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Abstract: This paper analyses the validity of the weak-form market efficiency, using the random-walk hypothesis for the 

six industrial base metals - copper, aluminium, zinc, nickel, tin and lead - traded at the London Metal Exchange. I analyse 

the behaviour of daily and weekly prices of the daily rolling three-month futures contracts, as these contracts exhibit the 

highest level of trading activity. In contrast to other efficient-market studies, the efficiency of futures prices is not tested 

as an unbiased predictor of the spot prices but from the predictability of futures prices themselves. I focus on the post-Tin 

Crisis period of 1989 to 2007. My test methodology includes the Box & Pierce Q-statistics, variance ratio tests by Lo and 

MacKinlay with homoscedastic and heteroscedastic test estimates, nonparametric ranks- and signs-based variance ratio 

tests by Wright and wild bootstrapping variance ratio tests by Kim. My sample basis fails to reject the random-walk 

hypothesis for all base metal futures except for lead. 
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INTRODUCTION 

 Although the efficient-market hypothesis (EMH) has 

been extensively tested on different stock exchanges using 

individual share and index data, most commodity markets 

have been neglected by recent studies (Moustafa [1]; 

Rahman and Hossain [2]). Particularly the markets for 

industrial base metals have been examined only 

superficially. Notably unexamined until now has been the 

period after the Tin Crisis (1985-1986), which nearly led to a 
collapse of the London Metal Exchange (LME). In this paper 

I analyse the behaviour of daily and weekly prices of the six 

traded base metals at the London Metal Exchange - copper, 

aluminium, nickel, zinc, lead and tin - for random walk, 

implying weak-form market efficiency, as defined by Fama, 

during the period of 1989 to 2007. 

 The LME, along with the New York Mercantile 

Exchange (NYMEX) and the Shanghai Metal Exchange 

(SHME), is one of the leading commodity exchanges for 
base metals. In particular, the official fixing after the second 

morning trading session (2nd Ring) is an often-used price 

basis for physically settled contracts in the global 

metalworking industry. 

 The data employed in this study consists of the prices of 

the daily rolling three-month futures contract, which has the 

advantage that it has not been adjusted for potential 

backwardation or contango market structures. Furthermore, 

the three-month futures contracts are subject to the highest 

trading activity level and should be considered the most 
liquid contracts traded at the LME. In contrast to other 

efficient-market studies, the efficiency of futures prices is  
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not tested as an unbiased predictor of spot prices, as is the 

usual practice in the literature, but from the predictability of 

futures prices themselves. As many physical contracts are 

cleared using the 2nd Ring settlement prices, there is a 

feasible incentive for metal producers and consumers to 

manipulate these fixings in their favour. To avoid any 

potential bias, I use the prices at the time of the NYMEX 

close as a reference instead. 

 I try to seek evidence supporting the existence of at least 

weak-form efficiency. As weak-form theory asserts that 

successive returns generated by an efficient market will be 

independent, I evaluate the hypothesis by performing 

different tests for random walk. The methodology employed 

includes the Box & Pierce Q-statistics, variance ratio tests by 

Lo and MacKinlay with homoscedastic and heteroscedastic 

test estimates, nonparametric ranks- and signs-based 

variance ratio tests by Wright and wild bootstrapping 

variance ratio tests by Kim. I also divide the sample into two 

separate subsamples to check for structural breaks. As all 
sample sets are highly nonnormal, I focus on the results of 

the signs-based variance ratio tests and the wild 

bootstrapping variance ratio test, as suggested by Kim [3], 

because these tests are more powerful and robust for 

nonnormal sample sets with an unknown distribution and 

heteroscedasticity. 

LITERATURE REVIEW 

 Since Samuelson [4] and Fama [5] independently 

formulated the efficient-market hypothesis, it has been 

extensively applied to empirical studies of financial 

securities markets. Fama defined an efficient market as one 
in which prices always “fully reflect” available information. 

The hypothesis can be tested in various forms. The weak-

form efficient-market hypothesis defines the available 

information set as just the security’s historical price time 

series. It has been tested extensively for stock markets using 
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autocorrelation tests, tests for random walk, runs tests, tests 

for seasonal effects and spectral analysis. 

 There are some studies that have focused on the LME. 

The majority of these studies focused on the period prior to 

the Tin Crisis. Furthermore, none of the studies analysed the 

random-walk hypothesis for all six base metals traded at the 

LME. Moreover, all studies tested market efficiency of the 
futures prices as unbiased prediction of the spot prices. 

 Taylor [6] tested the random-walk hypothesis on spot 

prices for copper for the period 1966-1978 and for zinc, lead 

and tin for the period 1970-1978. His results rejected the 

random-walk hypothesis for all base metals but tin. Goss [7] 

analysed the relationship of futures and spot prices for the 

copper, zinc, lead and tin markets during the period 1971-

1978. His results showed a bias of the futures prices for lead 

and tin. 

 Bird [8] used filter techniques to test for weak-form 

efficiency on LME prices for the same metals during the 

period 1972-1982. His results showed evidence of market 

inefficiency for copper and and no evidence for tin. Goss [9] 

applied joint tests for the same metals for the sample period 

1966-1984. His results rejected the EMH for copper and 

zinc, but failed to reject the EMH for lead and tin. 

 MacDonald and Taylor [10] tested for co-integration for 
four metals in the LME for the period 1976-1987. They 

concluded that the copper and lead futures markets could be 

considered efficient. They rejected the EMH for tin and zinc. 

Gross [11] examined unvaried LME prices on the mean 

square error criterion for the period 1983-1984 in order to 

test the semi-strong EMH for copper and aluminium futures. 

He provided evidence that the semi-strong EMH cannot be 

rejected for both base metals. 

 Moore and Callen [12] analysed the proposition that 

forward rates are unbiased predictors of future spot rates for 
base metal prices on the LME for all six base metals between 

1985 and 1989. They showed that the long-run speculative 

efficiency couldn’t be rejected. 

 Lucey [13] examined the daily seasonal patterns in the 

returns of aluminium, copper, zinc, lead and nickel for the 

period 1989-2002. His results indicated the existence of 

daily seasonality, especially the returns of Monday and 

Thursday. 

 Kenourgios [14] analysed the LME copper futures 

contracts with maturities of three and fifteen months for the 

period 1989-2000. He tested for both long-run and short-run 

efficiency using co-integration and error correction models. 

His results suggested that the copper futures market is 

inefficient. 

