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Abstract: The theoretical richness and variety of the new growth literature can make it difficult to capture the essence of 

growth models. With this paper, we wish to provide one possible integrating view of the nature of the growth generating 

processes. Revisiting the models that constitute the core of growth theory, we expose analytically the main mechanisms 

through which long-run growth can be delivered. 

Models that contemplate physical capital accumulation generate long-run growth through the attainment of a non-

declining marginal productivity of capital. One mechanism for achieving this entails the introduction of technological 

progress; another mechanism involves the inclusion of human capital accumulation; and a third method relies on the 

elimination from the production function of the diminishing returns to capital feature. The foundational models that clas-

sically represent each of these mechanisms are reviewed in an analytical and integrating perspective. 

Some growth models do not contemplate physical capital and hence obtain long-run growth without generating a non-

declining marginal productivity of capital. We look into two reference models of this nature. 
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INTRODUCTION 

 The intense theoretical and empirical research that has 

characterized growth economics in the last three decades has 

resulted in a wide variety of growth models, each relying on 

specific assumptions and elaborate mathematical techniques, 

and consequently delivering growth predictions through sev-

eral different mechanisms. This theoretical richness can 

make it difficult for newcomers in this research field to cap-

ture the essence of growth models. 

 With this paper, we wish to provide one possible inte-

grating view of the nature of the growth generating mecha-

nisms. We revisit the foundational models, upon which the 

numerous models that currently give body to growth theory 

are built. Our review is guided by the objective of exposing 

analytically, in an integrating perspective, the main mecha-

nisms through which long-run growth can be delivered. 

 For models that contemplate physical capital accumula-

tion, long-run growth is achieved whenever a non-declining 

marginal productivity of capital is generated. Hence, our 

main goal is to investigate analytically the mechanisms to 

endogenously generate a non-declining marginal productiv-

ity of capital. 

 Solow's [1] exogenous growth model obtains a non-

declining marginal productivity of capital through the means 

of sustained technological progress, with the rate of long-run 

per-capita growth given by the rate of technological pro-

gress. As it assumes that technological progress is an exoge-

nous variable, Solow's model cannot explain within itself the  
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factors that influence the rate of economic growth. The sub-

sequent attempts to have the growth rate determined within 

the model gave rise to the endogenous or new growth theory. 

 As Solow [2] discusses, growth theory has so far pro-

duced three main mechanisms to generate economic growth 

through the attainment of a non-declining marginal produc-

tivity of capital. One mechanism, first developed by Romer 

[3, 4], entails introducing a theory of research and develop-

ment (R&D) into the growth model. The models in which 

endogenous technological progress is the engine of growth 

are identified as R&D-based or idea-based growth models. 

 Another mechanism, introduced by Lucas [5], involves 

bringing into the model an endogenously determined accu-

mulation of human capital as the source of growth. We name 

this type of models human capital-based growth models. 

 A third method to obtain long-run growth consists of 

eliminating from the production function one of the standard 

assumptions of the neoclassical model, more precisely the 

assumption of diminishing returns to capital. This was first 

experimented by Jones and Manuelli [6]. 

 Through the analytical dissection of the above referred 

foundational models, we propose to expose the different 

growth generating mechanisms. In order to better distinguish 

these three main mechanisms, we adapt the models under 

review so that: (1) they all have a common production func-

tion, namely a Cobb-Douglas function with labour-

augmenting productivity, and (2) they all assume a constant 

population. 

 Many growth models do not contemplate physical capital 

accumulation and hence, in them, economic growth does not 

require a non-declining marginal productivity of capital. The 
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models by Grossman and Helpman [7] and Aghion and 

Howitt [8] constitute the foundations of R&D-based models 

of this nature and we analyze them in a different section, as 

they do not follow the line of thought adopted for this ana-

lytical review, which is primarily aimed at investigating 

ways for endogenously obtaining economic growth via the 

generation of a non-declining marginal productivity of capi-

tal. 

 The paper is organized as follows. Section 2 reviews So-

low's [1] model. Section 3 analyses Romer's [4] model. Sec-

tion 4 studies Lucas' [5] model. Section 5 analyses the mod-

els by Jones and Manuelli's [6] and Barro and Sala-i-Martin's 

[9]. A discussion follows in Section 6. In Section 7, we com-

plement our study with the analyses of the models by 

Grossman and Helpman [7] and Aghion and Howitt [8]. This 

analytical survey ends with Final Remarks. 

SOLOW'S MODEL 

 In Solow's [1] model, technological progress generates a 

non-declining marginal productivity of capital and is the 

engine of long-run per-capita growth. The neoclassical 

model is set up for a closed economy with competitive mar-

kets and identical rational agents. The production function 

for output Y (t)  takes the labour-augmenting form
1
:

Y (t) = K(t) (A(t)L(t))1 , 0 < < 1,

where variable A(t)  represents the state of technology at 

time t , K(t)  is the capital stock, and L(t)  is the labour 

force, assumed to be equal to the economy's population. 

 With capital depreciation assumed to be zero, the capital 

accumulation equation is: 

K
•

(t) = Y (t) C(t)  (1) 

 Consumers’ decisions are here specified according to the 

optimizing version of savings
2
 which means that the immor-

tal representative consumer wishes to maximize, subject to a 

budget constraint, the present discounted value of the utili-

ties of his/her present and future consumption streams: 

max
o
U(C(t))e tdt, U(C(t)) =

C(t)1

1
,  (2)  

where variable C(t)  is aggregate consumption in period t ,

 is the rate of time preference, and 1  is the elasticity of 

substitution between consumption at two periods of time. 

Most growth models use this constant relative risk aversion 

(CRRA) utility function in order to obtain a balanced growth 

path solution, i.e. in which the per-capita growth rate is con-

stant in the long-run. They do this because, as pointed out by 

Barro and Sala-i-Martin [9], the result of a balanced growth 

path solution agrees with the empirical observation that 

                                               
1As pointed out by Barro and Sala-i-Martin [9], technological progress must 

take the labour-augmenting form in the production function if models are to 

display a steady-state. 
2A second branch of growth literature assumes that consumers save a fixed 

amount of output. We will analyse Solow's model with this alternative ver-

sion of savings in Section 5. 

many developed countries achieve per-capita growth rates 

which are positive and trendless for long periods of time. 

