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Abstract: The stability problem for a class of stochastic neural networks with Markovian jump parameters and leakage delay is
addressed in this study. The sufficient condition to ensure an exponentially stable stochastic neural networks system is presented and
proven with Lyapunov functional theory, stochastic stability technique and linear matrix inequality method. The effect of leakage
delay on the stability of the neural networks system is discussed and numerical examples are provided to show the correctness and
effectiveness of the research results .
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1. INTRODUCTION

In  the  past  decades,  neural  networks  systems  have  elicited  much  attention  because  of  its  massive  potential
application  in  many  fields,  such  as  pattern  classification,  reconstruction  of  moving  images,  and  combinatorial
optimization, etc. In the real applications, ensuring the stability of the equilibrium point of the designed neural networks
is an important task and has been a popular topic. Time delay and stochastic disturbance are well known as the two
main factors that affect the stability of neural networks. Many new results have been obtained from stability analyses of
stochastic neural networks with different types of time delays [1 - 8].

Recently, a special delay called leakage or forgetting delay has been investigated widely since its existence in real
systems was discovered. This special delay affects the stability of time delay systems. Many exciting research results
have  been  reported  recently  [9  -  13].  As  pointed  out  in  [9,  10],  neural  networks  with  leakage  delay  is  a  class  of
important networks. In [10], the global exponential stability of complex-valued neural networks with leakage delay was
investigated with complex-valued linear matrix inequality technique, by establishing a novel stability lemma . Then, by
using stochastic analysis theory and matrix inequalities technique, the exponential stability of a kind of stochastic neural
networks with leakage terms are studied in [11]. The global μ-stability results for complex-valued neural networks with
leakage time delay and unbounded time-varying delays were obtained in [12] through the free weighting matrix method
and stability theory. By using the properties of M-matrix, the properties of the fuzzy logic operator, the eigenvalue of
the spectral radius of nonnegative matrices and delay differential inequality, a class of fuzzy cellular neural networks
with time delay in the leakage term and impulsive perturbations was investigated in [13]. However, the leakage delay
studied above was constant. Subsequently, the research on leakage delay was extended to time-varying [14, 15]. In [14],
with Lyapunov method, a triple Lyapunov-Krasovskii functional term was employed to study the robust stability of
discrete-time uncertain neural networks with leakage time-varying delay.
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Stochastic model plays an important role in the branches of economics, industry and science. A particular field of
interest is stochastic system with Markovian jumping parameters. The Markovian jump system shows an advantage in
modeling these dynamic systems presented above, and much progress has been made in stability analysis, impulsive
response  and  state  estimation  of  stochastic  neural  networks  with  Markovian  jumping  parameters,  [16  -  23]  and
references therein.

Motivated by the discussion above, this study investigates the exponential stability of a class of stochastic neural
networks with time-varying and leakage delays. By employing a suitable Lyapunov functional and introducing a new
inequality technique, the sufficient condition to render the system exponentially stable is obtained by solving a set of
strict  linear  matrix  inequalities.  Examples  and simulations  are  presented  to  show the  effectiveness  of  the  proposed
methods. The mutual effect between discrete and leakage delays as well as the derivative of time-delay are discussed.
The experimental analysis reveals that the effect of leakage delay existing in neural networks on stability can not be
disregarded.

2. PROBLEM FORMULATION

Let rt, t ≥ 0 be a right-continuous Markov chain defined on a complete probability space (Ω,F,P) and take discrete
values in a finite state space S = {1, 2, ..., N} with generator given by Π = (πij)N×N:

(1)

where Δ > 0, πij ≥ 0 is the transition rate from i to j while 

Consider the following stochastic neural network with time-varying delay:

(2)

where  is the state vector of the neural network associated with n neurons,
ω(t)  is  an  m-dimensional  Brownian  motion  defined  on  a  probability  space  (Ω,F,P),  which  is  assumed  to  satisfy
E{dω(t)} = 0, E{dω2(t)} = dt. A(rt) = diag{a1,...,an} is a diagonal matrix with positive entries ai > 0 (i = 1, 2,..., n), f(x(t))
= [f(x1(t)),..., f(xn(t))]