METHODOLOGY 

The Random-Walk Hypothesis 

 The weak-form market efficiency refers to the 
predictability in time series of prices on the basis of past 

information. Samuelson demonstrated that the price-

generating process of a weak-form efficient market should 

only be affected by the arrival of new information [15]. New 

information is assumed to appear at random, so prices should 

follow a random walk. Price changes are not dependent on 

each other. A simple random-walk process can be defined as: 

Pt = Pt 1 + ut              (1) 

where 

Pt = Price at time t 

ut = error term for time t 

 As Campbell, Lo and MacKinlay [16] stated, there are 

three different versions of the random-walk hypothesis, each 

of them being slightly more stringent. The strongest 

assumption implies that all error terms ut are independent and 

identically distributed (i.i.d.): 

ut ~ IID(0, 2 )               (2) 

 This assumption implies that absolutely no information 

on price changes can be obtained from the past. I apply 

homoscedastic variance ratio tests by Lo and MacKinlay and 

nonparametric variance ratio tests based on ranks by Wright 

to test the strong version of random-walk hypothesis. 

 The semi-strong form implies that the distribution of the 

arrival of news can change over time, but it is still 

independent: 

ut ~ indep(0, 2 )             (3) 

 This form is very difficult to test because every single ut 

might come from a totally different distribution. I do not test 

the semi-strong version of the random-walk hypothesis. 

 The weak form is based on the correlation of the error 

terms and implies: 

cov ut ,ut k( ) = 0             (4) 

 This version is especially important, as heteroscedasticity 

may be a reason for rejecting the strong version of the 
random-walk hypothesis. 

 I apply Q-statistics portmanteau tests, heteroscedastic 

variance ratio tests by Lo and MacKinlay, nonparametric 

variance ratio tests based on signs by Wright and wild 

bootstrapping variance ratio tests by Kim to test the weak 

version of the random-walk hypothesis. 

Box-Pierce Q-Statistics 

 The Q-statistics portmanteau test developed by Box and 

Pierce [17] is a possible method for testing a time series for 
white noise, an uncorrelated sequence of errors, which is 

also a definition for a weak-form random walk. I use the 

relative futures price change as a sequence for the sample 

basis. The Box-Pierce Q-Statistics are calculated as a linear 

operation of various squared autocorrelations with different 

time lags, all weighted equally. It can be defined as: 

Qm = n rk
2

k=1

m
            (5) 

where 

Qm = Box-Pierce Q-statistic for m time lags 

m  = number of coefficients 
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n  = number of observations 

rk = autocorrelation coefficient for time lag k 

 To test the validity of the random-walk hypothesis, the 

Q-statistic is computed for various values of m. For large 

sample sizes n, Campbell, Lo and MacKinlay [18] showed 
that the sample autocorrelation coefficients are 

asymptotically independent and normally distributed. 

nrk ~N(0,1)              (6) 

 Thus if the price change series is Gaussian distributed, 

then the Q-statistic is distributed like the sum of squares of 

m Gaussian random variables. So this statistic is 

asymptotically distributed as the chi-square distribution with 
m degrees of freedom. 

 The null hypothesis can be defined as: 

H 0 :Qm~ m
2              (7) 

 Q-statistics points out any deviation from the null 

hypothesis of no autocorrelation in any direction, and at all 

considered time lags depending on the value of m. The 

selection of m is critical for the statistical power of the test, 

as too small values of m would disregard possible higher 

order autocorrelation, and too high values of m would reduce 

statistical significance. I try to avoid this problem by 

calculating all Q-statistics for m = 1 to m = 10, for both daily 

and weekly observations. 

Variance Ratio Tests by Lo and MacKinlay 

 The variance ratio tests by Lo and MacKinlay [19] were 

first proposed to test for a random walk in case of 

homoscedasticity and later extended to the more general case 

of an uncorrelated random walk in case of heteroscedasticity. 

This test utilises data sampled at various frequencies. Lo and 

MacKinlay [20] demonstrated that variance ratio tests are 

statistically more powerful than the Box-Pierce Q-statistics. 

As an important property of a random walk, the variance of 

its increments is linear in the observed period. Specifically, 

the variance estimated from the q-periods returns should be q 

times as large as the variance estimated from one-period 

returns, or: 

Var rqt( )
Var rt( )

= q              (8) 

where 

rqt  = Returns of a sample t for a the period with a length of q 

rt  = Returns of a sample t with one-period length 

 The variance ratio VR(q) can be defined as: 

VR q( ) =
Var rt

q( )
qVar rt( )

           (9) 

 The null hypothesis is therefore: 

H 0 :VR q( ) = 1            (10) 

 Lo and MacKinlay derived asymptotic standard normal 

test statistics for their variance ratios. I will use two different 

test statistics: z(q) in case of homoscedasticity, and z*(q) in 

case of heteroscedasticity. The first statistic z(q) assumes an 

i.i.d. error term. The standard normal z(q) test statistic can be 

computed as: 

z(q) =
VR q( ) 1

q( )
N 0,1( )          (11) 

where 

q( ) =
2 2q 1( ) q 1( )

3q nq( )
          (12) 

 The heteroscedastic test statistic z*(q) allows us to relax 

the requirements of i.i.d. increments. Despite the presence of 

heteroscedasticity, the test statistic z*(q) is still 

asymptotically standard normal in case of a random walk. It 

can be defined as: 

z* q( ) =
VR q( ) 1

* q( )
N(0,1)         (13) 

where 

* q( ) =
2 q j( )

qj=1

q 1 2

ˆ j( )         (14) 

and 

ˆ j( ) =

Pk Pk 1 μ̂( )
2

k= j+1

nq

Pk j Pk j 1 μ̂( )
2

Pk Pk 1 μ̂( )
2

k=1

nq 2        (15) 

where 

μ̂  = Average return 

 I use both homoscedastic and heteroscedastic test 

statistics for aggregation values q of 2, 4, 8 and 16. 

Variance Ratio Tests Using Ranks and Signs by Wright 

 Wright [21] introduced alternative variance ratio tests 

based on ranks and signs. He showed that for some processes 

his nonparametric variance ratio tests are performing better 

in rejecting violations of the random-walk hypothesis than 
the tests recommended by Lo and MacKinlay. He explained 

the outperformance of ranks- and signs- based tests by the 

mention of two potential advantages. First, his tests often 

allow for computing the exact distribution. As it is not 

necessary to appeal to any asymptotic approximation, size 

distortions can be neglected. Second, if the sample data is 

highly nonnormal, tests based on ranks and signs may be 

more powerful than other variance ratio tests. Formally for 

the ranks-based tests, let r rt( )  be the rank of the difference 

of the futures prices rt  among r1,r2 ,...,rT . Then, r1t  and r2t  

are the ranks of the futures price differences, defined as: 
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r1t =

r rt
T +1
2

T 1( ) T +1( )
12

          (16) 

r2t =
1 r rt( )
T +1

          (17) 

where 1  is the inverse of the standard normal cumulative 

distribution function. 