 The resource allocation problem faced by the social 

planner of this economy consists in maximizing the dis-

counted utility function (2) subject to the budget constraint 

(1). This translates into maximizing the following current-

value Hamiltonian H (t) :

H (t) =
C(t)1

1
+ (t)[K(t) (A(t)L(t))1 C(t)]

 The transversality condition to this problem is 

lim
t

e t (t)K(t) = 0.  Log-differentiating the first-order con-

dition, 
dH (t )
dC (t ) = 0 , and combining it with the co-state condi-

tion, 
dH (t )
dK (t ) = (t)

•

(t),  gives us the growth rate of con-

sumption: 

gC =
1

[ K 1(AL)1 ]  (3)  

 Equation (3) says that a balanced growth path solution, 

for which the growth rates of the three variables 

K(t), (t),C(t)  are constant, requires a constant marginal 

productivity of capital (above the discount rate  ), that is: 

d log K 1(AL)1
( )

dt
= 0  (4)  

 We will now look into Solow's model, firstly without 

technological progress and then with technological progress. 

In both situations we assume that the population is constant, 

which means that per-capita variables grow at the same rate 

as their aggregate counterparts. 

 Assuming first that technology is constant: With gA = 0 ,

condition (4) implies that the growth rate of capital, gK , is 

also zero. Then, log-differentiation of the production func-

tion tells us that the growth rate of output, gY , is also zero. 

Finally, equation (3) can be rewritten to give: 

Y

K
=

1 dY

dK
=
C + K

•

K
=

gC +
,  (5)  

which implies that, with gK = 0 , the growth rate of con-

sumption, gC ,  must also equal zero. Concluding, the bal-

anced growth path solution of Solow's model without tech-

nological progress is characterized by: 

gY = gC = gK = 0

 This economy displays zero per-capita growth in the 

long-run because of diminishing returns to capital. In fact, 

with constant technology, A , the marginal productivity of 

capital, dY
dK =

(AL )1

K1 ,  decreases as K  increases. As Lucas 

[5] writes, solving this optimization problem for its transi-

tional dynamics would show that accumulation of capital 

will eventually drive its marginal productivity down until it 

equals ,  which means that the economy reaches and stays 
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in a steady-state level of capital for which the economy does 

not grow. 

 Assuming now that technology grows at a positive rate: 

With gA > 0 , condition (4) implies that the growth rate of 

capital is equal to gA .  Log-differentiation of the production 

function tells us that the growth rate of output also equals 

gA . Finally, equation (5) gives us the growth rate of con-

sumption, equal to gY . Summing up, the balanced growth 

path solution of Solow's model with technological progress 

is characterized by
3
:

gY = gK = gC = gA > 0

 Concluding, when there is technological progress, long-

run per-capita output grows at a positive rate. This happens 

because technological progress overcomes diminishing re-

turns to capital. In fact, as gK = gA , the marginal productiv-

ity of capital is kept constant as K  increases, hence allowing 

for long-run growth. The root of sustained economic growth 

in Solow's model [1] has thus been identified. 

 In Solow's model, the preference parameters,  and ,

and the technological parameter, , influence the steady-

state value of the investment-output ratio, but do not affect 

the equilibrium growth rate. The only variable that influ-

ences the economic growth rate is the rate of technological 

progress, gA ,  which is an exogenous variable to the model. 

 Given the exogenous nature of its engine of growth So-

low's model cannot within itself explain how to influence the 

economic growth rate. The research activities aimed at de-

termining the engine of growth within the model gave rise to 

the endogenous or new growth theory. 

 Endogenous growth models can be categorised in three 

groups. In one group, the source of sustained growth is en-

dogenous technological progress which arises as a result of 

R&D activities. A second group have endogenous human 

capital accumulation as their engine of growth. A third cate-

gory of models generate economic growth via the elimina-

tion of the assumption of diminishing returns to physical 

capital. 

R&D-BASED GROWTH MODELS 

 In R&D-based growth models, a theory of innovations is 

introduced in order to endogenously determine technological 

progress, the engine of economic growth. A decentralized 

theory of technological progress has innovations depending 

on intentional R&D efforts and firms enjoying the exclusiv-

ity of their inventions through the use of patent rights. As the 

competitive framework no longer holds, growth models must 

incorporate imperfect competition. Representative of such 

models, we analyze Romer's [4] model, in the version pre-

sented by Jones [10] and by Aghion and Howitt [11]. 

                                               
3Barro and Sala-i-Martin [9] rewrite Solow's model in terms of consump-

tion, capital and output per effective-labour, C
AL , K

AL , Y
AL , and analyse the 

transitional dynamics towards the steady-state of the model. They show that 

the system exhibits saddle-path stability. 

 On the preferences side, infinitely lived homogeneous 

consumers maximize the discounted value of the utility func-

tion (2), subject to a restriction that, in a closed economy, 

can be the following: 

B
•

(t) = rB(t) + w(t) C(t),

where variable B(t)  stands for total assets, r  is the interest 

rate, w(t)  is the wage rate, and it is assumed that households 

provide one unit of labour per unit of time. The current-

value Hamiltonian is: 

H (t) =
C(t)1

1
+ (t) rB(t) + w(t) C(t)[ ]

 The choice variable is C(t) , the state variable is B(t) ,

and the solution to this optimization problem has consump-

tion growing at the constant rate gC  given by the Euler equa-

tion: 

gC =
C
•

C
=

1
(r )  (6)  

 For the production side, Romer followed Ethier [12] in 

reinterpreting the utility function used by Dixit and Stiglitz 

[13] as a production function. In this reinterpretation, the 

final output is an increasing function of the total number of 

differentiated capital goods used by a final goods producer. 

Romer's model comprehends three productive sectors: the 

final good sector, the capital goods sector and the R&D sec-

tor. 

