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Abstract: Compressed sensing theory breaks through the limit of two times the bandwidth of the signal sampling rate in 
Nyquist theorem, providing a guideline for new methods of image acquisition and compression. For still images, block 
compressed sensing (BCS) has been designed to reduce the size of sensing matrix and the complexity of sampling and re-
construction. However, BCS algorithm assigns the same sampling rate for all the image blocks without considering the 
structures of the blocks. In this paper, an adaptive sampling rate assignment method is presented for BCS of images using 
wavelet transform. Wavelet coefficients of an image can reflect the structure information. Therefore, adaptive sampling 
rates were calculated and assigned to the image blocks based on their wavelet coefficients. Several standard test images 
were employed to evaluate the performance of the proposed algorithm. Experimental results demonstrate that the pro-
posed algorithm provided superior performance on both the reconstructed image quality and the visual effect. 
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1. INTRODUCTION 

With the rapid development of information technology, 
the demand for image information is growing. Meanwhile, 
how to store, process and transmit large amounts of image 
data have become a serious problem. Traditional still image 
compression standard [1, 2]: JPEG and JPEG2000 can re-
move image’s spatial redundancy and obtain a large com-
pression ratio. However, there are some drawbacks: (1) 
Based on the Nyquist sampling theorem, the sampling rate 
cannot be less than two times of the signal bandwidth. It may 
be difficult for a hardware system to meet a high sampling 
rate. (2) All the image transform coefficients are calculated, 
but only a few are retained. This leads to a waste of data 
computing and memory resources. (3) During data transmis-
sion, missing coefficients will affect the image reconstruc-
tion quality. 

In 2006, E. Candes, D. Donoho and T. Tao proposed the 
Compressed Sensing (CS) theory [3-5]. Under certain condi-
tions, a signal can be recovered from the distance in fewer 
samples than required by the Nyquist sampling theorem. CS 
theory provides a breakthrough for image compression. 
However, for two-dimensional images, CS algorithm faces 
high computational complexity and large memory access. In 
order to solve these problems, Lu Gan proposed block-based 
compressed sensing (BCS) [6]. In the BCS, an image is di-
vided into blocks and sampling and reconstruction are con-
ducted in a block-by-block manner. Therefore, the computa-
tional complexity of sampling and reconstruction are greatly 
reduced.  
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The BCS algorithm assigns the same sampling rate for all 
blocks within an image. However, due to piecewise smooth 
regions in an image, some image blocks may contain only a 
little information. For example, the texture blocks contain 
more information (e.g., edges) than the smooth blocks. 
Blocks with little information can be reconstructed by fewer 
observations. Therefore, it is not necessary to assign the 
same sampling rate for all image blocks. The image structur-
al information can be utilized, under the premise of total 
sampling rate unchanged, to adaptively allocate sampling 
rate for different image blocks. 

Wavelet transform is an efficient image representation 
method that has been extensively used in image compres-
sion. It can capture the edge information in different scales 
and orientations. In our proposed adaptive sampling rate 
assignment method, wavelet transform coefficients of an 
image are used to analyze the structural information of each 
image block and adaptively allocate sampling rate for each 
block. The proposed adaptive sampling rate assignment 
method for BCS can improve the reconstruction performance 
significantly. The rest of this paper is organized as follows. 
Section 2 gives a brief review of CS and BCS. Section 3 
describes the proposed adaptive CS algorithm of still images 
based on wavelet coefficients. Experimental results are given 
in Section 4. Finally, Section5 is the conclusion. 