 The series r1t  is a simple linear transformation of the 

ranks, standardised to have a sample mean 0 and a sample 

variance 1. The series r2t , known as the inverse normal or 

van der Warden score, has a sample mean 0 and a sample 

variance approximately equal to one. The rank series r1t  and 

r2t  substitute the difference in futures prices Pt Pt q( )  in 

the definition of the variance ratio test statistic by Lo and 

MacKinlay z q( )  in equation (11), which is written as R1  

and R2 : 

R1 =

1
Tq

r1t + r1t 1...+ r1t q( )
t=q+1

T

1
T

r1t
2

t=1

T 1 *
1

q( )
       (18) 

R2 =

1
Tq

r2t + r2t 1...+ r2t q( )
t=q+1

T

1
T

r2t
2

t=1

T 1 *
1

q( )
      (19) 

where q( ) is defined in equation (12). 

 Wright demonstrated that under the assumption that the 

rank r rt( )  is an unbiased, random permutation of the 

numbers 1,2,...,T , the test statistics’ distribution can be 

provided. So the exact sampling distribution of R1  and R2  

may easily be simulated to an arbitrary degree of accuracy, 

for a given choice of T and q . Therefore, the distribution 

does not suffer from disturbance parameters and the test can 

be used to construct a test with exact power. 

 By using the signs of the differences instead of the ranks, 

it may be possible to apply a variance ratio test that is exact 

in case of conditional heteroscedasticity. Formally, for a time 

series rt , let u rt ,k( ) = 1 rt > k( ) 0.5 . Thus u rt ,0( )  is 0.5 if 

rt  is positive and -0.5 otherwise. Let 

st = 2u rt ,0( ) = 2u t ,0( ) . Clearly, st  is an i.i.d. series with 

zero mean and variance equal to one. Each st  is equal to 1 

with a probability 0.5 and is equal to -1 otherwise. The test 

statistic based on signs S1  is given by: 

S1 =

1
Tq

st + st 1...+ st q( )
2

t=q+1

T

1
T

st
2

t=1

T 1 *
1

q( )
       (20) 

 In Monte Carlo experiments and empirical tests, Wright 

showed that this test could be exact and more powerful than 

other variance ratio tests under both homoscedastic and 

heteroscedastic conditions. 

Wild Bootstrapping Variance Ratio Tests by Kim 

 Kim [22] proposed variance ratio tests based on wild 

bootstrapping - a re-sampling method that approximates the 

sampling distribution of the test statistic. The main 
advantage of this finite sample test is the fact that it does not 

rely on asymptotic approximations. Therefore, it is robust to 

nonnormality. Wu [23] and Mammen [24] demonstrated that 

wild bootstrapping should be a natural choice in case of 

conditional and unconditional heteroscedasticity. The test is 

based on a Chow and Denning [25] joint version of the Lo 

and MacKinlay test statistic z* q( ) , as provided in equation 

(13), selecting the maximum absolute value from a set of l  

test statistics. The test statistic can be written as: 

MV qi( ) = max
1 i l

z* qi( )           (21) 

 The wild bootstrap variance ratio test can be conducted in 

three stages, as below: 

(i) Form a bootstrap sample of T observations 

at
*
= tat , t = 1,...T( )  where t  is a random sequence 

with zero mean and unit variance; a normal 

distribution is used here. 

(ii) Calculate MV (qi ) using at
*  from the bootstrap 

sample generated in stage (i) 

(iii) Repeat stages (i) and (ii) m times, for example, 1.000 

times in this paper, to form a bootstrap distribution of 

the test statistic MV qi , j( )
j=1

m
. 

 The bootstrap distribution MV qi , j( )
j=1

m
 is used to 

approximate the sampling distribution of z* q( )  given in 

equation (13). The p-value of the test is calculated as the 

proportion of MV qi , j( )
j=1

m
 greater than the sample value of 

z* q( ) . 

 In Monte Carlo simulations, Kim demonstrated that wild 

bootstrapping variance ratio tests are powerful and robust 

alternatives for testing the random-walk hypothesis.  

DATA 

 The London Metal Exchange, founded in 1877, is the 

oldest metal exchange. The LME is the most liquid base 

metal exchange, with a trading volume of $9,500 billion in 

2007. It offers 24-hour trading by the three-stage system of 

open-outcry during the four “Ring” sessions, where every 

single metal is traded for a five-minute period, the “LME 
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Select” electronic platform and the “Inter-office” telephone 

market. It provides cash, futures and option contracts for the 

six base metals with prompts up to 63 months forward. The 

most liquid and most important contract is the daily rolling 

three-month futures contract. I will use this contract as a 

basis to test the random-walk hypothesis. As this contract 

results in a different prompt date for every trading day, my 

analysis cannot be used for real-life trading strategies. My 

random-walk analysis is based on the predictability of 
futures prices themselves and not on the generation of 

abnormal profits. The natural choice of data source would be 

the daily published 2nd Ring settlement prices, which are 

officially determined by the LME price committee. I will use 

a different source, based on the fact that these futures 

settlement prices are the basis of many physical trades. 

These trades might be a feasible incentive for metal 

producers and consumers to manipulate these fixings in their 

favour [26]. To avoid any potential bias, I use the prices at 

the time of the NYMEX close as reference instead. I study 

the sample period beginning in June 1987 for aluminium, 

May 1987 for copper, October 1987 for nickel, January 1988 
for zinc, January 1987 for lead and June 1989 for tin. I 

consider data for all six metals up to October 2007. The time 

span for sampling of data was chosen by the availability of 

data. I also check the sample for structural breaks: I divide 

the sample into sub samples before and after 2000, which 

roughly coincides with, first, the bull market in equities and 

weak commodity prices of the 1990s and, second, the period 

of relatively greater commodity strength after 2000. Non-

trading is not a problem, as all six base metals are highly 

liquid during the regular trading sessions. The daily relative 

futures price change is calculated in a manner consistent with 
prior random-walk tests, as the logarithmic difference of two 

sequenced prices in a series. The weekly relative futures 

price changes are calculated on the basis of the logarithmic 

difference of Monday’s closing price (or the next following 

valid trading day, if Monday is not a valid trading day) and 

Friday’s closing price (or the previous valid trading day, if 

Friday is not a valid trading day). Fig. (1) presents the daily 

observations and Fig. (2) the weekly observations of all six 

base metals. Descriptive statistics of daily observations are 

summarised in Table 1 and of weekly observations in Table 

2. I use a long sample period of 20 years to get an adequate 
sample basis, as I focused on weekly observations. Lo and 

MacKinlay [27] suggested that weekly data are superior to 

daily figures because they are free from sampling problems 

of biases inherent in the daily prices. Chow and Denning 

[28] showed that the variance ratio tests are superior to other 

random-walk tests when at least 256 observations are 

regarded. They also showed that an increasing number of 

observations improve statistical power. All error terms of the 

sample sets were tested for normality using the Kolgoroff-

Smirnov and the Jarque-Bera-Tests. I strongly reject the 

normality assumption for all daily and weekly sample sets. 