 The final good, Y , is produced using as inputs labour 

devoted to final output, LY , and a number A  of differenti-

ated durable capital goods, i , each produced in quantity xi .

All capital goods have additively separable effects on output: 

Y (t) = LY (t)1

0

A(t )
xi (t) di

 Capital accumulates according to equation (1) and, as-

suming that it takes one unit of foregone consumption to 

produce one unit of any type of capital good, K  is related to 

the capital goods according to the following rule: 

K(t) =
0

A(t )
xi (t)di

 Total population is constant and any person can devote 

labour either to the final good sector, LY ,  or to the research 

sector, LA . That is: 

L(t) = LA (t) + LY (t)  (7)  

 Romer [4] specifies the process for accumulating new 

designs as: 

A
•

(t) = LA (t)A(t),  (8)  

where  is the research efficiency parameter. Equation (8) 

implies that devoting more labour to R&D leads to a higher 

rate of technological progress. It also means that the higher 

the total stock of knowledge, the higher the marginal produc-
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tivity of a researcher. Its third underlying assumption is that 

output of new designs is linear in A.

 Continuing with the description of Romer's model, being 

in a perfect competition environment, in each period t,  final 

good producers rent each capital good according to the profit 

maximization rule which gives the inverse demand curve 

faced by each capital good producer: 

Ri = LY
1 xi

1,  (9)  

where Ri  is the rental price of each capital good. With given 

values of r  and LY , each capital good producer, who has 

already incurred the fixed cost investment in a design, PA ,

and has the patent on it, will maximize its revenue minus 

variable cost at every date t :

max i = Rixi rxi

 Profit maximization leads to the markup rule: 

Ri =
r

 The decision to enter the market and produce a new capi-

tal good depends on the comparison between the discounted 

stream of profits that the patent on this good will bring in the 

future, and the up front cost PA  of the initial investment in a 

design. The market for designs is competitive so, at every 

date, the price for designs will be equalized to the present 

value of the future revenues that a monopolist can extract. 

The dynamic zero-profit/free-entry condition is: 

PA (t) =
t

+

e r ( t )
i ( )d ,

which, assuming that there are no bubbles, is equivalent to: 

PA
•

(t) = rPA (t) i (t)  (10)  

 The symmetry of the model implies that capital good 

producers charge the same price, Ri = R,  and produce the 

same quantities, xi = x , hence expression (9) is rewritten as: 

R = LY
1 x 1

 (11)  

 Also, physical capital is equal to K = Ax,  and the pro-

duction function can be rewritten as: 

Y = LY
1 Ax  (12)  

 Solving the model for its balanced growth path, the Euler 

equation (6), says that the interest rate must be constant. 

Consequently so is R . Next, equation (8) tells us that a con-

stant growth rate of A  requires LA  to be constant. It follows 

from equation (7) that LY  must be constant too. Physical 

capital grows at the rate gA  and log-differentiation of the 

production function (12) shows that output also grows at the 

rate gA . Finally, equation (1) says that gC = gK . With a con-

stant population, this common growth rate is also the per-

capita growth rate. Summing up, the engine of growth in this 

model is technological progress: 

g = gC = gY = gK = gA

 Notice that, rewriting the production function so that K
appears distinctively, we have: 

Y = LY
1 (Ax) A1

= K (LY A)1

 In this economy, as capital accumulates, the marginal 

productivity of capital, dY
dK =

(LY A)1

K1 , is held constant, be-

cause K  and A  grow at the same rate. That is, technological 

progress overcomes diminishing returns to capital, thus mak-

ing economic growth possible. The root of long-run per-

capita growth in Romer's model has hence been identified. 

 In Romer's model, the engine of growth, gA , is endoge-

nously determined. Equation (8) is essential for that determi-

nation. It implies that: 

gA = LA  (13)  

 Continuing with the determination of the equilibrium 

growth rate, we must now look at the labour market. The 

allocation of workers between the final output and research 

sectors obeys the equilibrium condition that remuneration of 

labour must be the same in both sectors. Such equilibrium 

condition, dY
dLY

=
d A

•

dLA
PA , is equivalent to: 

PA =
(1 )

LY x  (14)  

 Log-differentiating equation (14), rewriting the expres-

sion for profits as = (1 )Rx,  and using expression (11), 

allows us to rewrite the zero-profit condition as: 

LY =
r

 (15)  

 Equations (13) and (15) together give: 

g = L
r

 (16)  

 The general equilibrium growth rate is the solution to the 

system of the two linear equations (6) and (16), in the two 

unknowns, r  and g . One curve is negatively sloped and the 

other is positively sloped, in the space r, g( ) . The unique 

general equilibrium balanced growth path for this economy 

is
4
:

g =
L

+
 (17)  

 Rivera-Batiz and Romer [15] point out that a parameter 

restriction is necessary for the equilibrium growth rate not to 

                                               
4Arnold [14] provides a complete characterisation of the dynamics of Ro-

mer's model in the neighbourhood of its steady-state. He shows that the 

equilibrium of the model can be analysed in terms of a system of three dif-

ferential equations in the three variables =
C
K

, Z =
Y
K

, and LY . The 

steady-state of this system corresponds to the balanced growth path of Ro-

mer's model. Arnold shows that there is a unique and monotonic growth 

path converging to the steady-state, which is a saddle point. The initial value 

of A
K  uniquely determines the starting point on the saddle-path of the sys-

tem. 
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be greater than the interest rate, because, otherwise, present 

values would not be finite. This restriction is always met if 

1 , which means that curve (6) lies on or above the 45º 

line. 

 In Romer's model [4] the equilibrium growth rate is in-

fluenced positively by the technology parameters  and ,

and negatively by the preference parameters  and . Ad-

ditionally, economic growth is proportional to the size of 

total population, L . This proportionality is called the scale-

effects prediction, which characterizes the first-generation of 

R&D-based models
5
. It is a consequence of the way in which 

the equation for R&D activities is specified. To see this 

point, let us look at Jones's [14] generalized specification for 

the invention of new designs: 

A
•

= LAA  (18)  

 According to equation (18), the marginal productivity of 

researchers varies with knowledge as: 

d d A
•

dLA( )
dA

= LA
1A 1,

where the assumption < 0  represents negative external 

returns from the stock of knowledge in the innovation proc-

ess, assumption > 0  implies positive external returns and 

the assumption = 0  means constant returns to scale. 