T  denotes the neuron activation function and W(rt), W1(rt), W2(rt), W3(rt) are the connection
weight  matrices  and  the  delayed  connection  weight  matrices,  respectively.  C(rt)  and  D(rt)  are  known  real  constant
matrices  with  compatible  dimensions.  The  δ(t),  τ(t)  denotes  leakage  term and  the  transmission  delay,  respectively,
which satisfying:

(3)

ρ = max{δ, τ} and µ is some positive scalar. ζ(t) is real-valued continuous initial condition on [-ρ, 0]. Throughout
the paper, we assume that ω(t) and r(t) are independent.

For simplicity, in the sequel, for each rt = i ϵ S, A(rt), W(rt), W1(rt) are denoted by Ai, Wi, W1i and so on. Therefore,
the system (2) can be rewritten as:

(4)
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Assumption 1. For i ϵ {1,2,..., n},  x, y, , , x ≠ y, the neuron activation function fi(·) is continuous, bounded
and satisfies:

(5)

where Σ1 and Σ2 are some constant matrices.

Remark 1.  In  this  study,  Assumption 1 is  based on neuron activation function,  which is  called sector-bounded
neuron activation function [12]. As pointed out in [12], when Σ1 = Σ2 = -Σ, the condition (5) becomes:

(6)

The  condition  is  less  restrictive  than  the  descriptions  on  both  the  sigmond  activation  functions  [9,  10]  and  the
Lipschitz-type activation functions.

At first, we derive the following Lemmas which will be used frequently in the proof of our main results.

Lemma 1 [4]. For  any  constant  symmetric  positive  defined  matrix J Rm×m, scalar η and the vector function ν :
[0, η]→ m, the following inequality holds:

Lemma 2 [24]. Assume that x(t), φ(t), g(t) satisfy the stochastic differential equation

(7)

where ω(t) is a Brownian motion. For any constant matrix Z ≥ 0 and scalar h > 0, the following integration holds:

(8)

Definition 1. The stochastic neural networks system (2) is said to be exponential stable in the mean square sense, if
there exist positive scalars α, β such that:

(9)

3. MAIN RESULTS

In this section, the exponential stability of system (4) is developed by Theorem 1.

Theorem 1. For given positive scalars δ, µ, ρσ and τ, the Markovian jumping stochastic neural network system (4) is
exponential mean square stable, if there exist symmetric positive definite matrices Pi, i S, Rk(k = 1,2,3,4,5) and two
diagonal matrices F1 > 0, F2 > 0 such that the following linear matrix inequality (LMI) holds:
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(10)

where

Proof: For simplicity, we let:

(11)

(12)

Then the system (4) can be rewritten as:

(13)

We choose the following Lyapunov-Krasovskii functional candidate as:
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Following Itô differential rule, the stochastic differential of dѴ(x(t), t, i) with respect to t along the system (4) is
obtained by:

(15)

where

(16)
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and

(17)

(18)
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(20)
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Applying Lemma 1 to (19) and Lemma 2 to (21), we can obtain:
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On the other hand, it can be deduced from Assumption 1 that for i = 1,2,..., n,

(24)

Then there exist scalars λ1i > 0, λ2i > 0, diagonal matrices F1 ≥ 0, F2 ≥ 0 and Σi(i = 1, 2) such that the following
inequalities hold:
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where

.
Therefore, from (30)-(31), the following inequality can be obtained:

(32)

Applying Gronwall-Bellman lemma to the inequality (30), we can obtain:

.
Noting that there exists a scalar α > 0 such that:

(33)

Then by (9), we can draw the conclusion that the system (4) is exponentially mean square stable, thus completing
the proof.