In Monte Carlo experiments, Wright [29, 6] demonstrated 
important power gains and robustness of his tests, compared 

with the Lo and MacKinlay tests, especially in case of 

nonnormality. Moreover, Kim [30] showed that wild 

bootstrap tests are superior to other variance ratio tests,  

 

especially for different error term distributions. He suggested 

using wild bootstrap tests along with Wright’s sign test. I 

follow his argumentation and put the focus on these tests’ 

results. 

RESULTS 

Results from the Box-Pierce Q-Statistics 

 Table 3 summarises Q-statistics for daily and Table 4 for 
weekly observations of the six base metal futures. To test the 

validity of the random-walk null hypothesis, Q-statistics 

have to be compared to a chi-square distribution with m 

degrees of freedom. I calculate Q-statistics for m = 1 to 10 as 

a composite measure of autocorrelation for m lags. For the 

daily observations, the Q-statistics for aluminium shows no 

significance at the 5% level, for all values of m. The Q-

statistics for copper, nickel and tin are all significant at a 5% 

level, for all values of m, where the main source is the high 

autocorrelation for the lag of 1 and 2. Noteworthily, the Q-

statistics of both zinc and lead are not significant at a 5% 

level, for m = 1. For values of m = 2 to 10, Q-statistics are 
significant mainly because of high autocorrelation for a lag 

of 2 for zinc respectively lag of 2 and 3 for lead. 

 For the weekly observations, Q-statistics for aluminium 

confirm the findings, as it shows also no significance at a 5% 

level, for all values of m. In contrast to the daily sample, zinc 

and tin reveal no significance for all values of m. 

Interestingly, the high autocorrelation for the lag of 1 and 2 

is missing, which might indicate that for both metal futures, 

price changes tend to revert to the mean on a weekly sample 
basis. Q-statistics for copper are significant for m = 1, but 

not for higher values of m. Nickel shows no significance for 

values of m = 1 to 9, but Q-statistics for m = 10 are 

significant at a 5% level. In contrast to the daily sample 

basis, lead shows a high first-order autocorrelation on a 

weekly sample basis. Consequences are significant Q-

statistics for all values of m. 

Results from the Variance Ratio Tests by Lo and 
MacKinlay 

 Tables 5 and 6 report the test statistics in case of 

homoscedasticity z(q) and heteroscedasticity z*(q) for the 

six base metal futures. The test statistics are using 

aggregation values q ranging from 2 to 16. Table 5 

represents the results for the daily sample period and Table 6 

reports similar results for the weekly sample period. 

 For the daily observations, I fail to reject the random-
walk null hypothesis at a 5% level of significance for the 

aluminium and zinc futures under homoscedastic and 

heteroscedastic assumptions and at all aggregation levels. 

For the price changes of the copper futures, I reject the 

random-walk hypothesis for aggregation levels of q = 2 and 

q = 4 in case of homoscedasticity. Moreover, the rejection is 

not due to changing variances because the heteroscedastic 

test result z*(q) is also significant at a 5% level for an 

aggregation level of q = 4. Nickel futures show significance 

for all aggregation levels except q = 4, under heteroscedastic 

increments. For lead futures, test statistics z(q) and z*(q) are 
significant for aggregation levels q = 4 and q = 8. For tin,  
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Fig. (1). Daily observations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Weekly Returns 
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Fig. (2). Weekly obervations. 
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only the homoscedastic test statistic is significant at an 

aggregation level of q = 2. As these findings are not 

supported by heteroscedastic results, the reason is not a 

rejection of the random-walk hypothesis, but time varying 

variances. 

 For the weekly observations, aluminium, zinc and tin 

futures are not significant at all aggregation levels. I found 

some significant results for copper futures at an aggregation 
level of q = 2 and for nickel futures at aggregation levels of q 

= 8 and q = 16, respectively, under the homoscedastic 

assumption. As these findings are not verified by 

heteroscedastic test results, the reason is changing variance, 

and I fail to reject the random-walk hypothesis. For lead, I  

 

found significant test statistics z(q) at aggregation levels of q 

= 2, q = 4 and q = 8. These findings are validated by 

significant heteroscedastic test results for aggregation level q 

= 2 and q = 4. Hence I reject the random-walk hypothesis for 

lead futures, based on weekly observations. 

Results from the Variance Ratio Test Using Ranks and 
Signs by Wright 

 Tables 7 and 8 summarise the test statistics of the 
variance ratio tests, using ranks (R1 and R2) and signs (S1). 

I use aggregation values q ranging from 2 to 16. Results for 

the daily sample period are reported in Table 7 and results 

for the weekly sample period are reported in Table 8. 

 

Table 1. Descriptive  Statistics (Daily) 

 

  Aluminium Copper Lead Nickel Tin Zinc 

 Mean 0.00010 -0.00033 -0.00040 -0.00036 -0.00010 -0.00014 

 Median 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

 Maximum 0.07870 0.13776 0.11170 0.17225 0.09353 0.11801 

 Minimum -0.09505 -0.11852 -0.08165 -0.11252 -0.10434 -0.07249 

 Std. Dev. 0.01239 0.01455 0.01488 0.01983 0.01188 0.01373 

 Skewness -0.39783 0.48884 0.21133 0.29348 0.28806 0.56922 

 Kurtosis 7.70340 9.39380 6.84289 8.12467 9.99429 9.57272 

Kolmogorov-Smirnov 0.48077 0.47830 0.47648 0.46957 0.47957 0.47893 

Probability 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Jaque-Bera 4861.053 8973.940 3248.363 5594.060 9470.753 8908.612 

Probability 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

 Observations 5127 5148 5216 5046 4615 4805 

 
Table 2. Descriptive Statistics (Weekly) 

 

  Aluminium Copper Lead Nickel Tin Zinc 

 Mean 0.002135 0.002621 0.004429 0.00405 0.001414 0.002939 

 Median 0.001787 0.003985 0.003143 0.003361 0.001049 0.001861 

 Maximum 0.083346 0.102351 0.139488 0.297299 0.089511 0.135418 

 Minimum -0.089052 -0.128749 -0.140308 -0.204005 -0.136192 -0.132933 

 Std. Dev. 0.023031 0.027103 0.028041 0.040033 0.022761 0.026999 

 Skewness -0.061329 -0.365547 0.124052 0.212681 -0.563933 -0.165251 

 Kurtosis 4.188646 4.806026 6.209926 7.767874 8.149587 5.436854 

Kolmogorov-Smirnov 0.46831 0.46450 0.46701 0.44909 0.46649 0.46341 

Probability 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Jarque-Bera 63.36412 169.24850 468.59250 1001.51300 1112.77100 251.97860 

