
Send Orders for Reprints to reprints@benthamscience.ae

 The Open Cybernetics & Systemics Journal, 2015, 9, 253-261 253

 1874-110X/15 2015 Bentham Open

Open Access

A New MapReduce Framework Based on Virtual IP Mechanism and Load
Balancing Strategy

Song Yang, Hao Pingting, Hu Jiejun, Hu Liang and Che Xilong
*

School of Computer Science and Technology, Jilin University, Changchun Jilin, 130012, China

Abstract: MapReduce is an important method for large-scale data processing on parallel architecture. In Hadoop ecosys-

tem, MapReduce runs on the application-level, thus it provides system with flexibility. MapReduce is good at offline

batch processing and it could accelerate the whole execution time. The deficiency of the MapReduce architecture is a lack

in balancing and scalability, thus leads to low efficiency when dealing with large-scale data. In this paper, we propose a

new MapReduce framework that is more suitable for Hadoop ecosystem. The framework is based on the virtual IP

mechanism and load balancing strategy. Comparative experiments indicate that the new framework achieve twice the per-

formance compared to the original MapReduce. Besides, the framework fully meets the environment of Hadoop ecosys-

tem, and provides a stable and efficient data processing.

Keywords: Load balancing strategy, parallel batch processing, virtual IP mechanism.

1. INTRODUCTION

MapReduce [1] is a distributed high-performance com-
puting framework for analyzing and processing massive data
[2]. It manages data flow and control flow while coordinat-
ing with HDFS [3] in the Hadoop [4] ecosystem. Scalability,
reliability and high-performance are the main existing de-
fects in MapReduce. On one hand, the load-balancing algo-
rithm in the TaskScheduler does not apply for most submit-
ted job for an even dispatch. On the other hand, it is the us-
ers’ concern to explicitly allocate the IP addresses of servers,
thus lead to an exposure of server information and a lose in
executing transparency.

Load balancing [5] is a critical technique to provide
higher quality of service and better performance for Cloud
computing. It endows the system with the capability of job
assignment concerning availability, cost and flexibility. The
key problem is how to introduce load balancing into the
MapReduce in a dynamic manner so that there is no need to
make static reservation at the submission stage while main-
taining the transparency of server information.

In order to address this problem, we propose a new
MapReduce Framework which incorporate virtual IP mecha-
nism and load balance mechanism together. The main con-
tributions of this literature can be summarized as follows.

(1) The virtual IP (VIP) mechanism is introduced to de-
couple the static mapping between the MapReduce jobs and
the physical resources so that there is no need to make reser-
vation at the submission stage.

(2) The load balance mechanism is employed to dynami-
cally identify underload resources while dispatching
MapReduce jobs at execution stage.

(3) Typical load balance algorithms are evaluated
through comparative study, and a prototype implementation
is validated.

2. RELATED WORKS

MapReduce is the master/slave (M/S) framework. As is

shown in Fig. (1), it is consisted of Client, JobTracker,

TaskTracker. Users submit programs to Client, and then Cli-

ent sends jobs to JobTracker. JobTracker assigns jobs to each

TaskTracker. At the same time, it feedbacks the heartbeat in

real time. The TaskTracker uses “slot” to strip resources.

In [6] presents a hierarchical MapReduce framework.

The framework supports cross-domain, so that it could

gather computation resources from different clusters and run

jobs by using these resources. The framework adds two

scheduling algorithms, which are Compute Capacity Aware

Scheduling (CCAS) and Data Location Aware Scheduling

(DLAS). The scheduling algorithm is used to promote the

performance of computing. But it does not concern about

performance and stability of MapReduce in this paper.

In [7] presents a system that improves the job scheduling

strategy of MapReduce for allocating resources reasonably.

The system uses the strategy of requesting priority to decide

the assignment of resources allocation, as well as the se-

quence of auto-detection. However, the tactic is not appro-

priate for massive data sets in virtual environment. The re-

quest priority strategy may react load balancing. In addition,

it could increase the degree of coupling.

