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Abstract:

Introduction:

This work presents analysis, design and implementation of two schemes of Extended State Observer (ESO) to estimate the position,
velocity and unmeasurable states for magnetic levitation systems, Linear ESO (LESO) and Nonlinear ESO (NESO). The multiplicity
of design parameters for both LESO and NESO made it difficult to find appropriate setting of these parameters such that to reach
satisfactory performance of observation process.

Methods:

Particle Swarm Optimization (PSO) technique is  used to improve performance of observation process by finding optimal tuned
parameters of observer design parameter subjected to specified performance index. Theoretical results of both observers are firstly
implemented in the environment of MATLAB/SIMULINK. Then, experimental state estimation of observers is  set  up based on
feedback instrument (33-942S) to verify the simulated results.

Results and Conclusion:

Root Mean Square (RMS) of estimation error has been used as an indicator to assess the performance of observers. The simulated
and practical results showed that LESO could give better estimation performance than NESO.

Keywords: Magnetic levitation system, Extended state observer, PSO, Nonlinear systems, Observer-based control.

1. INTRODUCTION

The observer is an indispensable tool for most advanced feedback control strategies. Their main role is to estimate
the unmeasurable sates or disturbances for large applications of observer-based control. Practically, usage of observer
can give less reduction of weights and cost and increase the system measuring reliability as compared to the case of
employing the actual sensors [1].

On the contrary of linear observer theory, which has approximately reached to a saturation point, researches on
nonlinear systems observers are still premature and far away from complete. Actually, design methodologies, stability
analysis and formulation of nonlinear observer for nonlinear systems still encounter hard difficulties. In this context, the
enlargement of stability region of attraction for nonlinear observer is the challenging problem which attracted many
researchers who proposed many approaches to solve this problem. One solution is based on expansion or linearization
irrespective to system complexity such as Leunberger observer and Kalman filters for nonlinear systems [2].

The Luenberger observer (1971), which is a linear observer, has been the essential approach in designing the state
estimators in control theory. The works proposed by Arthur J. Krener and Alberto  Isidori  (1983),  Arthur  Krener  and
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Wiltold  Respondek  (1985),  and  Xiaohua  Xia  and  Wei  Gao (1989)  had  firstly  addressed  the  theory  of  observers  in
nonlinear system by approximating the nonlinear dynamic of observation error to linear structure by imposing a set of
conditions.  However,  the  necessary  and  sufficient  conditions  of  such  observation  approaches,  like  the  feedback
linearization  problem,  are  somewhat  restrictive  [1,  2].

Another  contribution  to  the  linearization  technique  is  made  by  Zeitz  (1987),  which  proposed  an  algorithm that
extends the Luenberger observer for nonlinear systems. This algorithm used input time derivatives and it was easy to
implement. However, the critical issue with this technique is that the convergence of the Luenberger observer cannot be
guaranteed.  Later  in  1989,  Tornambe  presented  an  approach  to  cancel  the  nonlinearity  based  on  high  gain
approximation. The main drawback with this algorithm is that it cannot guarantee asymptotic convergence of estimation
error to zero with arbitrarily finite high gain in spite that the error might be bounded and the initial conditions of both
system and observer states have to be set synchronously [1, 2].

In 1990, an adaptive observer was proposed by Marino for Single Input-Single Output (SISO) nonlinear systems.
The difficulty with this observer is that the nonlinear system is either in (or transformed to) an observable canonical
form. The work presented by Bastin and Gevers (1988) could establish the necessary and sufficient conditions that
transform  the  nonlinear  system  into  observable  canonical  form.  However,  such  conditions  are  restrictive  since
transforming the observer to canonical form may be difficult to be found. Although this adaptive observer does not
require the full information of dynamic systems model, it can guarantee asymptotic stability to only finite error [3].

In 1990, Tsinias proposed an observer which is able to guarantee the convergence of estimated states of observer to
the actual states. In 1992, Gauthier et al. presented a contribution to the nonlinear observation theory by introducing an
observer which can asymptotically track the states of nonlinear system in such a way that the Lyapunov equation can be
determined  by  observer  gain.  However,  the  existence  of  globally  defined  and  globally  Lipschitzian  change  of
coordinates is a prerequisite of this observation method. It was shown that for any nonlinear system which is observable
to any input, an observer with global convergence can be found. Gauthier et al. could present an alternative proof to
show this hypothesis [2].