Probability 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

 Observations 1065 1070 1085 1049 961 1000 
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 I use ranks tests (R1 and R2) to test random walk in case 

of homoscedasticity. For the aluminium, zinc and tin futures, 

using daily observations, the rank-based test results R1 and 

R2 failed to reject the random-walk null hypothesis at a 5% 

level of significance, for all aggregation levels. For copper, I 

reject the null hypothesis for the aggregation levels 2,4 and 8 
using R1 and for aggregation levels 2 and 4 using R2. For 

nickel, I reject the null hypothesis for all aggregation levels 

except 4, using both R1 and R2 test statistics. The random-

walk null hypothesis for lead futures is rejected for 

aggregation levels 4 and 8, using both R1 and R2. Under 

heteroscedastic increments, I use the signs-based version of 

Wright’s variance ratio test. For aluminium, nickel and tin 

futures, the sign-based statistics failed to reject the null 

hypothesis. For copper, I reject the null hypothesis for all 

aggregation levels except for 16. The statistics are also 
significant at a 5% level for zinc futures at aggregation levels 

of 4 and 8, and for lead futures at aggregation levels of 2 and 

16. 
 

 

Table 3. Box-Pierce Q-Statistics (Daily) 

 

  Q1 Q2 Q3 Q4 Q5 

Aluminium  1.72704 2.19918 3.86433 5.540162 8.11013 

Copper 6.70055 14.03444 14.85126 17.1253 26.29705 

Nickel 14.53471 15.04920 16.83735 24.31018 36.41481 

Zinc 1.822635 14.40777 14.40812 14.98567 19.25286 

Lead 0.075529 11.851 24.986 25.28049 31.54665 

Tin 11.23375 34.85984 40.73144 40.91922 41.10700 

 Q6 Q7 Q8 Q9 Q10 

Aluminium  9.40203 9.51751 11.33593 11.48987 16.17166 

Copper 26.90823 31.85976 32.16385 34.78621 44.53922 

Nickel 36.42638 36.51401 36.51606 36.51707 37.38186 

Zinc 19.44176 19.93384 21.48951 22.18219 27.25641 

Lead 31.66924 31.98901 36.75757 36.79197 37.11181 

Tin 50.11198 54.37751 56.24777 56.31627 56.49572 

 

Table 4. Box-Pierce Q-Statistics (Weekly) 

 

 Q1 Q2 Q3 Q4 Q5 

Aluminium  1.489347 1.517528 1.6245 2.597254 2.69287 

Copper 4.159468 4.471897 5.08893 5.228729 5.23993 

Nickel 1.429304 1.429326 4.726250 6.633729 6.63605 

Zinc 1.626393 2.078699 2.196342 2.533272 2.60226 

Lead 13.62296 13.88458 15.08988 15.09271 15.12698 

Tin 0.017540 4.868548 4.883118 6.168872 8.29225 

  Q6 Q7 Q8 Q9 Q10 

Aluminium  4.19496 4.75800 7.73817 8.92723 8.93875 

Copper 9.28836 9.31669 9.76126 12.61800 12.77105 

Nickel 9.50821 9.86733 13.57189 18.34789 20.55262 

Zinc 5.60445 6.12626 9.29589 9.32293 9.59822 

Lead 16.95870 18.05193 19.60576 20.59478 20.64768 

Tin 8.651462 8.707496 10.49394 10.86081 10.8798 

Bold letters indicate significant value at a 5% level of significance. Q is the Q-statistics at lag m. 
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 For weekly observations, the ranks-based test statistics 

are insignificant for aluminium, tin and zinc futures. I found 

some significant results for copper and nickel futures at 

aggregation levels 8 and 16, for both R1 and R2 test 

statistics. For lead, I found significant statistics R1 at an 

aggregation level of 2 and R2 at aggregation levels of 2 and 

4. Under heteroscedastic increments, using signs-based test 

statistics S1, I failed to reject the null hypothesis for all base 

metal futures at all levels of aggregation, except for lead. 

These findings support the already discussed thesis of time 
varying variances. For lead, I found significant test statistics 

S1 at aggregation levels of 2 and 4. 

 The tables show the test statistics R1, R2 and S1 of the 

variance ratio tests, using ranks and signs by Wright for 

various values of q. Bold letters indicate significant value at 

a 5% level of significance. 

 The tables show the p values of wild bootstrapping 

variance ratio tests by Kim, for various values of q and the p 
value of the joint test statistic MV. Bold letters indicate 

significant value at a 5% level of significance. 

Results from Wild Bootstrapping Variance Ratio Tests 
by Kim 

 Table 9 summarises the p values for the wild 

bootstrapping variance ratio tests by Kim for the daily, and 

Table 10 for weekly, observations of the six base metal 

futures. I also report the p values of joint test statistic MV. I 

use aggregation values of q, ranging from 2 to 16. 

 For daily observations, I failed to reject the random-walk 
hypothesis for aluminium, zinc and tin futures for all 

aggregation levels and the joint test statistic, at a 5% level of 

significance. For copper futures, I failed to reject the null 

hypothesis for the joint test statistic and all aggregation 

levels except for 4. For nickel and lead, I reject the random-

walk hypothesis, as the joint test statistic is significant. 

These findings are also supported by the aggregation levels 

of 2, 8 and 16 for nickel and 4, 8 and 16 for lead. 

 For weekly observations, I failed to reject the random-

walk hypothesis for all base metal futures except for lead. 
Lead futures are significant at a 5% level for the joint test 

statistic and aggregation levels of 2 and 4. 
 