Load balancing strategy [8] mainly includes Round-

Robin Scheduling (RR), Weighted Round-Robin Scheduling

(WRR) [9], Least-Connection Scheduling(LC) [10],

Weighted Least-Connection Scheduling(WLC) [11], Local-

ity-Based Least-Connection Scheduling(LBLC) [12], Local-

ity-Based Least-Connection with Replication Schedul-

254 The Open Cybernetics & Systemics Journal, 2015, Volume 9 Yang et al.

ing(LBLCR), Destination Hashing Scheduling(DH), Source

Hashing Scheduling and so on. Aiming at practical situation

or experimental questions, algorithms can be restructured

to optimize job assignment, such as appending dynamic de-

tection based on the state of node, or adding algorithms

based on some effective math conclusion into load balancing

strategy.

Combining with actual circumstance, virtual IP can be
designed into different architecture of the cluster. For exam-
ple, Master/Slave, C/S or etc. One node of the cluster can be
chosen as Leader to handle requests, and it can also schedule
and distribute works in specific situation. Other nodes are
responsible for accepting requests from Leader or disposing
of works.

[13] introduced VIP mechanism into the cluster system to
improve the throughout and efficiency. It uses one address to
name all the cluster nodes for building a virtual cluster with
large amount of low-cost resources. The VIP mechanism is
proved to be not only scalable and available, but also multi-
node fault-tolerance [14]. The VIP works on IP layer, thus
the users and the servers do not need to handle the virtual
traffic in the application level.

3. FRAMEWORK

3.1. Topology

The new MapReduce framework is presented in Fig. (2).
It includes Virtual IP mechanism and Load balancing strat-
egy. In what follows, we explain key components.

Master node manages the metadata and the cataloging
tree of HDFS, it receives the heartbeat and execution results
from the Slave node.

Slave node runs the tasks and submits the results to the
Master node.

JobTracker receives commands issued by users and sets

up parameters according to the dynamic state of the network.

It also divides each job into one or more blocks.

TaskTracker executes tasks dispatched by the Job-

Tracker.

Leader VIP takes charge of all the tasks. When a task is

sent from client to cluster, it is firstly gathered by the node

where Leader VIP runs. Then the Leader VIP issues the

tasks to working nodes with VIPs.

Super VIP woks like a Leader VIP, it sends tasks to

Leader VIPs instead of working nodes. We will not go into

details about super VIP.

3.2. VIP Mechanism

VIP mechanism is a core design of our framework. It is

an IP address that is virtually assigned to multiple domain

names or servers. It could improve redundancy by providing

alternative failover options on the servers evolved.

While a client generates a task, it explicitly nominate a

VIP address to execute its mappers and reducers. The VIP is

not an physically available IP, but all the cluster nodes are

aware of the mapping relationship between the virtual and

physical address.

When the Super VIP receives tasks from a client, it trans-

fers the virtual address into a physical address of Leader

VIP, and selects one Leader VIP to run it. The selection is

performed according to inter-cluster load balancing strategy.

When the Leader VIP receives a task from a Super VIP, it

dispatches them to VIPs according to the intra-cluster load

balancing strategy. Therefore, both inter-cluster and intra-

cluster are concerned to ensure that the proposed framework

makes fully use of available resources.

JopTracker

Client

Client

Client

TaskScheduler

TaskTracker TaskTracker TaskTracker

H
ea
rtb
ea
t

H
ea
r t
b
ea
t

H
eartbeat

Fig. (1). Hadoop MapReduce Framework.

A New MapReduce Framework Based on Virtual IP Mechanism The Open Cybernetics & Systemics Journal, 2015, Volume 9 255

Since the virtual IP are dynamically mapped to physical
IP in the dispatch stage, it is more easy to balance the task
distribution and robust execution.