2. COMPRESSED SENSING 

2.1. The Basic Principles of Compressed Sensing 

 A real-valued signal  x ∈ RN is considered, which  is sparse 
with respect to a transform ¯ . Then  x =Ψα  and 

  ||α ||0= K << N  (Where 0|| ||α  represents the number of 
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non-zero coefficient of vector α ); the coefficient vector α
can be reconstructed with high probability from its linear and 
non-relevant projections y. 

y= x=AΦ α                 (2-1) 

Here,  y ∈ RM is the vector of projections constituted by 
a small amount of linear, non-relevant measured values. 
 Φ ∈ RM×N  is a measurement matrix and  M = N . A ∈ RM×N

is on behalf of ΦΨ , called the sensing matrix. Under normal 
circumstances,   K<M = N . 

In essence, y can be regarded as a linear combination of 

all the columns of A corresponding   αi ≠ 0 . Formula (2-1) 
actually implements a dimensionality reduction process and 
can also be considered a data compression method. Com-
pared to the dimensionality reduction process, we are more 
concerned about how to recover α  from the coefficient vec-
tor  y . That is solving the following equation: 

 
min
α

||α||0 ,   s.t.  y=Aα              (2-2) 

Since Eq. (2-1) is a group of underdetermined linear 
equations, solving (2-2) is NP-hard. But in the case of α be-
ing sparse, if A  satisfies the restricted isometry property 
(RIP) [5], then the problem can be solved by iterative greedy 
algorithms, such as OMP [7], StOMP [8] and CoSaMP [9]. 
After obtaining α , the original x can be reconstructed by 
 x=Ψα . 

2.2. Block Compressed Sensing 

When CS is used to process image signal, the size of 
measurement matrix  Φ ∈ RM×N  will be very large, while  N  
is typically between 410 and 610 , making the storage and 
computing very challenging. In order to solve this problem, 
Lu Gan proposed a compressed sensing method based on a 
block-based sampling strategy [6]. 

BCS procedure is described as follows. By considering 
an image with  N = Ir × Ic  pixels in total, the image is divid-
ed into small non-overlapping blocks, each with the size of 

 B× B . Let mx  represents the vectorized signal of the m-th 

block,    m=1,2L n, n = N / B2 , then each block is sampled 

with the same measurement matrix  ΦB . The corresponding 

output CS vector my  can be written as 

 ym =ΦBxm                 (2-3) 

Where  ΦB  is a matrix with the size of   MB × B2 , and 

  MB = subrate× B2⎢⎣ ⎥⎦,0 ≤ subrate ≤1. For the whole image, 
the equivalent sampling operator Φ  in (2-1) is thus, a block 
diagonal matrix of the following form: 
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Compared with the compressed sensing based on the 
whole image, BCS is faster; however, it poses serious block-
ing artifacts. To remove the blocking artifacts, BCS-SPL 
[10] introduces Wiener filtering into the image reconstruc-
tion process, and gradually improves the quality of recon-
struction by iterative process. A BCS-SPL variant named 
MH-BCS-SPL was introduced  [11] to further improve the 
BCS-SPL using a post-processing procedure where multihy-
pothesis prediction strategy was used. The multihypothesis 
prediction strategy was also employed for hyperspectral im-
age reconstruction [12] and single-image super-resolution 
[13]. Given the computational efficiency and good recon-
struction performance of BCS-SPL, this paper adopted the 
BCS-SPL as the CS reconstruction method to investigate the 
adaptive sampling rate assignment for the BCS-SPL. 

3. ADAPTIVE COMPRESSED SENSING ALGO-
RITHM 

3.1. Overall Framework of Adaptive Compressed Sensing 
Method 

Different from traditional imaging systems, CS belongs 
to the sampling process information, and each CS measure-
ment contains global information of the image block. The 
measurements contain useful information making a signifi-
cant impact on the reconstruction result. The original BCS 
algorithm assigns the same sampling rate for all the image 
blocks. However, when an image is divided into small 
blocks, the different image blocks contain different amount 
of information. Blocks containing little information can be 
reconstructed by fewer observations than those containing 
more information. Thus it is possible to adaptively allocate 
different sampling rates for different blocks to improve the 
BCS-SPL reconstruction performance. 