 

 

Table 5. Variance Ratio Tests by Lo and MacKinlay (Daily) 

 

Number q of Aggregated Observations 
  Test Statistic 

2 4 8 16 

Homoscedasticity 

z(q) 
-1.3210 -1.7708 -1.0725 -0.1085 

Heteroscedasticity 
Aluminium  

z*(q) 
-0.8722 -1.2150 -0.7607 -0.0790 

Homoscedasticity 

z(q) 
-2.5917 -3.2842 -1.2024 0.3148 

Heteroscedasticity 
Copper 

z*(q) 
-1.7783 -2.2828 -0.8467 0.2248 

Homoscedasticity 

z(q) 
3.8120 2.3132 3.1226 3.2659 

Heteroscedasticity 
Nickel 

z*(q) 
2.6652 1.6018 2.2438 2.4267 

Homoscedasticity 

z(q) 
1.3656 -0.8273 -0.2379 0.3862 

Heteroscedasticity 
Zinc 

z*(q) 
0.9836 -0.5908 -0.1681 0.2757 

Homoscedasticity 

z(q) 
-0.2872 -3.0296 -3.0025 -1.8493 

Heteroscedasticity 
Lead 

z*(q) 
-0.2031 -2.2384 -2.2763 -1.4367 

Homoscedasticity 

z(q) 
3.3542 -0.5693 -0.5696 -0.1874 

Heteroscedasticity 
Tin 

z*(q) 
1.8603 -0.3326 -0.3610 -0.1282 

The table shows the test statistics of the variance ratio test for various values of q. z(q) shows the statistics in case of homoscedasticity and z*(q) in case of heteroscedasticity, 
respectively. Bold letters indicate significant value at a 5% level of significance. 
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Results from for Variance Ratio Tests of the Subperiods 

 Tables 11-16 summarise the weekly results for the two 

sub-samples before and after 2000, which roughly coincide 

with, first, the bull market in equities and weak commodity 

prices in the 1990s and, second, the period of relatively 

greater commodity strength after 2000. For aluminium, zinc 

and tin, the findings are consistent with the full sample, as all 

variance ratio tests failed to reject the null hypothesis of 

random walk. For copper and nickel, some test results 
indicated a violation of the random-walk hypothesis for the 

first sub-period. For the second sub-sample, all test statistics 

except R1 with a lag of 16 failed to reject the random-walk 

null hypothesis. Therefore, market efficiency might have 

increased. Interestingly, lead followed a random walk in the 

first sub-period. In the full sample and the second sub-

period, the random-walk hypothesis could be rejected, based 

on the results of all variance ratio tests. Market efficiency for 

lead might have reduced in the last decade. 

CONCLUSION 

 I have tested the random-walk hypothesis to determine 
the validity of the weak-form market efficiency for the six 

base metals traded at the LME. I applied Box-Pierce Q-

statistics, the variance ratio tests by Lo and MacKinlay, 

nonparametric ranks- and signs-based variance ratio tests by 

Wright and wild bootstrapping variance ratio tests by Kim to 

a sample basis of daily and weekly price differences. As Kim 

demonstrated, wild bootstrap tests are superior to other 

variance ratio tests, especially for different error terms 

distribution and nonnormal samples. I follow his suggestion 

to use wild bootstrap tests along with Wright’s sign tests. 

Because daily data may suffer from different biases (i.e., bid-
ask spread), I will mainly depend on weekly data for 

interpretation. Furthermore, I focus on the subsamples to 

check for structural breaks. 

 The weekly sample basis accepts the weak-form random-

walk hypothesis for all six base metal futures, except for 

lead, on the basis of wild bootstrapping variance ratio tests 

and Wright’s sign tests. These findings are also supported by 

the findings of the Lo and MacKinlay variance ratio tests. 

Especially for the futures price changes of the aluminium 
futures, there’s a wide-ranging substantiation for the 

acceptance of the random-walk hypothesis, as all tests failed 

to reject the null hypothesis at a 5% level of significance, 

Table 6. Variance Ratio Tests by Lo and MacKinlay (Weekly) 

 

Number q of Aggregated Observations 
 Test Statistic 

2 4 8 16 

Homoscedasticity 

z(q) 
-1.2646 -0.8714 -1.1157 -0.6102 

Heteroscedasticity 
Aluminium  

z*(q) 
-1.0832 -0.7404 -0.9444 -0.5150 

Homoscedasticity 

z(q) 
2.0352 1.5334 1.7002 1.3687 

Heteroscedasticity 
Copper 

z*(q) 
1.4296 1.1184 1.2868 1.0757 

Homoscedasticity 

z(q) 
1.1947 1.4417 2.2648 2.0243 

Heteroscedasticity 
Nickel 

z*(q) 
0.7980 0.9194 1.4764 1.4166 

Homoscedasticity 

z(q) 
-1.2902 -1.5366 -0.7903 -0.2086 

Heteroscedasticity 
Zinc 

z*(q) 
-1.0263 -1.1610 -0.5996 -0.1604 

Homoscedasticity 

z(q) 
-3.7039 -2.9483 -2.2060 -1.2208 

Heteroscedasticity 
Lead 

z*(q) 
-2.3496 -1.9645 -1.5498 -0.9180 

Homoscedasticity 

z(q) 
0.1288 -1.0534 -1.7508 -1.2271 

Heteroscedasticity 
Tin 

z*(q) 
0.1040 -0.8416 -1.4078 -1.0163 

The table shows the test statistics of the variance ratio test for various values of q. z(q) shows the statistics in case of homoscedasticity and z*(q) in case of heteroscedasticity, 
respectively. Bold letters indicate significant value at a 5% level of significance. 
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both for daily and weekly observations. These findings are 

also validated by the analysis of the two subperiods. In 

contrast, all tests reject the null hypothesis for the daily and 

weekly returns of the lead futures. Interestingly, in the first 

sub-period lead prices followed a random walk. By contrast, 

the results for the second subperiod strongly rejected the 

random-walk hypothesis. I conclude that the reduction of 
market efficiency in the second sub-period led to the 

rejection for the full sample period. For the copper, nickel, 

zinc and tin futures, I found support for the random-walk 

hypothesis. This support arises from the fact that none of the 

weekly returns were significant at a 5% level. This result is 

based on the wild bootstrapping MV sample statistics, 

Wright’s sign test and Lo and MacKinlay’s test, based on the 

supposition of heteroscedasticity. As the results of Wright’s 

ranks tests and Lo and MacKinlay’s homoscedastic test 

results for the weekly returns of copper and nickel futures 

show significance at a 5% level, I assume changing 

variances during the sample period. Moreover, market 
efficiency might have increased because the results for the 

first sub-period indicated a violation of the random-walk 

hypothesis, which does not apply for the second sub-period. 

 My findings are therefore contrary to the findings of 

Taylor [31], except in the case of lead. Furthermore, the 

findings disagree with Bird [32], except for the cases of lead 

and tin. The main reason for the difference might be the 

different sample period. Both studies focused on the pre-Tin 

Crisis sample period before 1986. Market regulations were 

less severe in the pre-Tin Crisis period. Market manipulation 

and insider trading were not prosecuted. Furthermore, metal 

price information was not broadly available and was not 
timely. Consequently, market participants could easily gain 

an advantage with information that is considered common 

today. Today acting as a market regulator, the Financial 

Services Authority monitors the LME to prevent market 

manipulation. Furthermore, historical and present base metal 

prices, along with other influential data like open interest and 

warehouse stocks, are broadly available. Therefore, the 

market efficiency of the LME might have increased. As 

nickel and aluminium have not been tested for random walk 

thus far, I cannot compare the findings with past studies. Due 

to different methodologies, the findings are only constrictive 

comparable to other former studies. Furthermore, all other 
studies regarding market efficiency of the LME implied 

additional data besides historical prices and should therefore 

be considered as tests for semi-strong market efficiency. 