3.3. Heartbeat

The original MR by sending a heartbeat [15] packet to
determine whether TaskTracker survival, understanding the
space, it can run JobTracker assigned tasks.

As is shown in Fig. (3), the original MapReduce sends
heartbeat according to the five steps as follows:

1. To determine whether to send heartbeat time, according
to the TaskTracker to dynamically adjust the number of
sending heartbeat time.

2. Determine whether the TaskTracker is just the start, need
to check the TaskTracker and JobTracker versions are
consistent.

3. Check whether the damaged disk

4. Send a heartbeat packet

5. To receive and execute the command

In our new MapReduce framework, as is shown in Fig. (4),
JobTracker according to the VIP mechanism to control to
which sub node sends a heartbeat packet, dynamic deploy-
ment according to the real time condition, achieve dynamic
extensible, so do the precise location in the subsequent cal-
culation, improve the call rate, improve the ability of fault
tolerance.

The new method has six step as follows:

1. According to the configuration of the VIP, set the cluster

2. Whether to send heartbeat time

3. To find the corresponding VIP address according to the
VIP configuration file, to judge whether the TaskTracker
has just started

4. According to the SVIP address to check whether there is
damage to the hard drive

5. Send a heartbeat packet to the specified VIP address,
send heartbeat to TaskTracker

6. To execute the command and return results to the SVIP.

3.4. Loadbalance

In the proposed framework, load balancing strategy is in-
evitable to achieve good performance. We take the following
scheduling algorithms under concern.

DH Scheduling is a static algorithm that mappes tasks to
target IP addresses according to hash function on IP ad-
dresses. In our framework, this algorithm is used b the Job-
Tracker to select a TaskTracker for dispatching each task.

LC Scheduling is a dynamic algorithm that assigns re-
quests to the servers with least connections. A director re-
cords the connection count for each server. More specifi-
cally, the count is added by one if one task assigned, and
vice versa. If two servers have same connection count, then
the first place in logic is chosen. This algorithm will lead to
uneven distribution if the execution time of tasks are rather
uneven. In that case, it can lead to low efficiency.

Workload

Reporter

Load balancing

Strategy

Job Tracker

(Leader VIP)

Task
Tracker

(VIP)

Workload

Reporter

Load balancing

Strategy

Job Tracker

(Leader VIP)

Task
Tracker

(VIP)

Master Node

(Super VIP)

Job Scheduler Load balancing Strategy

MapReduce ClusterMapReduce Cluster

Fig. (2). A new MapReduce architecture.

256 The Open Cybernetics & Systemics Journal, 2015, Volume 9 Yang et al.

LBLC Scheduling is originally designed for cache use in
the cluster system but is widely used in a great many situa-
tions. This algorithm combines LC and DH together. When
there is an available server under loaded, then DH is
adopted, otherwise, LC runs in turn.

3.5. Workflow

Clients will send request to JobTracker’s Leader Virtual
IP, JobTracker can monitor every TaskTracker and Job’s
health, and according to the load balance strategy to allocate
the resources for task. And then JobTracker could perform
the job according to the node distribution by TaskTracker’s
Virtual IP. JobTracker will send the heartbeat to TaskTracker
to confirm the TaskTracker is alive, and TaskTracker replies

it to JobTracker. This action can be completed by virtual IP
mechanism, to guarantee the stability and scalability. By
using Virtual IP mechanism can achieve the task distribution
and recovery when the node failures immediately transfer or
recovery.

In the new framework, we use virtual IP mechanism to
improve the fault-tolerance performance and computational
performance. JobTracker finds its own virtual IP layer
through the previous configuration file. Load balancing
strategy and network traffic is decided by the current net-
work environment.

The process of a task execution request is consisted of 8
steps, as is shown in Fig. (5):

Start

Send message

TaskTracker

starting ?

