Send Orders for Reprints to reprints@benthamscience.ae

The Open Cybernetics & Systemics Journal, 2015, 9, 2677-2680 2677

Multiple Binary Trees Encryption Principle

Yong Wei'

Software School, Shenzhen Institute of Information Technology, Shenzhen, 518117, P.R. China

Abstract: Through block cipher method, this paper demonstrates using preorder and post traversal sequence of a binary
tree with 64 nodes to implement symmetric encryption/decryption. The different traversal sequences may determine a bi-
nary tree, so the method is vulnerable to be attacked. The paper’s further deduction involves improvement using multiple
binary trees, so that more secure and efficient symmetric encryption algorithms can be obtained.

Keywords: AES, binary tree, DES, padding, symmetric encryption.

1. INTRODUCTION

DES and AES are approved by the federal government
block cipher standard [1-6]. Despite the repeal, DES is still
very popular (3DES deformation is still quite safe). Howev-
er, AES is the Advanced Encryption Standard, its speed and
high security level can replace the DES algorithm.

Rijndael block cipher algorithm is an iterative, its packet
length is 128bit, the key length is 128/192/256bit, and the
corresponding number of rounds is 10/12/14. In comparison,
AES 128Dbit keys are 1021 times more than 56bit DES keys.

If a binary tree is considered as the key, the binary tree
traversal can be used to encrypt [7]. For example, the string
"ABCDEFGH" is the plaintext, the binary tree in Fig. (1a) is
the key. Firstly the string is loaded into the binary tree ac-
cording to preorder traversal, then the re-export of the tree
postorder traversal sequence EDCBGHFA is regarded as
cipher text. When decrypting, according to postorder tra-
versal order, the encrypted data is loaded into the key, then
the plaintext data is restored from the preorder traversal se-
quence.

(a) (b)

Fig. (1). Binary trees as key.

The number of binaries which consist of n nodes is:

B(n) = Y B(K)B(n—k— 1) )

1874-110X/15

As the number of the binary trees consisting of n nodes is
sufficiently large, the binary trees as the key for encryp-
tion/decryption operations are more than the AES encryption
algorithm keys. For example, in the AES algorithm, when
the key length is 128, there are 3.4 x 10°® keys. If a binary
tree is used as a key when the number of bits
n = 128, there are B(n) = 4.4718285453094634 x 10" keys,
which are much higher than the AES key 35 orders of mag-
nitude, and the key exhaustive search is harder.

Binary tree has six kinds of traversal solutions, DLR,
LDR, LRD, DRL, RDL and RLD. Whatever the traversal, its
time complexity is O(n). So binary encryption/decryption
efficiency is made high. Contrastingly, AES is more com-
plex.

As some binary tree traversal sequence uniquely deter-
mines the binary tree [8-12], if only one binary tree to en-
crypt/decrypt is used, it is vulnerable to be attacked. For this
reason, it is necessary to use multiple binary trees to achieve
more secure and efficient encryption algorithm.

2. BINARY ENCRYPTION/DECRYPTION PROCESS

The binary tree with 64 nodes as shown in Fig. (2) is
used as the key. Where "n#" indicates the nodes number,
which is precisely the preorder sequence of the binary tree. "I"

nfl r ntl r n#l r n#tl r
00 nl 01 16 nl 17 32 nl 33 48 nl 49
01 02 08 17 18 19 33 nl 34 49 50 53
02 nl 03 18 nl nl 34 nl 35 50 nl 51
03 04 06 19 nl 20 35 nl 36 51 52 nl
04 nl 05 20 21 27 36 37 39 52 nl nl
05 nl nl 21 nl 22 37 nl 38 53 nl 54
06 07 nl 22 23 nl 38 nl nl 54 55 57
07 nl nl 23 24 25 39 nl 40 55 nl 56
08 09 10 24 nl nl 40 41 45 56 nl nl
09 nl nl 25 26 nl 41 nl 42 57 58 59
10 11 13 26 nl nl 42 43 44 58 nl nl
11 nl 12 27 28 29 43 nl nl 59 60 nl
12 n1 n1 28 n1 nl 44 nl nl 60 61 62
13 nl 14 29 nl 30 45 46 48 61 nl nl
14 15 16 30 nl 31 46 nl 47 62 63 nl
15 nl1 nl 31 nl 32 47 nl nl1 63 nl nl

Fig. (2). Binary tree with 64 nodes.