 The results show that even the increase of trading activity 

by speculative and technically oriented traders like hedge 

Table 7. Variance Ratio Tests Using Ranks and Signs by Wright (Daily) 

 

Number of Lag(q) 

 q=2 q=4 q=8 q=16 

R1 

Aluminium -1.0699474 -1.9248588 -1.3059746 0.2067253 

Copper -2.9312562 -3.7915131 -2.1716897 -0.7198455 

Nickel 2.2629261 0.7539652 2.2202516 2.7452 

Zinc 1.0212519 -1.8070425 -1.3181988 0.3188105 

Lead 0.2465658 -2.873641 -2.7144236 -1.3519206 

Tin 1.417424 -0.2438871 -0.2276051 0.8862558 

R2 

Aluminium -0.9157382 -1.8596536 -1.0367529 0.2228663 

Copper -2.42546474 -3.15247728 -1.34413119 0.09582417 

Nickel 3.029258 1.499801 2.535886 3.329623 

Zinc 1.2295543 -1.2881292 -0.69999081 0.6621707 

Lead 0.3484032 -2.7228662 -2.6312912 -1.3974382 

Tin 1.6725428 -0.3641456 -0.4190167 0.36714 

S1 

Aluminium -1.13123637 -1.79940405 -1.61233404 -0.08328692 

Copper -3.344968 -4.10486 -2.659749 -1.34966 

Nickel 1.632993 1.354456 1.441999 1.853356 

Zinc -0.07213123 -3.24639513 -2.58722778 -0.82754921 

Lead 4.13638 1.156638 1.928332 3.552385 

Tin 1.1907749 -0.9547439 -0.2902143 1.5122711 
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funds did not influence weak-form market efficiency of most 

base metals traded at the LME. 

 From an academic point of view, the random-walk test of 

the LME is especially interesting in reference to the 

efficient-market hypothesis. As all base metals except for 

lead follow a random walk, they can be considered weak-

form efficient. Therefore, it is useless to analyse historical 

prices in order to forecast future prices. Hence these results 

support the original efficient-market hypothesis by Fama for 

base metal commodity markets and should be an interesting 

contribution to the general discussion of market efficiency 
and behavioural finance. Further studies regarding market 

efficiency of the LME should focus on the semi-strong 

market efficiency. Studies analysing the information content 

Table 8. Variance Ratio Tests Using Ranks and Signs by Wright (Weekly) 

 

Number of Lag(q) 

 q=2 q=4 q=8 q=16 

R1 

Aluminium -0.6563807 -0.3764549 -0.3916854 0.4829192 

Copper 1.872954 1.799431 2.566385 2.705684 

Nickel 0.4235774 1.6212992 3.00755825 3.4602629 

Zinc -0.54087288 0.07002319 0.84741362 1.45044174 

Lead -2.1924377 -1.1394683 -0.5215507 0.3294378 

Tin 0.146337 -0.423005 -0.1871039 1.1570874 

R2 

Aluminium -1.0468815 0.6803698 -0.8766199 -0.2569519 

Copper 1.806852 1.661659 2.21011 2.15766 

Nickel 1.012839 1.75336 2.884709 3.024175 

Zinc -0.91206343 -0.73981822 -0.05588428 0.49861672 

Lead -2.7233663 -1.9860469 -1.395651 -0.5733715 

Tin 0.2745905 -0.6546466 -0.8471668 0.1561416 

S1 

Aluminium 0.214498 1.14654 1.341501 1.369378 

Copper 0.9782685 1.6628545 1.673187 1.7378365 

Nickel -0.5866321 0.5281146 1.6909207 1.7213044 

Zinc -0.6957011 -0.202837 0.2512256 0.5370199 

Lead -2.2732295 -2.4709864 0.8107896 1.4311408 

Tin -0.8709677 -0.5345225 0.1962939 1.6229743 

 

Table 9. Wild Bootstrapping Variance Ratio Tests by Kim (Daily) 

 

Number of Lag(q) 
 

q=2 q=4 q=8 q=16 

MV 

Aluminium 0.387 0.223 0.468 0.953 0.432 

Copper 0.079 0.016 0.384 0.781 0.053 

Nickel 0.003 0.094 0.02 0.015 0.015 

Zinc 0.33 0.596 0.879 0.755 0.615 

Lead 0.852 0.018 0.018 0.023 0.017 

Tin 0.053 0.757 0.748 0.928 0.147 
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of key data, such as warehouse stocks and open interest, 

might be especially enlightening. 

 Furthermore, these findings should be especially of 

interest for hedgers, speculators and market regulators. 

Hedgers use the LME futures contracts to offset exposure to 
price fluctuations of an underlying physical metal contract, 

to minimise the unwanted price risk. Principally, hedgers are 

interested in an efficient market because prices always fully 

reflect available information. In the case of a random-walk 

process, hedgers do not have to take historical futures prices 

into account for their hedging decisions. Therefore, all base 

metals, except lead, can be hedged efficiently without 

considering historical price fluctuations. 

 Speculators try to generate excess returns by forecasting 

base metal prices and take a corresponding futures position. 

Most forecasting systems are based on market inefficiencies 

and speculators analyse historical base metal prices to 

establish excess, generating trading strategies. As all three-

month base metals futures except lead follow a random-walk 

process, they are representing good estimates of intrinsic 
values and are reflecting the opinion of market participants. 

Therefore, the returns of speculative base metal positions are 

independent and unpredictable. Speculators cannot use 

historical base metal prices to establish trading strategies. In 

contrast, lead, which has been neglected by speculators in the 

pre-Tin Crisis period, has become a venture, especially for 

hedge funds. 