Y

Normal disk

failure

N

compiler version

consistency _
Y

Y

Return DENIED N

Return STALEY

Send heartbeat

N

ReinitTrackerAct

ion

Y

Other direction

N

Back to normal

N

Fig. (3). The original process of MapReduce heartbeat.

A New MapReduce Framework Based on Virtual IP Mechanism The Open Cybernetics & Systemics Journal, 2015, Volume 9 257

Start

Send message

TaskTracker

starting ?

Y

Normal disk

failure

N

compiler version

consistency _
Y

Y

Return DENIED N

Return STALEY

Send heartbeat

N

ReinitTrackerAct

ion

Y

Other direction

N

Back to normal

N

Check VIP .conf

Check IP .conf

Check IP .conf Y

Check IP .conf

Fig. (4). The new process of MapReduce heartbeat.

1. Client proposes a request about dealing with jobs and
submitting jobs

2. If the submitted IP by the client is equivalent with VIP
of cluster, the node with leader VIP in the cluster starts
to send packet to check the health of Task Tracker.

3. If Task Tracker is alive, it responds the node with leader
VIP to prove its existence.

4. The node with leader VIP assigns tasks to Load Balance
module.

5. Load Balance module returns tasks list to the node with
leader VIP. The node with leader VIP gives the list to
Job Tracker.

6. Job Tracker passes the list on to Task Tracker, and
makes Task Tracker to assign tasks by strategy of Load
Balance.

7. Task Tracker launches tasks to Task. The next step is
going on the phase of Reduce. After the phase of Re-
duce, the job is accomplished.

8. Task returns the result to parts of HDFS in Hadoop eco-
system.

As is shown in Fig. (6), the data flow is changed in the
new MapReduce framework. On account of the relationship
between the data transferring in original architecture, the
new framework based on the hierarchy, integrated virtual
IP mechanism. Each task is divided into blocks, a plurality of

258 The Open Cybernetics & Systemics Journal, 2015, Volume 9 Yang et al.

client
JobTracker

(Leader

VIP)

TaskTracker HDFS
Load

balance
task

1.propose and submit

2.check heartbeat

3.reply

4.ask assignment

5.return list

6.pass list

7.launch tasks

8 .submit to HDFS

Reduce

Fig. (5). A new MapReduce work-flow diagram.

Fig. (6). A new MapReduce data-flow diagram.

A New MapReduce Framework Based on Virtual IP Mechanism The Open Cybernetics & Systemics Journal, 2015, Volume 9 259

3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

1400

1600

1800

Square :original MapReduce

Circle _ rr strategy
Diamond: dh strategy

Right triangle :lc strategy

Left triangle : lblc strategy

File

Size (2n)MB

Average

Time(s)

Fig. (7). The average execution time for each size.

data streams entering the system through the way of virtual
IP.

4. EXPERIMENT

4.1. Experimental Settings

The unit of Datasets is 1MB, including a single word,
special symbols, spaces and so on. Each set of test data is
formed by the unit of datasets. The unit of datasets forms
each test data set.

The real experimental environment for us is two PC ma-
chines, core 2 Duo processor, 8GB memory. One machine
established four virtual machines, which are master, slave 1,
slave 2 and slave 3. Another established five from slave 4 to
slave 8. The network is connected through bridge-
connection.

Based on the above in-depth analysis of MapReduce, en-
suring the experimental data is accurate and persuasion, we
divided into four groups to compare, which are 8 documents,
16 documents, 256 documents and 1536 documents. In the
meantime, take four strategies in experiment that is RR strat-
egy, DH strategy, LC strategy, LBLC strategy.

We propose a new framework based on the MapReduce.
We modify the related API, specific parameters and add
some configuration files to ensure that the new framework
can be applied to the Hadoop ecosystem.

Although our architecture is very suitable for the opera-
tion in the practical scenario of large-computing, on account
of the limitation of our experimental environment, the strat-
egy of RR load balancing is better in this experiment.