2015 Bentham Open



2678 The Open Cybernetics & Systemics Journal, 2015, Volume 9

indicates the associated number of left-son, "r" represents its
right son.
The postorder traversal sequences are:
05 04 07 06 03 02 09 12 11 15 18 24 26 25 23 22
21 28 38 37 43 44 42 41 47 46 52 51 50 56 55 58

61 63 62 60 59 57 54 53 49 48 45 40 39 36 35 34
33 32 31 30 29 27 20 19 17 16 14 13 10 08 01 00

Fig. (3). Postorder traversal sequences

2.1. The Encryption Process

The following string "shenzhen, China" was divided into
encrypted blocks in accordance with PKCS7 padding man-
ner. Fig. (4) shows node number and the corresponding data
loaded according to the preorder sequence of the first block
of 8-byte.

The first block of encrypted data is obtained from
postorder in accordance with Fig. (3): 00111111 00101110
11100111 00001011 10110101 10000111 10011000
10001010. Fig. (5) represents postorder traversal sequences
of encrypted data and the corresponding node number.

s ‘h' ‘e n z h e n
00 0 08 © 16 © 24 © 32 0 40 © 48 0 56 0
01 109117 1251331411491571
02 110118 126134142 1501581
03 1110190270 351430510590
04 012 120028136144 1520601
05013021 1291370450 531611
06 1 14 0 22 0 30 138146 0 54 0621
07 1150 23131039047 0551630

Fig. (4). By way of preorder sequence data into the first block.

63 46 -25 11 -75 -121 -104 -118
05011 0211470611491 331171
04 0 15 0 28 1 46 0 63 0 48 0 32 0 16 0
07 118 138 1520621450 310 14 0
06 1 24 037 0510601400 301130
03 1261430501590 390291101
02 125144 156057136127 00820
09 1231421551540 351200011
12122 041158153134119 0000

Fig. (5). Encrypted data and the corresponding node number.

) C h it n a 2 2
00 0 08 © 16 © 24 © 32 0 40 © 48 0 56 0
01 © 09 117 1251331411490 570
02 110018 126134142 15005890
03 011 0190 27 0350430510590
04 112 0201281361440 520600
05 1130210290 371450530610
06 © 14 1 22 0 30 0 38146 0 541621
07 © 151 23031139047 1550630

Fig. (6). Loading the second 8 bytes into the key by preorder tra-
versal way.

The postorder way to get the encrypted byte is shown in
Fig. (5): 63 46 -25 11 -75 -121 -104 -118. Then by the pre-
order traversal sequence, the second 8 bytes are put into the
key as shown in Fig. (6).

According to PKCS7 padding way, due to 6 bytes, less
than 8 bytes, the last two bytes are filled 0x2.

Yong Wei

The second block of encrypted data is obtained accord-
ing to the postorder traversal: 11000110 01101100 01110011
10000000 00100010 00000101 10100010 10100000 [Fig.

(M].

-58 108 115 -128 34 5 -94 -96
05 111 0210471610490 331171
04 1151 28 146 0 63 0 48 0 32 0 16 0
07 0 18 1381520621450 311141
06 0 24 0 37 1 51 0 60 0 40 @ 30 0 13 @
03 0 26143 0500590390290 100
02 1 25144 0560570 3612700820
09 1 23 0421550541350 201010
12 0 22 041 158053034119 0000

Fig. (7). Postorder traversal sequence of encrypted data and the
corresponding node number.

Fig. (7) shows the postorder way to get the encrypted
byte: -58 108 115 -128 34 5 -94 -96. Finally two encrypted
block data are completed: 63 46 -25 11 -75 -121 -104 -118 -
58 108 115 -128 34 5 -94 -96.

2.2. Decryption Process

The following description of the decryption process
shows that first 8 bytes are loaded according to postorder
traversal: 63 46 -25 11 -75 -121 -104 -118, as shown in Fig.

8).