The framework of the proposed adaptive compressed 
sensing algorithm for images is presented in Fig. (1). It in-
cludes adaptive sampling rate assignment, CS sampling, 
quantization, coding and CS reconstruction. This paper  fo-
cused on the part of adaptive sampling assignment for differ-
ent blocks. 

3.2. Adaptive Sampling Rate Assignment using Wavelet 
Transform 

Wavelet analysis is a time - frequency analysis method of 
signal. It has the characteristics of multiscale analysis. In 
both the domains of time and frequency, wavelet analysis 
has the ability to characterize local signal characteristics. It 
has a high frequency resolution and a low time resolution in 
the low frequency domain and a low frequency resolution 
and a high time resolution in the high frequency domain. It is 
particularly suitable for analyzing and detecting transient 
abnormality signal in the normal signal. 

After wavelet transform, the transform coefficients of an 
image can be categorized into low frequency coefficients and 
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high frequency coefficients. In fact, the low frequency coef-
ficients and high frequency coefficients are two different 
types of signals. Low-frequency coefficients epitomize the 
image energy information, while, the high-frequency coeffi-
cients save rich detailed information of an image. Therefore, 
an image can be observed and analyzed by its wavelet coef-
ficients, as shown in Fig. (2). 

 
Fig. (2). The discrete stationary wavelet transform of the Lena im-
age. 

This paper presents an adaptive compressed sensing algo-
rithm of still images based on wavelet coefficients. For easy 
operation, the paper used a discrete stationary wavelet trans-
form (SWT). Therefore, the proposed algorithm is named as 

SWT-BCS-SPL. Compared with the conventional discrete 
wavelet transform (DWT), SWT has the “translation invari-
ance” property [14]. The number of wavelet coefficients of 
the sub-band layers after decomposition is equal to the num-
ber of original image pixels, therefore, the SWT was applied 
on the whole image, after which the image was divided into 
blocks in the transform domain. Finally, the statistical results 
were calculated as  the absolute values of the vertical and 
diagonal high-frequency coefficients of each block. The 
sampling rate allocation was determined according to the 
absolute value of high-frequency coefficients of each block. 
The detailed process is shown in Fig. (3). 

The value of the sampling rate  SR was known, the size of 
the block was  B× B , the number of image blocks was  n. 
Thus, the total number of measurements was  obtained as 
  M = SR× B2 × n . In this paper, the sampling upper bound is 
denoted as   upper = 0.9× B2 . In order to guarantee the basic 
quality of the reconstructed image, each block was  assigned 
with the same fixed base sampling rate  FSR =W × SR , 
where W is a parameter that decides a fixed sampling rate. If 
W is larger, the fixed sampling rate for the blocks is higher, 
and   0 ≤W ≤1 . According to the fixed sampling rate  FSR , 
the fixed measurement number of each image block can be 

determined by 
 
FMi =

FSR× M
n

. After applying discrete 

stationary wavelet transform on the original image, the coef-
ficient image was divided into blocks. The statistical results 
of the absolute values of the high-frequency coefficients of 
each block, denoted as   coef (xi ) , were  calculated and the 
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Fig. (1). Overall framework of the proposed adaptive compressed sensing method. 
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percentage of   coef (xi )  with respect to the whole image was  

obtained by 

  

Pi =
coef (xi )

coef (xi )
i=1

n

∑
.  

The study computed the total number of measurements for 
each block according to  AMi = FMi + Pi (M −nFMi ) . If the 
total number of measurements for a block is larger than the 
upper bound, the excess measurements are accumulated for 
each block to obtain the total excess measurements for the 
whole image,   S = S + (AMi −upper) . The excess measure-
ments were  distributed equally to the blocks with  

 AMi < upper . This process can  be repeated until all the 
blocks with sampling measurements are within the range of 
the sampling upper bound. Here, the final number of meas-
urements for each block is denoted as

 AMi
. 