4.2. Results and Discuss

We accomplish the prototype system by modifying LVS
and MapReduce. Then we take a set of test data which is
special for verifying the capacity of offline processing.

When the task comes to TaskTracker, first of all we
judge TaskTracker whether it is occupied. If TaskTracker is
busy, the task will jump to the next TaskTracker.

As is shown in Fig. (7), We analyze the trace of the aver-
age execution time for each size of job. Compared to original
architecture, the overall speed of job execution will increase
200% by using RR strategy. The improvement percentages
are also noticeable in other three load balancing strategies.
The job size of 256MB is the turning point in the process of
operation. When the file size exceeds 256MB, it will in-
crease computation time. Beyond the ability of computing in
the cluster, the average time increases sharply.

In Fig. (8) shows that the error rate of new framework is
not affected so much. In 1536MB, the error rate rose to a
certain degree lower than original MapReduce in DH strat-
egy, LB strategy and LBLC strategy. The failure of RR strat-
egy has the lowest rate of failure among four strategies. You
can also find that the original MapReduce increases the rate
of failure to a certain degree, and then the number of error is
controlled in an average level. The error rate in original
MapReduce framework is much higher than our new frame-
work.

We take the job size of 256MB as an example to make a
detailed analysis and data display in Fig. (9). The result
shows that the first experiment of speed efficiency is lower
than latter experiment. The reason is that the first reading

260 The Open Cybernetics & Systemics Journal, 2015, Volume 9 Yang et al.

3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

File

Size (2n)MB

Square :original MapReduce

Circle _ rr strategy

Diamond: dh strategy

Right triangle :lc strategy
Left triangle : lblc strategy

Failure

(times)

Fig. (8). The average error of multiple test data.

1 1.5 2 2.5 3 3.5 4 4.5 5
100

120

140

160

180

200

220

240

260

Experimental

frequency

_ times _

Time_ s_

Square :original MapReduce

Circle_ rr strategy

Diamond : dh strategy

Right triangle :lc strategy
Left triangle :lblc strategy

Fig. (9). The running time and the number of tests in 256MB.

from the dataset will slow down the speed of the system.
Through the curve can be seen that the calculating rate of ori-
ginal framework did not improve much, while our new frame-
work gradually speeds up the procedure until a stable point.

In conclusion, our architecture improves much better
execution efficiency than that of the original MapReduce
under different file size. The new framework also achieves a
roughly increasement about 200%. Furthermore, we can find

A New MapReduce Framework Based on Virtual IP Mechanism The Open Cybernetics & Systemics Journal, 2015, Volume 9 261

that with the same circumstance, the error rate is reduced to
some extent.

5. CONCLUSION

We proposed a framework which is fully applicable for
Hadoop ecosystem. We add virtual IP mechanism and load
balancing strategy into MapReduce. They make a perfect
fusion in the new framework to optimize the procedure of
MapReduce.

In this paper, we do not combine it into one single aspect
of Hadoop. In another word, it not only optimizes the code
for one module, but will propose a new computing architec-
ture. Load balancing strategy and Virtual IP mechanism help
the entire computing clusters become more scalable and sta-
ble. Although the new framework proposed may not be the
best in one specific aspect, it can achieve high performance
computing by the combination of load balancing and virtual
IP mechanism.

In future work, we will improve the load balancing strat-
egy of adaptive strategies that can be suitable for more com-
puting environment. We can consider more popular load
balancing strategies, for instance dynamic algorithms, CDN.

CONFLICT OF INTEREST

The authors confirm that this article content has no con-
flict of interest.