63 46 -25 11 -75 -121 -104 -118
05011 0211470611491 331171
04 0 15 0 28 1 46 0 63 0 48 @ 32 0 16 0
07 118 138 1520621450 310 14 0
06 1 24 037 0510601400 301130
03 1261430501590 390291101
02 125144 156057136127 00820
09 1231421551540 351200011
121220 41158153134119 0000

Fig. (8). First 8 bytes of data loaded according to the postorder
traversal.

The way of preorder traversal to get the data decryption
block data is shown in Fig. (9).

s h e n z h e n
00 0 08 © 16 © 24 © 32 0 40 © 48 0 56 0
01 109117 1251331411491571
02 110118 1261341421501581
03 1110190270 351430510590
04 012 120028136144 1520601
05013021 1291370450 531611
06 1 14 0 22 0 30138146 0 540621
07 1150 23131039047 0551630

Fig. (9). Restore the first one plaintext according to preorder traversal.

-58 108 115 -128 34 5 -94 -96
05 111 0210471610490 331171
04 1151 28 146 0 63 0 48 0 32 0 16 0
07 018 1381520621450 311141
06 0 24 0 37 1 51 0 60 0 40 @ 30 0 13 @
03 0 26143 0500590390290 100
02 1 25144 0560570 3612700860
09 1 23 0421550541350 201010
12 0 22 041 158053034119 0000

Fig. (10). Loaded the second block ciphertext by postorder traversal.



Multiple Binary Trees Encryption Principle

The second block of 8 bytes is continued to load by fol-
lowing the postorder traversal: -58 108 115 -128 34 5 -94 -
96 as shown in Fig. (10).

The second ciphertext is restored by preorder traversal,
obtaining a decrypted data block, "China", as shown in Fig.
(11) below.

Upon completion of decryption, the string is restored:
"shenzhen, China".

, C h it n a 2 2
00 0 08 © 16 © 24 © 32 0 40 © 48 0 56 0
01 © 09117 1251331411490 570
02 110018 126134142 150058690
03 011 0190 27 0 350430510590
04 112 020128136144 0520600
05 1130210290 371450530610
06 © 14 1 22 0 30 0 38146 0 541621
07 © 151 23031139047 1550630

Fig. (11). Restore the second ciphertext by preorder traversal.

3. MULTIPLE BINARY TREES ENCRYPTION PRIN-
CIPLE

Some binary tree traversal sequences may determine the
binary tree, for example:

The preorder and inorder sequence of the binary tree can
uniquely determine it.

The inorder and postorder sequence of the binary tree can
uniquely identify it.

A preorder and postorder sequence of the binary tree can
only determine it.

Based on the above rules, using only one binary tree to
encrypt/decrypt known plaintext attack or chosen plaintext
attack is very easy to calculate the key. So multiple binary
trees are needed to be used in order to achieve more secure
and efficient encryption algorithm.

For this reason, not one binary, but multiple trees are en-
crypted. For example, above cipher text EDCBGHFA was
encrypted again with the second tree as shown in Fig. (1b).
EDCBGHFA is loaded into the tree by the preorder traversal.
Output postorder nodes sequence: BCDFHAGE as the last
encrypted sequence. The second tree was used to decrypt the
BCDFHAGE to EDCBGHFA, then the first tree was used to
restore EDCBGHFA to plaintext ABCDEFG, thus complet-
ing the decryption process.

By the adding principle, if the first tree has n; nodes, the
number of the binary trees is configured by B(n;):
n;—1

B(n,) = B(kK)B(n, —k—1) ()

The second tree has n, nodes, the number of the binary
trees configured for B(ny).

n,-1

B(n) = ). BOOB(n, —k—1) ®)
k=0

If the number of nodes of the two binary trees have the
same nodes set then n = n; = n,, and according to the multi-
plication principle, the number of combinations of two trees
CB(n,2) is configured.

The Open Cybernetics & Systemics Journal, 2015, Volume 9 2679

2

CB(n,2) = <Z B()B(n — k — 1)) “)
k=0

With two or more binary trees as the key, the number of
keys can produce more than a single binary. For example, if
the encryption key has 64 nodes of binary, the keys number
is: 3.68E35. If 2 binary trees are encrypted with 64 nodes,
the keys number can be increased: 1.35E71. In practice, to
improve security, even more binary trees can be used for this
encryption/decryption process.