 Jones [14] argues that Romer's assumption of = 1  con-

stitutes an arbitrary choice for the degree of increasing re-

turns, and it is not empirically supported. However, if in 

Romer's model, instead of equation (8) we had: 

A
•

= LAA , 1,

then Romer's model would not have a balanced growth path 

solution. That is, specification (8) is necessary for obtaining 

a balanced growth path. 

 The equilibrium growth rate in Romer's decentralized 

model is not optimal. There are two sources for this non-

optimality. The first is the fact that capital good producers 

charge a price that is higher than the marginal cost, R =
r .

This implies that capital is remunerated by less than its mar-

ginal productivity, as r = dY
dK . The second reason for the 

non-optimality of the decentralized economy is the presence 

of the externality generated by the fact that the individual 

decision to do R&D does not take into account the fact that 

this research will benefit other R&D activities via the crea-

tion of a larger stock of knowledge. 

 This concludes our analytical study of the first R&D-

based growth model, representative of one of the main 

mechanisms to generate endogenous growth
6
.

                                               
5Jones [16] reviews the new literature on R&D-based growth models that 

have eliminated the scale-effects prediction. 
6As an example of a more recent R&D-based growth model, we refer to one 

developed by Charles Jones in Aghion and Durlauf [17]. 

 Two other major initial references in the literature on 

R&D-based growth models are the models by Grossman and 

Helpman [7] and Aghion and Howitt [8]. These two models 

do not contemplate physical capital accumulation, hence in 

them, sustained per-capita growth does not require a constant 

marginal productivity of capital. The exposition of these two 

models in this Section would, therefore, break the line of 

thought adopted for this literature review whose main goal is 

to expose the three mechanisms to endogenously obtain a 

constant marginal productivity of capital and thus long-run 

per-capita growth. We review these two models in Section 7. 

HUMAN CAPITAL-BASED GROWTH MODELS 

 Human capital-based growth models have human capital 

accumulation, rather than technological progress, as the en-

gine of endogenous growth. Lucas' [5] model is the first of 

this kind. Lucas builds on Solow's model and introduces an 

equation for human capital accumulation, which allows for 

endogenous growth. 

 In Lucas' model, there are L  workers in total, with skill 

level h  ranging from zero to infinity. The amount of leisure 

is implicitly assumed to be fixed exogenously, hence each 

worker, who is endowed with one unit of time per unit of 

time, devotes the fraction u(h)  of his time to current produc-

tion, and the remaining 1 u(h)  to human capital accumula-

tion. The effective workforce in production is then 

Le = 0u(h)L(h)hdh . Assuming that all workers are identi-

cal, if they have the skill level h  and choose working time 

allocation u , then Le = uhL.

 In order to work with a production function common to 

all models reviewed in this paper, we adapt Lucas' [5] pro-

duction function, specifying it as: 

Y (t) = K(t) (A(t)L(t)e )1 ,

where the technology parameter A  and population L  are 

assumed constant. 

 Capital accumulates according to equation (1), and 

adopting Uzawa's [18] linear function, Lucas specifies the 

process for accumulating human capital as: 

h
•

(t) = h(t) (1 u(t)),  (19)  

where parameter  represents the efficiency of learning 

activities. This specification assumes that the accumulation 

of human capital is intensive in human capital, using no 

physical capital. Further, it allows for sustained per-capita 

growth at a constant rate because it does not display dimin-

ishing returns. This equation says that a balanced growth 

path solution requires a constant u .

 The representative agent's problem is solved by choosing 

C(t)  and u(t)  that maximize the discounted utility (2) sub-

ject to restrictions (1) and (19). The current-value Hamilto-

nian H (t)  is: 

H =
C1

1
+ 1[K (AuhL)1 C]+ 2[h (1 u)]
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 The four optimizing conditions, dH
dC = 0,

dH
du = 0, dHdK = 1 1

•

 and dH
dh = 2 2

•

 lead to the follow-

ing equations, respectively: 

C
•

C
=

1 1

•

1

 (20)  

1(1 )AhLK (AuhL) = 2 h  (21)  

1

•

1

= K 1(AuhL)1
 (22)  

1(1 )AuLK (AuhL) + 2 (1 u) = 2 2

•

 (23)  

 Solving the model for its balanced growth path, firstly, 

equations (20) and (22) together give: 

gC =
1

K 1(AuhL)1  (24)  

 Equation (24) implies that a constant gC  requires a con-

stant marginal productivity of physical capital, which in turn 

requires that K  grows at the same rate as h . Next, log-

differentiation of the production function tells us that output 

also grows at the same rate as human capital. Additionally, 

equation (1) ensures that consumption grows at the same rate 

as output and physical capital. These are per-capita growth 

rates, as L  is constant. Summing up, human capital growth 

is the engine of growth in this model: 

g = gY = gK = gC = gh

 Concluding, Lucas' model overcomes diminishing returns 

to physical capital through the accumulation of human capi-

tal. Physical capital can be accumulated forever without de-

creasing its marginal productivity, dY
dK =

(AuhL )1

K1 , because 

K  and h  grow at the same rate. The root of long-run per-

capita growth in Lucas' model has thus been exposed. 

 We must now finish solving of the model. Log-

differentiation of equation (21) gives: 

1

•

1

=
2

•

2

 (25) 

 Next, and as their first terms have much in common, 

equations (21) and (23) can be combined together to give: 

2

•

2

=  (26)  

 Finally, equations (20), (25) and (26) together give us the 

equilibrium growth rate
7
:

                                               
7Xie [19] investigates the transitional dynamics of Lucas' model off its 

steady-state. Barro and Sala-i-Martin [9], too, analyse the transitional dy-

namics of Lucas' model. They show that the equilibrium of the model can be 

analysed in terms of a system of three differential equations in three vari-

ables, =
C
K , W =

K
H , and u . The steady-state of this system corresponds 

to the balanced growth path of Lucas' economy and the system is saddle-

g =
1

( )

 Lucas's model predicts that economic growth increases 

with the effectiveness of investment in human capital accu-

mulation, . It also predicts that economic growth depends 

negatively on the preference parameters,  and .