In  1992,  Khalil  and  Esfandiari  presented  a  new  observer  for  output  feedback  control  design  called  High-Gain
Observer (HGO). HGO shows robust characteristics in estimating the unmeasured states and asymptotic attenuation of
disturbances. Later in 1999, Attassi etal proved that the separation principle can be achieved with HGO for a wide class
of systems and this was the basis in solving many nonlinear system problems [4, 5]. In 2008, a modified version of
HGO named as an Extended High Gain Observer (EHGO) has been proposed by Freidovich. The observer was used to
reduce the effect of model errors and unknown disturbances in fully actuated mechanical systems [6, 7].

Other efficient tool for observation is the sliding mode observers. The development of this type is contributed by
pioneers of researchers such as Slotine, Utkin and Walcott [8]. These observers are basically based on sliding theory
and can solve the problem of peaking phenomenon seen in HGO. They are able to offer finite-time convergence, and
robustness with respect to uncertainties and the possibility of uncertainty estimation. Second sliding mode observer,
super twisting sliding mode observer and adaptive sliding mode observer are other advanced versions of sliding mode
observer, which recently used in many applications [8, 9].

In 1995, J. Han introduced a unique observer design by class of Nonlinear Extended State Observers (NESO). The
main feature with this observer is that it does not depend on plant mathematical model. Thus, enhanced robustness has
been achieved and it was verified and applied in different industrial observer-based control applications [10 - 12].

Generally, the observers can be divided into three groups: linear, non-linear and disturbance observers. The linear
and nonlinear  observers  mainly rely on the mathematical  model  of  considered systems including the knowledge of
existing noises and disturbances. More exact model information will give better estimation accuracy of such observers.
On  the  other  hand,  the  disturbance  observer  is  concerned  with  input-output  data.  This  type  of  observer  can  tackle
systems of  high nonlinearities  and uncertainties  and has  the  capability  to  disturbance rejection effectively.  Fig.  (1)
illustrates the details of observer classification [1, 2].

The present work focuses on design and real-time verification of two Extended State Observers (ESO), linear and
nonlinear observer. The Particle Swarm Optimization (PSO) method has been used to find optimal design parameters of
linear and nonlinear observers for further improvement of their performance towards more accurate estimation.
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Fig. (1). General Classification of Observers.

2. MODELING OF MAGNETIC LEVITATION (MAGLEV) SYSTEM

Maglev system is a single degree-of-freedom which basically operates on the principle of levitation force. This force
is generated by a magnetic field, which is established and controlled by the coil current. This electromagnetic force
attracts up the ferromagnetic ball  of the Maglev system. The system contains a sensor which determines the actual
position of ball and a driver which is responsible for actuating the current in the coil. The schematic representation for
the position control of system ball is depicted in Fig. (2). The figure indicates that the controller receives the reference
signal  and  feedback  signal  from  the  sensor  (both  in  volt)  and  manipulates  the  error  signal  to  give  a  satisfactory
response. The error control signal is converted into a corresponding current control signal by the current controller to
actuate the system coils [10].

Fig. (2). The schematic representation of Maglev System.

Using Kirchhoff’s voltage law, the applied voltage u (t) can be divided into voltage VR (across the coil resistor R)
and VL (across coil inductance) [10];
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(1)

where i is the current flowing in the coil. Using the above equation, the coil current can be obtained,

(2)

Since practically R >> L, then the term e-(R/L)t would reach to zero in a fast exponential decay; Therefore, the above
equation becomes

(3)

where k1 is a proportionality constant.

According to Newton's Laws of motion and Fig. (2), one can relate the electromagnetic force f (x, i) to the mass of
ferromagnetic ball musing the following equation;

(4)

where  x  is  the  distance  between  ball  center  and  Maglev  coil,  a  and  g  are  the  gravities  due  to  acceleration  and
gravity, respectively.

It is known that the electromagnetic force f (x, i) is a function of position and current, which can be described by:

(5)

where K represents the electromagnetic constant. Considering a =  and using Eq. (4) and (5), one can obtain

(6)

If the state variables x1 and x2 are assigned to the ball position and velocity, respectively, then 
and the following state variable system can be reached;

(7)

The above equation can be reformulated as

(8)

where b  is  an estimate value and the function f  has been used to lump the uncertainty,  disturbance and nonlinearty

effected on system  This term has to be continuous and differentialble so that ESO
has to be applied properly.