According to the sampling number of each block
 AMi

, 
the corresponding random measurement matrix was con-
structed to carry out CS measurement. Since the decoder was 
needed to reconstruct the measurement matrix, the infor-
mation of matrix structure was also needed to be transmitted. 
Compared with the original BCS, the adaptive compressed 
sensing algorithm  transmitted the sampling number of each 
block to the decoder as well. Therefore, the bits cost  in-
creased. 

4. EXPERIMENTAL RESULTS 

In this section, the performance of the proposed adaptive 
compressed sensing algorithm based on wavelet coefficients 
(SWT-BCS-SPL) was evaluated to compare it with the orig-
inal BCS-SPL algorithm. For a more comprehensive evalua-
tion of the reconstructed image quality, in addition to the 
commonly used PSNR, this paper used structural similarity 
index measurement system (SSIM) [15] as an additional im-
age quality evaluation criterion. 

Six test images were used in the experiments including 
Lena, Barbara, Goldhill, Barbara2, Boat and Cameraman, as 
shown in Fig. (4). All the images had the size of  512×512  
pixels. The experiments were conducted using MATLAB 
v7.8 (R2009a) on a PC with an Intel(R) Core(TM)2 Duo 
CPU T6670 of 2.19GHz and 2-GB of RAM. The sparse 
transform in the BCS-SPL is the wavelet transform. It should 
be noted that all reconstruction evaluations (PSNR and 
SSIM) were  averaged over ten independent trials, since the 
performance of reconstruction varied due to  randomness of 
the sampling matrix. 

4.1. Parameter Tuning 

In order to analyze the effect of the two main parameters 
in the adaptive sampling algorithm, block size B and the 
fixed sampling rate allocation parameter W, Lena image was 
selected as the test image for parameter tuning experiments. 
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Fig. (3). Flow chart of the sampling rate assignment strategy based on wavelet coefficients. 
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Fig. (4). Test images in our experiments. 

Table 1. The relation between the PSNR of the reconstructed image and the block size. 

Algorithm 
4×4 8×8 16×16 32×32 

PSNR PSNR PSNR PSNR 

SWT-BCS-SPL 38.15 38.73 38.48 38.26 

 

 
Fig. (5). The relation between PSNR of the reconstructed image and parameter W. 

Under the experimental condition, when  the sampling 
rate was 0.5 and the fixed sampling rate allocation parameter 
W was  0.5, Table 1 shows the relation between the PSNR of 
the reconstructed image and the block size. It can be ob-
served that when the block size was  8 × 8, the image recon-
structed by SWT-BCS-SPL algorithm achieved the highest 

PSNR value. Therefore, in the  experiments, the block size B 
was set to 8 × 8. 

Next, the paper  analyzed the parameter W. The sampling 
rate was set to 0.5 and the block size B to 8×8, and a set of W 
was tested. Fig. (5) shows the relation between the PSNR of  
the   reconstructed   image   and   the   fixed   sampling  rate   
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Table 2. Performance comparison between BCS-SPL and SWT-BCS-SPL at different sampling rates.  