 Notice that, like in Romer's [4], in this model the specifi-

cation which is responsible for endogenous growth, equation 

(19), seems to have been designed in an arbitrary way, as 

Solow [2] argues. However, if in Lucas' model, such equa-

tion were to be replaced by: 

h
•

= h (1 u) , 1,

the model would not deliver a balanced growth path solution. 

The growth rate would be eroding over time if < 1 , and 

would be explosive for > 1 . That is, specification (19) is 

necessary to achieve a balanced growth path. 

 We have now concluded our analysis of Lucas' [5] 

model, representative of the mechanism through which en-

dogenous human capital accumulation overcomes diminish-

ing returns to capital and thus delivers long-run per-capita 

growth
8
.

 Other major reference human capital-based models in-

clude Becker, Murphy and Tamura [21], Stokey [22] and 

Rebelo [23]. 

MODELS WITHOUT DIMINISHING RETURNS TO 

CAPITAL 

 In order to better expose the third mechanism for generat-

ing long-run per-capita growth, let us first recall the neoclas-

sical model with no population growth. As studied in Section 

2, Solow's [1] basic proposition is that without technological 

progress, the effects of diminishing returns to capital will 

eventually drive the per-capita growth rate to zero. In fact, 

the aggregate production function of the neoclassical model, 

exhibits constant returns to scale and diminishing marginal 

productivity in each of the inputs. The concept of diminish-

ing returns to capital is formally captured by the following 

assumptions: 

dY

dK
> 0 and 

d 2Y

dK 2 < 0 for all K ,

and by the Inada conditions: 

lim
K

dY

dK
= 0 and lim

K 0

dY

dK
=

 In this Section, for the capital accumulation specification, 

we adopt an alternative savings behavior according to which 

people save a constant proportion s  of gross income Y .

Hence, depreciating at rate d , capital accumulates according 

to: 

                                                                               
path stable, for > . Although they work with the original model, we 

find that our adapted Lucas' model will have the same behaviour. 
8As an example of a more recent model that builds on Lucas's [5] frame-

work, we refer to Farmer and Lahiri [20], who study a two-country version 

of such model with and without human capital externalities. 
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K
•

(t) = sY (t) dK(t)  (27)  

 Diminishing returns to capital in Solow's model imply 

that its production function and, consequently, savings func-

tion are concave in the Y ,K( )  space, which means that the 

depreciation line, dK ,  will eventually cross the savings 

function, sY . When this happens, depreciation equals sav-

ing, and the economy is in a steady-state equilibrium with 

K = AL s
d[ ]

1
1 , and zero per-capita growth: 

sY = dK K
•

= 0

 Concluding, diminishing returns to capital in Solow's 

model imply that the economy reaches a steady-state in 

which there is no economic growth. 

 The third mechanism to generate long-run per-capita 

growth arose with Jones and Manuelli [16], who introduce a 

production function without diminishing returns to capital. 

 In order to keep similarity with the previously discussed 

models, we modify Jones and Manuelli's production func-

tion, to become: 

Y (t) = vK(t) + K(t) (A(t)L(t))1 , 0 < < 1,

where A(t)  and L(t)  are constant. Such production function 

violates the first Inada condition, because: 

lim
K

dY

dK
= v > 0

 With capital accumulating according to equation (27), let 

us see how this changes the results of this model relative to 

that of Solow's. The savings function now tends asymptoti-

cally to the line svK ,  in the Y ,K( )  space. If this line is 

above the depreciation line, dK , then the depreciation func-

tion will never cross the savings function, meaning that this 

economy can sustain positive growth forever. That is: 

svK > dK K
•

> 0

 The per-capita growth rate of capital is: 

k
•

k
=
K
•

K
=
sY

K
d = sv + s

(AL)1

K1 d,

which means that as K  goes to infinity, the growth rate of 

capital equals gk = sv d . Hence, economic growth is pos-

sible for sv > d .

 If, instead of a fixed savings rate, the model adopts the 

consumers optimizing behavior, then per-capita growth is 

given by g = 1 [ dYdK d ] , and economic growth is ob-

tained for v > d + .

 We have thus verified how the elimination from the pro-

duction function of the assumption of diminishing returns to 

capital generates long-run per-capita growth
9
.

                                               
9More recently, Jones, Manuelli and Siu [24] develop a stochastic version of 

the models described in Jones and Manuelli [6]. 

 Barro and Sala-i-Martin [9] also present, in chapter 5, a 

model that eliminates diminishing returns to capital. They 

assume a constant returns to scale production function and a 

one-sector-framework in which output can be used for con-

sumption, investment in physical capital and investment in 

human capital. For our earlier mentioned expositional pur-

poses, we modify their production function, to become: 

Y (t) = K(t) A(t)H (t)( )
1

,

where the technology parameter, A(t),  is constant and 

H (t) = h(t)L(t)  is the number of workers multiplied by their 

human capital, h(t) . As labour is constant, the growth of H
is solely due to the growth of h.

 The budget constraint for this economy is: 

Y (t) = C(t) + IK (t) + IH (t),

and, with d  as the rate of depreciation for both physical and 

human capital, the investment equations are: 

K
•

(t) = IK (t) dK(t)

H
•

(t) = IH (t) dH (t),

 Assuming that households are also producers, the cur-

rent-value Hamiltonian for the representative agent's maxi-

mization problem, J(t),  is: 

J =
C1

1
+ u[IK dK ]+ v[IH dH ]+

w[K AH( )
1

C IK IH ],

where u(t)  and v(t)  are the current-values of physical capi-

tal and human capital accumulation respectively, and w(t)  is 

the Lagrangian multiplier associated with the budget con-

straint. The decision variables of this problem are C(t) ,

IH (t)  and IH (t) , and the state variables are K(t)  and 

H (t) .