CONCLUSION

In contrast to AES algorithm, when the key length is n, a
binary tree with n nodes to encrypt/decrypt has more keys
and key exhaustive search harder than AES algorithm.

However, binary tree can be inferred by its traversals of
preorder, inorder and/or postorder. So using a known
plaintext attack or chosen-plaintext attack to crack the key is
easy. For this reason, the actual encryption/decryption is to
be taken for multiple binary trees. That data continues to be
encrypted/decrypted by using more binary trees which pro-
duces more keys.

B(n) represents the number of binary trees generated by n
nodes. There are r binary trees with n nodes to generate
CB(n, r) keys:

r

CB(n,r) = <Z B()B(n — k — 1)) (5)
k=0

Multiple binary trees are used to achieve symmetric en-
cryption algorithm, the key of which is completely random
and is not reused. If the violent attacks occur, the effort in-
creases exponentially by the growing length of the key.
Therefore, this encryption method is secure.

Because the binary tree traversal visits
each node in turn, so the encryption/decryption time com-
plexity is O(n). Thus this encryption/decryption method is
also efficient.

CONFLICT OF INTEREST

The author confirms that this article content has no con-
flict of interest.

ACKNOWLEDGEMENTS

This work was financially supported by Shenzhen Insti-
tute of Information Technology scientific research raising
project (Special topic of school enterprise cooperation)
"open mobile educational management system"(1g2014010).

REFERENCES

[1] M. Mitsuru, “Linear cryptanalysis method for DES cipher,” Lec-
ture Notes in Computer Science, Springer-Verlag, vol. 765, pp.
368-397, 1993.

[2] E. Biham, and A. Shamir, “Differential Cryptanalysis of Data
Encryption Standard,” New York: Springer-Verlag, 1993.

[3] J. Daemen and V. Rijmen, AES proposal: Rijndael. In AES Round
1 Technical Evaluation CD-1: Documentation. NIST, August 1998.
See http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ or http://www.
nist.gov/aes.



2680

The Open Cybernetics & Systemics Journal, 2015, Volume 9

N. Ferguson, J. Kelsey, S. Lucks, B. Schneier, M. Stay, D. Wagner,
and D. Whiting, “Improved cryptanalysis of Rijndael,” In: FSE 00,
volume 1978 of Lecture Notes in Computer Science, pp. 213-230,
2000.

J. Daemen, and V. Rijmen, “The Design of Rijndael: AES - The
Advanced Encryption Standard,” Springer, 2002.

A. Biryukov, and D. Khovratovich, “Related-Key Cryptanalysis of
the Full AES-192 and AES-256,” In: ASIACRYPT 09, of Lecture
Notes in Computer Science, Springer, 5912, pp. 1-18., 2009.

Y. Wei, S. Xu, G. Deng, and T. He, “Analysis of the Forming of

Binary Trees with n Nodes,” ICITME, 2014.

D. E. Knuth, “The Art of Computer Programming: vol. 1, Funda-
mental Algorithms,” 2rd ed. Reading, MA: Addison-Wesley, vol.
329, pp. 347~351, 1973.

[10]

[11]

[12]

Yong Wei

Z. Tang, “Algorithms for constructing a strictly binary tree based
on its traversals,” Journal of SooChow University(Natural Sciemce
Edition), 2010.

Z. Tang, “Methods for uniquely determining a tree or a binary tree
based on its traversal sequences,” Mini-Micro System, pp. 985-988,
2001.

Z. Tang, “Algorithms for construction a tree based on its travers-
als,” Journal of SooChow University(Natural Science Edition),
vol. 27, no. 3, 2011.

E. Miékinen, “Constructing a binary tree efficiently from its tra-
versals,” International Journal of Computer Mathematics, vol. 75,
no. 2, pp. 143-147, 2000.

Received: June 10, 2015

© Yong Wei; Licensee Bentham Open.

Revised: July 29, 2015

Accepted: August 15,2015

This is an open access article licensed under the terms of the (https://creativecommons.org/licenses/by/4.0/legalcode), which permits unrestricted, non-
commercial use, distribution and reproduction in any medium, provided the work is properly cited.