 Sampling Rate 

 0.1 0.2 0.3 0.4 0.5 

Algorithm PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

 Lena 

BCS-SPL 26.37 0.79 30.02 0.87 32.16 0.90 34.10 0.93 35.65 0.94 

SWT-BCS-SPL 25.78 0.79 31.29 0.88 34.29 0.91 36.83 0.94 38.73 0.95 

 Barbara 

BCS-SPL 22.04 0.65 23.65 0.74 24.77 0.80 26.15 0.85 27.51 0.89 

SWT-BCS-SPL 20.90 0.63 24.29 0.76 27.21 0.84 30.55 0.90 32.67 0.92 

 Goldhill 

BCS-SPL 26.06 0.67 28.49 0.77 30.07 0.83 31.47 0.87 32.73 0.90 

SWT-BCS-SPL 23.69 0.66 28.63 0.78 30.36 0.83 32.42 0.87 33.98 0.90 

 Barbara2 

BCS-SPL 23.21 0.63 25.29 0.76 26.94 0.83 28.67 0.88 30.26 0.91 

SWT-BCS-SPL 22.86 0.64 26.18 0.78 28.94 0.85 31.48 0.90 33.33 0.93 

 Boat 

BCS-SPL 23.97 0.66 27.11 0.77 29.07 0.83 30.81 0.87 32.25 0.90 

SWT-BCS-SPL 23.76 0.67 28.25 0.79 30.63 0.84 32.69 0.88 34.07 0.90 

 Cameraman 

BCS-SPL 24.08 0.81 28.01 0.90 30.60 0.94 33.11 0.96 34.89 0.97 

SWT-BCS-SPL 24.65 0.83 30.57 0.92 34.76 0.95 39.13 0.97 42.13 0.98 

 
 BCS-SPL SWT-BCS-SPL 

   

   

   
Fig. (6). Visual comparison of three reconstructed 512 × 512 images (shown in detail) for a sampling rate of SR = 0.3. 
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allocation parameter W. It is obvious from the figure that, 
with the fixed sampling rate, allocation parameter increased, 
and the PSNR of the reconstructed image by SWT-BCS-SPL 
algorithm decreased. This also indicates that the adaptive 
sampling rate allocation can improve the quality of the re-
constructed image. In this paper, the parameter W was  set to 
an intermediate value of 0.5. 

4.2. Comparison with BCS-SPL 

The performance (PSNR and SSIM) of BCS-SPL and the 
proposed SWT-BCS-SPL at different sampling rates is  
shown in Table 2. In the table, the best performance is em-
phasized by bold-faced font. It can be observed that SWT-
BCS-SPL showed improvements in  almost all the sampling 
rates. These comparisons highlight the role of adaptive sens-
ing. The results demonstrate that the proposed algorithm can 
improve the quality of the reconstructed image. The results 
show that the improvement in the  texture detail-rich images 
(e.g. Barbara and Barbara2) was more obvious. For Barbara 
image, the maximal PSNR gain reached 5.16 dB and the 
average one was  2.3dB. For Barbara2 image, the maximal 
PSNR gain was 3.07 dB and the average one was  1.68dB. 
When the total sampling rate was  rather low (e.g. SR=0.1), 
the advantage of SWT-BCS-SPL was  not very clear and  it 
performed worse than the BCS-SPL. The reason is that, 
since the total sampling number was  very small, after adap-
tive allocation, the sampling number of each block was  sim-
ilar, therefore, SWT-BCS-SPL was  not effective. 

To better illustrate the improvement, a visual comparison 
is provided in Fig. (6). From the figure, it can be seen that 
the details of three images recovered with SWT-BCS-SPL 
are  more clear than BCS-SPL. It is because in SWT-BCS-
SPL, relatively high sampling rates were  assigned to the 
edge and rich texture blocks and low sampling rates were  
assigned to the smooth blocks. 

CONCLUSION 

In this paper, an adaptive compressed sensing algorithm 
of still images based on wavelet coefficients was proposed to 
improve the reconstruction performance of the block-based 
compressed sensing (BCS). The algorithm utilized wavelet 
coefficients of each image block as a sampling rate alloca-
tion criteria to adaptively assign sampling rates for each 
block. High sampling rates were assigned to the blocks con-
taining detailed information (e.g., edges) and low sampling 
rates were assigned to the blocks containing less information 
(e.g., smooth background). Compared with the original BCS 
with uniform sampling rate for all the blocks, the experi-
mental results demonstrated a significant improvement in the 
numerical and geometrical accuracy over the traditional 
block compressed sensing. However, since wavelet trans-
form is complex, the computational complexity of the algo-
rithm  increased. In our future work, a computationally effi-
cient sampling rate assignment strategy will be investigated. 
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