 The first-order conditions dJ
dIK

= 0  and dJ
dIH

= 0  tell us that 

u = v = w.  The solution implies then that u
•

u =
v
•

v =
w
•

w .  This 

result together with the two co-state conditions, gives: 

K

H
=

1
,

which means that gK = gH .  The equilibrium per-capita 

growth rate, is then obtained using the first-order condition, 
dJ
dC = 0 :

g =
1

[A1 (1 )(1 ) d ]  (28)  

 Output is equal to: 

Y = A1 1
1

K = BK ,

where B  is a constant. Hence this model, too, generates 

economic growth via the elimination of the diminishing re-
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turns to physical capital assumption, obtained through a con-

stant K
H  ratio. 

 This model, like the AK model, has no transitional dy-

namics. The growth rate is always given by equation (28). 

 The AK model constitutes the extreme case of a model 

that avoids the diminishing returns to scale assumption. It 

assumes that production exhibits exactly constant returns to 

scale to a broad concept of capital that includes all kinds of 

capital. Its production function, Y = AK , simply does not 

have the diminishing returns to capital property. 

DISCUSSION 

 In the previous Sections, we have analyzed three alterna-

tive mechanisms for endogenously achieving a constant 

marginal productivity of capital and hence long-run per-

capita growth. The first mechanism relies on technological 

progress, the second relies on human capital accumulation 

and the third entails eliminating the assumption of diminish-

ing returns to capital from the production function. 

 In their processes of generating economic growth, all the 

discussed endogenous growth models commence with a pro-

duction function like Y = K (AL)1
, and arrive at a produc-

tion function like Y = BK , where B , the marginal produc-

tivity of capital, is constant. 

 There is, however, a fundamental difference between 

both R&D-based and human capital-based growth models 

and the third type of growth models studied: Beginning with 

Romer's [4] production function, discussed in Section 3: 

Y = LY
1 Ax =

LY
1 A1

K1 K = BK ,

where B  is constant because LY  is constant and K  grows at 

the same rate as A .

 Next recall Lucas' [5] production function, studied in 

Section 4: 

Y = K (AuhL)1
=

(AuL)1 h1

K1 K = BK ,

where B  is constant because A , L  and u  are constant and 

K  grows at the same rate as h .

 With these two models, the function Y = BK  is obtained 

because diminishing returns to physical capital are overcome 

by either the progress of technology or the accumulation of 

human capital. 

 As opposed to these two types of growth model, in the 

third category of endogenous growth models, diminishing 

returns to physical capital are not overcome. They are elimi-

nated. For instance, Barro and Sala-i-Martin's [9] production 

function, analyzed in Section 5, is: 

Y = A1 H

K

1

K = A1 1
1

K = BK ,

where B  is constant because the ratio H
K  is equal to the con-

stant 1 , meaning that it is fixed by the exogenous technol-

ogy parameter. In contrast, for example, in Romer's model, 

the ratio K
A = LY

2

r

1
1

 depends on the equilibrium values of 

LY  and r . That is, for each balanced growth path, there is a 

different K
A  ratio, which is constant because gK = gA .

R&D-BASED MODELS WITHOUT PHYSICAL CAPI-
TAL 

 We next analyze two other important initial contributions 

to endogenous growth theory, namely those by Grossman 

and Helpman's [7] and by Aghion and Howitt [8]. These 

models are R&D-based growth models. They cannot be 

compared with the previously analyzed models, because they 

do not contemplate physical capital and hence, in them, eco-

nomic growth does not require a non-declining marginal 

productivity of capital. 

GROSSMAN AND HELPMAN'S GROWTH MODEL 

 In Grossman and Helpman's [7] model, growth is ob-

tained through the production of differentiated consumer 

goods, which are increasing because of deliberate R&D ac-

tivities. In order to capture consumers' taste for variety, the 

authors build on Dixit and Stiglitz [13] in defining an index 

D  through a constant elasticity of substitution (CES) func-

tion: 

D(t) =
0

A(t )
x(t) j dj

1

, 0 < < 1,

where x j (t)  is the quantity of the differentiated good j , and 

A(t)  is the number of available brands. The elasticity of 

substitution between every pair of goods is 1
1 . This func-

tion yields constant elasticity demand functions for each 

good. It implies that a doubling of each of the x j , for given 

A , doubles the index D . The index increases with each of 

the x j  individually, but at a non-increasing rate. A higher 

means that the goods are better substitutes in consumption. 

 The price index of D , pD ,  is given by: 

pD (t) =
0

A(t )
p(t) j

1 dj
1

 (29)  

 Assuming that, once invented, all brands require one unit 

of labour per unit of output, marginal cost equals the wage 

rate w(t)  for all brands. Then, assuming that the wage rate 

equals unity, the profit maximization problem of these mo-

nopolistic competitors leads to the markup rule: 

pj (t) = p(t) = 1 . With this price, profits are given by: 

(t) =
1 X(t)

A(t)
,  (30)  

where X(t) = A(t)x(t),  represents aggregate output of dif-

ferentiated goods. 

 Development of new varieties of goods requires an effort 

in R&D. The R&D costs have to be paid up front, before 
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profits are realized. The cost of inventing a new product is 

defined as: 

aw(t)

A(t)
=

a

A(t)
,

where a  is a parameter and A(t)  represents the stock of 

knowledge, equal to the number of already invented goods. 

Notice that this specification introduces an externality into 

the model. When they create new goods, producers are in-

creasing the level of knowledge, which lowers the cost of 

innovation for other producers. 

