4] Sarah Hoffmann, Germain Haugou, Sophie Gabriele and Lilian

Burdy, “The B-Method for the Construction of Microkernel-Based
Systems,” 7th International Conference of B Users, Besançon,

2007, pp. 257-259.
[5] Zhenjiang Qian, Hao Huang, and Fangmin Song, “VTOS: Research

on Methodology of ‘Light-Weight’ Formal Design and Verification
for Microkernel OS,” Information and Communications Security -

15th International Conference, Beijing, 2013, pp. 17-32.
[6] Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray,

Thomas Sewell, Rafal Kolanski, and Gernot Heiser, “Comprehen-
sive formal verification of an OS microkernel,” ACM Transactions

on Computer Systems, vol. 32, pp. 2:1-2:70, Feb. 2014.
[7] J.-R. Abrial, The B-Book: Assigning Program to Meanings, CUP,

1996.
[8] Jean-Raymond Abrial, “Formal methods in industry: achievements,

problems, future,” 28th International Conference on Software En-
gineering,, Shanghai, 2006, pp. 761-768.

[9] Jean J. Labrosse, MicroC OS II: The Real Time Kernel (2nd Re-
vised edition), CMP Books, 2002.

Received: June 10, 2015 Revised: July 29, 2015 Accepted: August 15, 2015

© Danmin et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the (https://creativecommons.org/licenses/by/4.0/legalcode), which permits unrestricted, non-

commercial use, distribution and reproduction in any medium, provided the work is properly cited.