Table 10. Wild Bootstrapping Variance Ratio Tests by Kim (Weekly) 

 

Number of Lag(q) 
 

q=2 q=4 q=8 q=16 

MV 

Aluminium 0.321 0.508 0.367 0.622 0.59 

Copper 0.136 0.257 0.189 0.234 0.319 

Nickel 0.455 0.338 0.104 0.109 0.25 

Zinc 0.316 0.262 0.564 0.932 0.521 

Lead 0.013 0.023 0.083 0.355 0.024 

Tin 0.917 0.398 0.168 0.367 0.377 

 

Table 11. Variance Ratios Tests for Subperiods for Aluminium 

 

Panel 1: Jun 1987 - Dec 1999 

 Lo-MacKinlay q=2 q=4 q=8 q=16 MV 

z(q) -0.8210157 0.2194402 0.2178528 0.5646629   

z*(q) -0.7080365 0.1858894 0.1806823 0.4640173   

Wright           

R1 -0.5318677 0.1596088 0.1122144 0.6059881   

R2 -0.72733639 0.17521293 0.08400261 0.47380178   

S1 -0.42849916 0.04164408 -0.16461268 0.70577639   

Wild Bootstrapping 0.517 0.808 0.841 0.626 0.826 

Panel 2: Jan 2000 - Oct 2007 

 Lo-MacKinlay q=2 q=4 q=8 q=16 MV 

z(q) -1.065719 -1.921355 -1.882138 -1.761113   

z*(q) -0.909085 -1.661982 -1.8141088 -1.878624   

Wright           

R1 -0.4818216 -0.9741896 -0.9856404 -0.2582153   

R2 -0.9139147 -1.5821974 -1.8924403 -1.4645791   

S1 0.7940667 1.671258 1.8314368 1.838052   

Wild Bootstrapping 0.426 0.116 0.057 0.074 0.09 

Bold letters indicate significant value at a 5% level of significance. 
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Table 12. Variance Ratios Tests for Subperiods for Copper 

 

Panel 1: May 1987 - Dec 1999 

 Lo-MacKinlay q=2 q=4 q=8 q=16 MV 

z(q) 3.335141 2.280108 2.062499 1.216696   

z*(q) 2.2289156 1.6391012 1.5643271 0.9691321   

Wright           

R1 2.021203 1.426938 1.7827 1.484512   

R2 2.684902 1.841207 1.877428 1.384737   

S1 0.2328452 0.3318959 0.79372 0.7978912   

Wild Bootstrapping 0.017 0.099 0.11 0.294 0.065 

Panel 2: Jan 2000 - Oct 2007 

 Lo-MacKinlay q=2 q=4 q=8 q=16 MV 

z(q) -0.5972639 -0.2061396 0.258276 0.6556939   

z*(q) -0.4524579 -0.1547324 0.1972922 0.5135722   

Wright           

R1 0.339061 0.9968891 1.6221034 2.1306909   

R2 -0.08878395 0.39298741 0.98475317 1.40970458   

S1 1.1911 1.573207 1.660601 1.783834   

Wild Bootstrapping 0.695 0.895 0.836 0.565 0.875 

 

Table 13. Variance Ratios Tests for Subperiods for Nickel 

 

Panel 1: Oct 1987 - Dec 1999 

Lo-MacKinlay q=2 q=4 q=8 q=16 MV 

z(q) 1.202709 1.456086 2.118585 1.732237   

z*(q) 0.6744475 0.7838177 1.1801139 1.0612362   

Wright           

R1 -0.32754 0.4250585 1.6078637 2.1011732   

R2 0.4676345 1.0336572 2.1184506 2.3342587   

S1 -1.6168822 -1.201532 -0.266637 0.4345256   

Wild Bootstrapping 0.528 0.44 0.211 0.202 0.448 

Panel 2: Jan 2000 - Oct 2007 

Lo-MacKinlay q=2 q=4 q=8 q=16 MV 

z(q) 0.4046801 0.4233706 0.8351621 0.9395991   

z*(q) 0.3877433 0.3789734 0.7346946 0.8302097   

Wright           

R1 0.5570274 1.3412206 1.7850327 1.8426249   

R2 0.5145777 0.8061596 1.1720264 1.182444   

S1 0.9925833 1.1222324 1.4495472 1.6455909   

Wild Bootstrapping 0.711 0.707 0.396 0.347 0.628 

Bold letters indicate significant value at a 5% level of significance. 
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Table 14. Variance Ratios Tests for Subperiods for Zinc 

 

Panel 1: Jan 1988 - Dec 1999 

 Lo-MacKinlay q=2 q=4 q=8 q=16 MV 

z(q) -1.4194891 -0.501723 -0.180906 -0.2049653   

z*(q) -1.1868918 -0.4374617 -0.1649377 -0.191621   

Wright           

R1 -0.944128763 -0.178139682 0.141703915 0.001102306   

R2 -1.10137124 -0.22746573 0.06810524 -0.08562153   

S1 -1.1488539 -0.7456786 -0.8391858 -1.067312   

Wild Bootstrapping 0.245 0.698 0.916 0.931 0.465 

Panel 2: Jan 2000 - Oct 2007 

 Lo-MacKinlay q=2 q=4 q=8 q=16 MV 

z(q) -0.5778571 -1.5471504 -0.8496695 -0.1119112   

z*(q) -0.4716823 -1.1522514 -0.618373 -0.0832666   

Wright           

R1 0.07809423 0.04549748 0.85291534 1.28727299   

R2 -0.2536675 -0.7972251 -0.1236843 0.6568421   

S1 0.1985167 0.5040302 1.3589954 1.7689605   

Wild Bootstrapping 0.673 0.268 0.538 0.973 0.539 

 

Table 15. Variance Ratios Tests for Subperiods for Lead 

 

Panel 1: Jun 1989 - Dec 1999 

 Lo-MacKinlay q=2 q=4 q=8 q=16 MV 

z(q) -1.1187916 -1.0428363 -0.6388334 -0.2171221   

z*(q) -0.7926261 -0.7852637 -0.5255211 -0.1929942   

Wright           

R1 -0.7635833 0.1563138 0.5149064 0.816758   

R2 -1.0283987 -0.5866297 -0.2411246 0.1476666   

S1 0.5756472 0.7179582 1.187086 1.3862494   

Wild Bootstrapping 0.481 0.481 0.625 0.908 0.774 

 Panel 2: Jan 2000 - Oct 2007 

 Lo-MacKinlay q=2 q=4 q=8 q=16 MV 

z(q) -3.692883 -2.862231 -2.26994 -1.484382   

z*(q) -2.341566 -1.8949 -1.563057 -1.090845   

Wright           

R1 -2.4630988 -2.4630988 -1.4374042 -0.7077112   

R2 -2.790994 -2.301453 -1.792485 -1.130328   

S1 -2.2903583 -0.9550046 -0.2348881 0.4989183   

Wild Bootstrapping 0.012 0.023 0.144 0.417 0.021 

Bold letters indicate significant value at a 5% level of significance. 
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 Market regulators observe base metal futures prices in 

order to find evidence of market manipulation and insider 

trading. An inefficient market complicates the monitoring 

because regulators cannot verify precisely the occurrence of 

market manipulation, as any market anomaly might be based 
on the market inefficiency. As the base metals except lead 

traded at the LME, follow a random walk, the monitoring of 

market manipulation and insider trading is unproblematic. 
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