 A typical firm owns the patent on a differentiated good 

and enjoys indefinite monopoly power on its supply. The 

value of this firm is then equal to the present discounted 

value of its profits: 

v(t) =
t
e r ( t ) ( )d ,

which is equivalent to: 

r(t) =
v
•

(t)

v(t)
+

(t)

v(t)
 (31)  

 The free-entry condition is, then: 

v(t) =
a

A(t)
if A

•

> 0  (32)  

 Clearing of the labour market requires that employment 

in R&D, a
A A,  plus employment in manufacturing of the 

goods, X,  must equal the total supply of labour, assumed 

constant: 

a

A(t)
A
•

(t) + X(t) = L(t)  (33)  

 The symmetry of the model implies that the quantities of 

each good produced are the same, xi = x.  We can then 

evaluate the consumption index, C . Variable C  represents 

consumption in terms of index D . In equilibrium C = D .

So: 

C = D = A
1

X  (34)  

 Equation (33) says that, as L  is constant, a balanced 

growth path solution, requires that X  is constant. Then, ac-

cording to equation (34), the growth rate of C  is 

gC =
1 gA .

 Now follows the determination of the equilibrium growth 

rate. With the help of equations (30) and (32), equation (31) 

is rewritten as: 

gC =
(1 )2 L

a
(1 )r  (35)  

 We assume the optimizing version of consumers behav-

ior. Hence maximizing the discounted standard utility (2) 

subject to an intertemporal constraint leads the representative 

household to allocate consumption according to the follow-

ing rule: 

gC =
1

r
pD
•

pD
 (36)  

 Recall pD . As pj = p  for every good, it follows that 

pD = A
1

p . Hence equation (36) can be rewritten as: 

gC =
1

1
r( )  (37)  

 The equilibrium growth rate is determined by the system 

composed by the linear equations (35) and (37), in the two 

unknowns r  and gC . The first equation is negatively sloped 

and the second is positively sloped in the space (r, gC ) .

The unique equilibrium growth rate is: 

g =
1

+ (1 )[ ]

1 L

a

 The equilibrium growth rate depends positively on the 

size of population L . This is the scale-effects prediction, 

mentioned earlier, that characterizes the first generation of 

R&D-based growth models. Growth will also be higher, the 

higher the degree of monopoly (1 ) . Growth also depends 

negatively on the value of a , as the cost of making an inno-

vation is proportional to a . Finally, and as usual, the prefer-

ence parameters  and  influence economic growth nega-

tively. 

 Grossman and Helpman's [7] specification of innovation 

cost, a
A ,  fits the labour market equilibrium condition (33) in 

a way such that it generates a constant growth rate. This cost 

specification can also be considered arbitrary, but the truth is 

that if, for instance, it were replaced by: 

a

A
, 1,

this model would not deliver a balanced growth path solu-

tion. 

AGHION AND HOWITT'S GROWTH MODEL 

 In Aghion and Howitt's [8] model, economic growth is 

generated by a random sequence of quality improving inno-

vations that result from research activities, which are them-

selves uncertain. We analyze Aghion and Howitt's [11] ver-

sion of their model. 

 This economy is populated by a continuous mass of indi-

viduals, L , equal to total labour supply, with linear in-

tertemporal preferences, given by: 

U(y(t)) =
0
y(t)e rtdt,

where r  is the rate of time preference, equal to the interest 

rate. 

 The labour force produces capital goods in a one-to-one 

fashion. Capital goods are used to produce the final good, y ,

according to the following production function: 
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y(t) = A(t)x(t) , 0 < < 1,  (38)  

where x(t)  is the quantity of capital goods in existence and 

A(t)  is the technology parameter. 

 Innovation consists of inventing a new intermediate good 

that, when successful, renders the old one obsolete and raises 

the technology parameter by a constant factor, :

Ai+1

Ai
= > 1,  (39)  

where i  is the number of innovations that have occurred so 

far. 

 When the amount n  of labour is assigned to R&D, inno-

vations arrive randomly according to a Poisson process with 

arrival rate n , > 0 . Parameter  indicates the produc-

tivity of the research technology. This specification means 

that the probability of an innovation in a given unit of time is 

n .

 The economy's total stock of labour is allocated between 

R&D activities, n(t) , and the production of capital goods, 

x(t) . The labour market clearing condition is: 

L(t) = x(t) + n(t)

 The amount of labour allocated to research is determined 

by the following arbitrage condition: 

wi = Vi+1,  (40)  

where wi  is the wage rate and Vi+1  is the discounted ex-

pected payoff to the (i +1)th  innovation. This condition 

means that in equilibrium a worker must be indifferent be-

tween an hour's work in manufacturing, wi , and an hour's 

work in research. The value to a worker of an hour's work in 

research is equal to the flow probability of an innovation, ,

times the value of that innovation, Vi+1 , as an hour's work in 

research after the ith  innovation results in the (i +1)th  in-

novation. 

 The value Vi+1  is determined by the following asset con-

dition: 

rVi+1 = i+1 ni+1Vi+1,

which says that the expected income generated by a patent 

on the (i +1)th  innovation during a unit time interval, rVi+1 ,

must be equal to the profit flow that the producer of the 

(i +1)th  innovation obtains, 1+i , minus the expected loss 

that will occur when the next innovation replaces the 

(i +1)th  innovation. This expected loss is equal to the flow 

probability of the innovation occurring, ,  times the amount 

of labour dedicated to research after the (i +1)th  innovation, 

ni+1 , times the value that will be lost, Vi+1.  This equation, 

rewritten, shows the effects of creative destruction. The 

higher the number of researchers after the (i +1)th  innova-

tion, ni+1 , the smaller the payoff to innovating the ith  good. 

 Let us move on to the specification of the profit flow, 

i ,  and of the flow demand for manufacturing labour, xi .