When leakage delay is constant, that is, δ(t) = δ, the system (4) can be rewritten as follows:
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Theorem 2. For given positive scalars δ, µ and τ, the Markovian jumping stochastic neural network system (34) is
exponential mean square stable, if there exist symmetric positive definite matrices Pi, Rj(j = 1,2,3,4,5) and two diagonal
matrices F1 > 0, F2 > 0 such that the following linear matrix inequality (LMI) holds:
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4. NUMERICAL EXAMPLES

In this section, two numerical examples with simulation results are provided to demonstrate the effectiveness of the
proposed approaches.

Example 1. Consider a two-neuron stochastic neural networks system (4) with the following parameters:

Mode 1

Mode 2

Assume that the Markov process governing the mode switching generates:

Take the neuron activation functions as follows: f (x) = 0.5(|x + 1| - |x - 1|).

Following Assumption 1, we obtain, F1 = diag {0, 0}, F2 = diag {0.05, 0.05}. In this example, we set µ = 0.3, τ = 0.8
and δ = 0.26, by virtue of the Matlab LMI Control box, solving the LMI (10), the feasible solution can be obtained as
follows:

Fig. (1). Response of the state x(t).

Fig. (2). Markovian jumping mode of x(t).
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The simulation results of the state response of system (4) are plotted in Figs. (1) and (2), where the initial condition
x(0) = [1.5; -1], Fig. (1) shows the state response of system (4), and Fig. (2) depicts the switching modes. The figures
illustrate that when two Markov processes are under control, the stochastic neural networks system with leakage delay
is stable.

The upper bounds of delays ρσ, δ and τ guaranteeing the stability of system (4) are listed from Tables 1 to 3, where -
signifies that LMI (10) exhibits no feasible solution. Table 1 shows the maximum allowable upper bound δ for different
values of ρσ, which indicating that the bound of the derivative of the leakage time-varying is effective and plays an
important role in obtaining feasible results.

Table 1. Allowable upper bounds of δ with different value of ρσ, µ = 0.1, and τ = 0.5.

ρσ 0 0.02 0.06 0.1 0.2 0.3 0.4
δ 0.3619 0.2970 0.2408 0.1991 0.1176 0.0519 -

Table 2. Allowable upper bounds of τ for different value of δ, γ = 0.1, and τδ = 0.01, µ = 0.5.

δ 0 0.05 0.1 0.15 0.2
τ 0.3867 0.2887 0.2415 0.1292 -

Table 2 indicates that when fixing the value of ε, ρσ and γ, the allowable upper value of τ is effected by δ, especially
when δ = 0.2, the feasible solution cannot be obtained.

When ρσ is a non-zero constant, the allowable upper bounds of τ for different values of ε are listed in Table 3.

Table 3. Minimum allowable bounds of τ for different values of ρσ and δ = 0.2.

µ 0.1 0.3 0.5 0.9 0.95
τ 0.4778 0.4174 0.3254 0.2727 0.2727

Example 2. Consider a three-neuron two-mode stochastic neural networks with Markovian jump parameters and
mixed time delays (2) with the following parameters:

Mode 1

Mode 2

Let the Markov process governing the mode switching has generator:

By setting µ = 0.1, ρσ = 0.001, τ = 1.2 the state and switching modes simulation curve of the system (4) are shown in
Figs. (3) and (4), which conform the effectiveness of our results.
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Fig. (3). Response of the state x(t).

Fig. (4). Markovian jumping mode of x(t).

Furthermore, by setting δ = 0.8 and τ = 1.6, we can obtain the state simulation curve in Fig. (5). Fig. (5) indicates
that when leakage delay increases, the system (4) tends to be unstable.

Fig. (5). Response of the state x(t).

SUMMARY

We studied the stability problem for a class of stochastic neural networks with Markovian jump parameters and
leakage delay in this study. By employing a proper Lyapunov functional, combined with the stochastic stability analysis
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method, the stability criterion is derived to ensure the developed system is exponentially mean square stable based on
LMIs. Finally, we discussed the effect of leakage delay on stability of neural networks system. Numerical examples
were provided to testify the rightness and effectiveness of the research results.
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