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Abstract: The paper proves that a DAG’s subgraph is still a DAG or empty after deleting a start node. Based on this con-

clusion, the program loops the DAG and its subgraph as parameters, calls the same method, outputs a start node. Resulting 

nodes must be a topological sequence when the parameter is empty, so as to implement a topological sort algorithm. This 

paper also proposes using key-value storage structure to represent a DAG, where each node as the key, the node’s subse-

quent nodes as the values. Because subsequent nodes must not be start nodes, the remains must be a start nodes set after 

deleting each node’s subsequent nodes from the nodes set. 
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1. INTRODUCTION 

In 1960, Jarnagin first touched the problem in PERT pro-
ject management [1]. Two years later, Kahn pointed out that 
a DAG (directed acyclic graph) has at least one topological 
sequence, and he found such a topological sequence method 
[2, 3]. The algorithm established a start node set S (could 
also be a queue or stack). The program saved the start nodes 
in S in case any start node was found either beginning or 
processing. The topology sequence outputting could be 
summarized as the following steps: 

(1) Arbitrarily output a node from the start node set. 

(2) Delete the node and edges which connected the node. 

(3) If more start nodes emerge in the remaining graph, 
save them in the S. 

(4) If remaining graph is not null, continue to (1), other-
wise end the program. 

In accordance with the depth-first search ideas, Cormen 
et al. proposed another method to implement the topological 
sort algorithm [4, 5]. The characteristic of this algorithm was 
that the program did not output anther start node in S set 
immediately after processing a start node. But the program 
processed new emerging start node in the remaining graph 
firstly. The algorithm was described as follows:  

(1) Output a start node. 

(2) Delete the node and edges that connected with the 
node. 

(3) If new start nodes emerge in the deleted node’s sub-
sequences, output one of them. Otherwise output anther node 
from S. If there are no start nodes, end the program. 

(4) Go to (2). 

Vernet and Markenzon further proofed that if a Hamilto-

nian path exists, the topological sort order is unique [6].  

From the beginning of 80's last century, in order to im-

prove the efficiency, the parallel algorithms for topological 

sorting emerged [7]. 

The past topological sorting algorithm represented DAG 

based on adjacency matrix or adjacency table. If the nodes 

which have no incoming edges were called “start nodes”, 

almost all topological algorithms were determined from the 

start nodes. 

This paper breaked the limitation of the adjacency matrix 

or adjacency table, used key-value storage structure to repre-

sent DAG, and implemented the algorithm of finding the 

start nodes. Moreover the paper put forward a method of 

finding the topological sequence based on the principle that 

the remaining subgraph is still a DAG after output a topo-

logical order node. 

2. GRAPH’S DESCRIPTION OF THE KEY-VALUE 

STRUCTURE 

In the key-value storage structure, key is a certain data 

identification. The program can find the data in a dataset 

through the identification, and carry out operations, such as 

reading, writing etc. Value refers to the data in the real world 

such as height, weight, date of birth, place of birth and so on. 

For example, in Java Map interface is key-value storage 

structure, or key-value pair. The key is unique, meanwhile, 

the value is various. Hashtable and HashMap are implemen-

tations of Map, they provide put() method to put the key-

value value into the table, then get this value through calling 

get () method where the key is a parameter. 

The topological sort is a process to map the topology se-

quence. Fig. (1) was a typical DAG, said the priority relation 

between curriculum. 
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Fig. (1). The priority relation between curriculum. 

In Fig. (1), a topological sequence was: c1, c2, c3, c4, c5, 
c8, c9, c7, c6. Another sequence was: c2, c5, c1, c8, c9, c3, 
c4, c7, c6. 

The following discussed how to use key-value storage 
structure represent a DAG in Fig. (1). 

Java provides a hash data structure of Hashtable class. Its 
object has a key-value pair, uses put() method to put the key-
value data to the table, then sees the key as a parameter, calls 
get() method to get the value.  

A section of the following Java code represented the 
graph in Fig. (1) using a Hashtable object graph, where the 
key represented a node, the value said the subsequent nodes 
of the node. If a node had multi-subsequent nodes, separated 
them by spaces. 