Final good production uses each capital good according to 

the profit maximization rule 
dy
dxi

= pi  which, recalling the 

production function (38), leads to: 

x = pi
Ai

1
1

 (41)  

 The intermediate good producer that uses the ith  inno-

vation can be thought as either the inventor and producer of 

the good i  or the producer who buys the patent at the price 

iV . His maximisation problem is: 

max i = pix wix,

and its solution entails the markup rule: pi =
wi . So, replac-

ing pi  in equation (41) gives us the required specification 

for xi . It follows that i  is equal to: 

i = (1 ) Ai
2

wi
Ai

1

 Next, the arbitrage condition (40) can be rewritten in the 

following way: 

wi = Vi+1 =

(1 ) Ai+1

2

wi+1
Ai+1

1

r + ni+1

 Recalling that 
Ai+1
Ai

= , the productivity-adjusted wage 

rate, i =
wi
Ai

, is equal to: 

i =
wi

Ai
=

(1 )
2

wi+1
Ai+1

1

r + ni+1

 Defining =
i+1

Ai+1

, the new arbitrage condition is: 

i =
( i+1 )

r + ni+1

 (42)  

 Finally, the labour market clearing condition can also be 

written as: 

L = ni + ( i )  (43)  

 The balanced growth equilibrium is defined as a station-

ary solution with i =  and ni = n . This means that both 

 and n  remain constant over time, so that w ,  and y

are all scaled up by the same > 1  each time an invention 

occurs. The system to be solved is composed by equations 

(42) and (43) in the unknowns  and n . In the space 

( ,n) , the arbitrage equation is downward sloping, while 

the labour market clearing equation is upward sloping. In 

order to determine the unique balanced growth path solution 
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( ,n ) , we must investigate ( ) . Knowing that 

=
1( )wx,  it follows that: 

=
A
=

1
L n( )

 Then, replacing  in equation (42), we obtain the equi-

librium value of n :

n =

1( )L r
+ 1( )

 (44)  

 Knowing n , we can use the labour market clearing con-

dition to implicitly derive the equilibrium value .

 Now follows the determination of the growth rate of the 

economy. In a steady-state, the flow of the final good, y ,

produced between innovations ith  and (i +1)th  is 

yi = Ai (x ) .  This implies that yi+1 = Ai+1(L n ) .  There-

fore, we have that: 

yi+1

yi
=
Ai+1

Ai
=  (45) 

 Equation (45) tells us that ln(yi )  increases by an amount 

equal to ln( )  each time an innovation occurs. But, as the 

real time between two innovations is random, the time path 

of ln(y)  is also a random step function, with the size of each 

step equal to ln( ) > 0 . Also the time interval between each 

step is exponentially distributed with parameter n . Taking 

a unit time interval between t  and t +1 , we have: 

ln y(t +1) = ln y(t) + (ln ) (t),

where (t)  is the number of innovations between t  and 

t +1 . As (t)  is distributed Poisson with parameter n ,

the average growth rate of output, g , is: 

g = E ln y(t +1) ln y(t)[ ] = n (ln )

 This R&D-based growth model also carries the scale-

effects prediction. In fact, equation (44) says that a rise in L
increases n ,  and therefore increases g . Economic growth 

is also influenced positively by , the research productivity 

parameter, as it raises n . On the contrary, a rise in r  or in 

 influences n  negatively, and so decreases the equilib-

rium growth rate. 

 This model has three externalities, two positive and one 

negative. One positive externality arises from the fact that 

monopoly rents are smaller than the consumer surplus. The 

other positive externality is due to the fact that one invention 

makes possible the next invention. The negative externality 

results from the fact that a new invention replaces the previ-

ous one. 

 Like in the previously studied models, Aghion and How-

itt's R&D equation (39) can be considered arbitrary. It is 

however necessary to obtain a balanced growth path solu-

tion, for if instead of specification (39) we had the example 

given in Solow [2]: 

Ai+1 = Ai + ,

then we would have Y (t +1) = Y (t) + n , and hence the 

growth rate, g = n
Y  would not be constant. 

 We have now concluded the analyses of two R&D-based 

growth models that endogenously deliver long-run per-capita 

growth without obtaining a non-declining marginal produc-

tivity of capital
10

.

FINAL REMARKS 

 We have reviewed the prototypical models of endoge-

nous growth in its three branches according to the engine of 

growth. 

 Our purpose has been to expose analytically the main 

mechanisms to endogenously generate long-run growth. At 

the same time we have attempted to offer a both detailed and 

panoramic view of the set of models that constitute the core 

of growth literature. 

 Our line of thought developed around the classical 

growth theory's postulate that, for models that contemplate 

physical capital accumulation, economic growth is achieved 

when a non-declining marginal productivity of capital is ob-

tained. Hence, with Solow's [1] model as our starting point, 

we have investigated the existing mechanisms to endoge-

nously generate a constant marginal productivity of capital 

and hence long-run growth. 

 We analyzed Romer's [4] model, and the ways in which 

R&D activities can be modeled in growth models, so as to 

become the source of economic growth. Then, with Lucas 

[5], we analyzed the modelling of human capital accumula-

tion and its role as the engine of growth. In these two kinds 

of models, economic growth is made possible because the 

diminishing returns to capital are overcome, respectively, by 

technological progress and by human capital accumulation. 

 A third group of models generate sustained growth 

through the direct elimination from the production function 

of the assumption of diminishing returns to capital. Repre-

sentative of this category of models, we reviewed the models 

by Jones and Manuelli [6] and by Barro and Sala-i-Martin 

[9]. 

 We complemented our literature review with an analyti-

cal incursion into the models by Grossman and Helpman [7] 

and by Aghion and Howitt [8], which also constitute impor-

tant contributions to growth theory. Like Romer's, these are 

R&D-based growth models. However, these two models do 

not contemplate physical capital, hence they obtain eco-

nomic growth without the need to achieve a non-declining 

marginal productivity of capital. 

 Growth theory has been rapidly expanding, both in its 

formal modelling and in its econometric techniques. It 

                                               
10As examples of more recent models that build on Aghion and Howitt's [8], 

we refer to Aghion and Howitt [11], Howitt [25], and Howitt and Mayer-

Foulkes [26]. 
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counts with an increasing variety of theoretical models and 

several methods with which these models can be tested em-

pirically. The numerous models that today give body to 

growth theory are all built upon the foundational frameworks 

that have been analyzed in this literature review. Hence we 

believe that the proposed integrated analytical perspective 

over the main growth generating processes is of relevance 

for those wishing to work in growth. 
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