ACKNOWLEDGEMENTS

This work is funded by: European Framework Program
(FP7) under Grant No. FP7-PEOPLE-2011-IRSES, and by
National Natural Science Foundation of China under Grant
No. 61073009 & 60873235, and by National High Technol-
ogy R&D Program 863 of China under Grant No.
2011AA010101, and by National Key Technology R&D
Program of China under Grant No. SQ2013GX11E00316,
and by National Science and Technology Major Projects of
China under Grant No. SinoProbe-09-01-03 &
2012ZX01039-004-04-3, and by Key Science Technology
Program of Jilin Province of China under Grant No.
2011ZDGG007.

REFERENCES

[1] J. Dean, and S. Ghemawat, “MapReduce: simplified data process-

ing on large clusters”, In: Proceedings of the 6th conference on
Symposium on Opearting Systems Design & Implementation, De-

cember 06-08, 2004, San Francisco, CA, 2004, pp. 10-10.
[2] J. Dean, and S. Ghemawat, “MapReduce: simplified data process-

ing on large clusters,” Communications of the ACM, vol. 51, no. 1,
pp. 107-113, 2008.

[3] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system” In: IEEE 26th Symposium on Mass Storage

Systems and Technologies (MSST), IEEE, 2010, pp. 1-10.
[4] The Apache Software Foundation. http://hadoop.apache.org/

[5] A.Y. Zomaya, and Y.H. The, “Observations on using genetic algo-
rithms for dynamic load-balancing,” Parallel and Distributed Sys-

tems, IEEE Transactions on, vol. 12, no. 9, pp. 899-911, 2001.
[6] Y. Luo, and B. Plale, “Hierarchical mapreduce programming model

and scheduling algorithms,” In: Proceedings of the 2012 12th
IEEE/ACM International Symposium on Cluster, Cloud and Grid

Computing (ccgrid 2012), IEEE Computer Society, 2012, pp. 769-
774.

[7] T. Sandholm, K. Lai, “MapReduce optimization using regulated
dynamic prioritization,” In: Proceedings of the 11th international

joint conference on Measurement and modeling of computer sys-
tems, ACM, 2009, pp. 299-310.

[8] S. Sharifian, S.A. Motamedi, and M. K. Akbari, “A predictive and
probabilistic load-balancing algorithm for cluster-based web serv-

ers,” Applied Soft Computing, vol. 11, no. 1, pp. 970-981, 2011.
[9] L.B. Le, E. Hossain, and A.S. Alfa, “Service differentiation in

multirate wireless networks with weighted round-robin scheduling
and ARQ-based error control”, IEEE Transactions on Communica-

tions, vol. 54, no. 2, pp. 208-215, Feb. 2006.
[10] D. Choi, K. S. Chung, and J. Shon, An Improvement on the

Weighted Least-Connection Scheduling Algorithm for Load Bal-
ancing in Web Cluster Systems, Springer Berlin Heidelberg, vol.

121, 2010, pp. 127-134.
[11] M. Chiang, C. Wu， Y. Liao, and Y. Chen, “New content-aware

request distribution policies in web clusters providing multiple
services,” SAC’09 Proceedings of the ACM symposium on Applied

Computing, 2009, pp. 79-83,
[12] H. Kwak, A. Sohn, and K. Chung, “Autonomous learning of load

and traffic patterns to improve cluster utilization,” Cluster Comput-
ing, vol. 14, no. 4, pp. 397-417, Dec. 2011.

[13] Wikimedia Foundation. Inc., http://en.wikipedia.org/wiki/Virtual_
IP_address/

[14] T. Schroeder, S. Goddard, and B. Ramamurthy, “Scalable web
server clustering technologies,” Network, IEEE, vol. 14, no. 3, pp.

38-45, 2000.
[15] J.S. Manjaly, and V.S. Chooralil, “TaskTracker Aware Scheduling

for Hadoop MapReduce,”In: Advances in Computing and Commu-
nications (ICACC), In: 3rd International Conference on, IEEE,

Aug. 2013, pp. 278-281.

Received: September 16, 2014 Revised: December 23, 2014 Accepted: December 31, 2014

© Yang et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/-

licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