The following steps added all nodes to the object graph: 

 graph.put("c1","c3 c8");  

 graph.put("c2","c3 c4 c5");  

 graph.put("c3","c4");  

 graph.put("c4","c6 c7"); 

 graph.put("c5","c6");  

 graph.put("c6","");  

 graph.put("c7","");  

 graph.put("c8","c9");  

 graph.put("c9","c7"); 

The graph was a Hashtable object, where the key repre-
sented a node, the value said the subsequent nodes. 

3. FINDING THE START NODES OF DAG REPRE-
SENTED BY KEY-VALUE STORAGE  

In Fig. (1), c1 and c2 were start nodes, because they had 
not ancestral nodes. The core of the topological sorting algo-
rithm was how to find the graph’s start nodes.  

Below was a description of the topological sorting algo-
rithm’s core-finding the start nodes of the DAG represented 
by key-value storage structure.  

If allnodes was a set of the all nodes, the allnodes con-
tained all of the start nodes after the following loop. 

Algorithm 1: finding all start nodes of DAG 

While (more nodes with key exist){ 

Object value = g.get(key);  

allnodes = allnodes - value; 

} 

Algorithm 1 continued to scan each node, got its post 
nodes through the get() method, Because the post nodes must 
not be start nodes, deleted them until scanning all the nodes. 
After while-loop, allnodes contained all start nodes. For ex-
ample, in Fig. (1) the value of allnodes was:[c9, c8, c7, c6, 
c5, c4, c3, c2, c1], according to algorithm 1, constantly 
scanned all the nodes, found its subsequent nodes, removed 
them from allnodes which remained two start nodes [c2, c1] 
at the end. The following steps demonstrated this process: 

c9’s subsequent node was[c7], removed it, remains: [c9, 
c8, c6, c5, c4, c3, c2, c1] 

c8’s subsequent node was[c9],removed it,remains [c8, 
c6, c5, c4, c3, c2, c1] 

c6’s subsequent node was null, remains: [c8, c6, c5, c4, 
c3, c2, c1] 

c5’s subsequent node was [c6], removed it, remains: [c8, 
c5, c4, c3, c2, c1] 

c4’s subsequent nodes were[c6, c7], removed them, re-
mains: [c8, c5, c4, c3, c2, c1] 

c3’s subsequent node was[c4], removed it, remains: [c8, 
c5, c3, c2, c1] 

c2’s subsequent nodes were[c3, c4, c5], removed them, 
remains: [c8, c2, c1] 

c1’s subsequent nodes were[c3, c8], removed them, re-
mains: [c2, c1] 

Result was start nodes’ set: [c2, c1] 

4. THE TOPOLOGICAL SORT ALGORITHM BASED 
ON PRINCIPLE THAT DAG’S SUBGRAPH IS STILL 

A DAG OR NULL 

We could prove that after removed a start node and it’s 
connecting edges from a DAG, the remaining subgraph was 
still a DAG. So when output a node, we could call the same 
method repeatedly to output a start node until the subgraph 
was null. 

The proofing processing: if G isGAD, G' is G’s subgraph 

where an arbitrary start node and its connecting edges are 
deleted. Because G is a DAG, G exists at least a topological 

sequence. If G' is not DAG and had no topological sequence, 

G also has not the topological sequence. So G' must be 
DAG. Qed. 

So we could establish a topological sort algorithm 2 as 
follows: 

Algorithm 2: outputting a topological sequence output a 

arbitrary node from the start node set; delete it from the 

DAG graph; repeat the same operations until the remaining 
subgraph is null; get a topological sequence. 

According to algorithm 2, continued the previous steps, 
below demonstrated the topological sort implementation of 
Fig. (1): 
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(1) Output an arbitrary start node c2 

Removed c2, remains: [c9, c8, c7, c6, c5, c4, c3, c1] 

c9 ’s subsequent node was[c7], removed it, remains: [c9, 
c8, c6, c5, c4, c3, c1] 

c8’s subsequent node was [c9], removed it, remains: [c8, 
c6, c5, c4, c3, c1] 

c6’s subsequent node was null, remains: [c8, c6, c5, c4, 
c3, c1] 

c5’s subsequent node was [c6], removed it, remains: [c8, 
c5, c4, c3, c1] 

c4’s subsequent nodes were [c6, c7], removed them, re-
mains: [c8, c5, c4, c3, c1] 

c3’s subsequent node was[c4], removed it, remains: [c8, 
c5, c3, c1] 

c1’s subsequent nodes were [c3, c8], removed them, re-
mains: [c5, c1] 

Result was start nodes’ set: [c5, c1] 

(2) Output an arbitrary start node c5 

Removed c5, remains: [c9, c8, c7, c6, c4, c3, c1] 

Scanned each node, deleted its subsequent nodes, the rest 
was start nodes’s set: [c1] 

(3) Output the start node c1 

Removed c1, remains: [c9, c8, c7, c6, c4, c3] 

Scanned each node, deleted its subsequent nodes, the rest 
was start nodes’s set: [c8, c3] 

(4) Output the start node c8 

Removed c8, remains: [c9, c7, c6, c4, c3] 

Scanned each node, deleted its subsequent nodes, the rest 
was start nodes’s set: [c9, c3] 

(5) Output the start node c9 

Removed c9, remains: [c7, c6, c4, c3] 

Scanned each node, deleted its subsequent nodes, the rest 
was start nodes’s set: [c3] 

(6) Output the start node c3 

Removed c3, remains: [c7, c6, c4] 

Scanned each node, deleted its subsequent nodes, the rest 
was start nodes’s set: [c4] 

(7) Output the start node c4 

Removed c4, remains: [c7, c6] 

Scanned each node, deleted its subsequent nodes, the rest 
was start nodes’s set: [c7, c6] 

(8) Output the start node c7 

Removed c7, remains: [c6] 

Scanned each node, deleted its subsequent nodes, the rest 
was start nodes’s set: [c6] 

(9) Output the last start node c6, ended the program. 

The above steps got a topological sequence: c2, c5, c1, 
c8, c9, c3, c4, c7, c6. 

5. CONCLUSION 

The graphs generally have two kinds of storage structure, 
adjacency matrix and adjacency table. The adjacency matrix 
is a nice data structure, but for graph with more vertices and 
less edges this structure has a great waste of storage space. 
Therefore we usually represent the graphs with adjacency 
table, it is a storage structure of arrays mixed with linked-
lists. The adjacency table uses linkedlists to link all subse-
quent nodes, so it saves space relatively. But as a mixed 
structure, this adds complexity of algorithm. 

This paper uses key-value storage structure in computer 
language to express a graph. In this storage method, key is a 
certain data identification, value refers to the data in the real 
world. Each node in the DAG graph as key, all the subse-
quent node as the value, thus we implement key-value graph 
storage structure.  

Key-value storage structure does not appear redundant 
space contrast to adjacency matrix, so as to achieve the pur-
pose of saving space. Adjacency table storage structure is 
mixed structure of arrays and linkedlists, this increases the 
complexity of the algorithm, key-value storage structure 
does not exist the problem. In contrast, key-value storage 
structure not only saves space, but also eases algorithm. 

The key of the topological sort algorithm step is to find 
the start nodes, which have no incoming edges in the DAG. 
Therefore we scan all nodes one by one, then delete its sub-
sequent nodes because all the subsequent nodes must not be 
the start node. The rest must be the start nodes set after the 
end of scanning. 

According to the principle that a DAG which an arbitrary 
start node and its connected edges have been deleted is also a 
DAG or empty, the paper puts forward the topological sort 
algorithm: 

(1) Find the start nodes in the graph. 

(2) Output an arbitrary start node, delete it and its con-
nected edges. 

(3) If the subgraph is empty end the program, otherwise 
goto (1) 

To DAG and its subgraph, the processing of finding the 
start node and outputting the sequences is exactly the same 
in the algorithm, so we can use recursion to make the code 
more concise and clear. 
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