3. EXTENDED STATE OBSERVER (ESO)

Extended state observer has the capability to estimate the state without the need of the system mathematical model.
ESO cannot  only  estimate  the  state,  but  also  the  external  and  internal  disturbances.  The  emerging  of  ESO made  a
revolutionary  concept  for  control  theory  and  applications  and  the  evolution  of  this  estimation  method  could
significantly promote the state feedback control of nonlinear dynamic systems. This observer is characterized by model
independence, compensation for disturbances active estimation, strong robustness and simple design. Additionally, the
ESO could find a solution to classes of uncertain systems [11, 12].
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3.1. Nonlinear Extended State Observers (NESO)

The extended state model of Eq. (8) is established by assigning a new state to the lumped function; i.e, x3 = f , as
indicated by the following extended state equation,

(9)

In state space form, Eq. (8) can be written as;

(10)

where  . The proposed nonlinear extended state observer is given by;

(11)

when  is the estimate of the state f,  which assumed to be zero. The observer
described by Eq. (11) is the NESO observer for the system (8), where b 0 is the normal value of b and gi (e) = fal which
defined as follow:

fal is a nonlinear gain function. Fig. (3) clarifies the difference between the linear and nonlinear gains. The parameter δ
discriminates the linear and nonlinear region. The errors less (greater) than δ submit to linear (nonlinear) characteristics
of the nonlinear fal function. In nonlinear region, the effect of parameter α is indicated in Fig. (3). It is clear from the
figure that function becomes linear for all values of error with the value α = 1.

Fig. (3). Comparison of Linear and Nonlinear Gains.
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3.2. Linear Extended State Observers (LESO)

Consider a generally nonlinear time-varying second order dynamic system (7). Since the term f in Eq.(8) is now a
new state in the extended state model, the LESO described by Eq. (10) would estimate the derivatives of both y and f.
With y and u as inputs, the LESO defined of Eq. (8) becomes

(12)

where , and l1, l2 and l3 are the observer gains to be properly chosen. The choice of these observer gains
are  selected  in  such  a  way  to  guarantee  the  characteristic  polynomial  S2  +  l1S

2  +  l2S  +  l3  to  be  Hurwitz.  This
characteristic polynomial can be written as follows:

(13)

where  wo  is  the  observer  bandwidth  and   The  method  is  used  to  decouple  between  observer
bandwidth and gain is called parameterization, which is firstly proposed by Gao [14, 15]. In general, larger bandwidth
of  observer  leads  to  more  accurate  estimation.  However,  the  increase  of  observer  bandwidth  will  raise  the  noise
sensitivity.  As  such,  the  proper  selection  of  observer  bandwidth  should  compromise  between  noise  tolerance  and
tracking performance.

4. PSO-BASED OBSERVATION PROCESS

Try and error procedure to find the best values for specified performance index is cumbersome and exhaustive and
does not lead to an optimal solution. As such, auto-tuning tools like genetic, foraging, artificial bee colony and particle
swarm optimization techniques are used instead. In the present work, PSO is used due to its high speed and efficiency.
The  PSO  technique  is  inspired  from  social  organisms  such  as  bees,  ants,  flock  of  birds  and  school  of  fish.
Mathematically,  PSO algorithm permits  to  find  the  global  minimum (or  maximum)  for  many  optimized  problems.
Individuals are called as particles in PSO. A particle represents a potential solution to a problem. Design parameters and
the objective functions are the main elements of such technique. Generally, the objective of PSO algorithms is to find,
in  an  autonomous  manner,  the  optimal  solution  of  design  parameters  which  satisfies  the  minimum  (or  maximum)
objective function of the problem.

Here, PSO-based optimization is used to find a set of NESO and LESO parameters such that a specific performance
index for NESO and LESO is minimized.

In the problem of optimized performance for observation process, there are different particles for nonlinear observer
and different particles for linear observer. Each particle has N population size and the update equation of each particle
velocity and position within the PSO environment is given by [16, 17],

(14)

where, vj (i) and xi (i) are the velocity and position of jth particle at ith iteration, respectively. The coefficient is the
cognitive learning rate, while coefficient c2 is the social learning rate. The random numbers r1 and r2 ranges between
(0-1). The weight w is added to adjust the amount of velocity damping of particles over time.

The performance index is a quantitative measure to test the performance of the NESO and LESO. In this paper,
RMS with the max overshoot has been taken as a performance index, which is given.
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added to avoid the access of max overshoots in position and velocity responses, respectively. The PSO was applied in
order to find the optimal observers parameters which give the most accurate estimation.

5. RESULTS OF REAL-TIME IMPLEMENTATION

The designed observers along with optimized parameters are applied to a real-time laboratory magnetic levitation
system designed by feedback instruments. Fig. (4) shows the experimental set-up of observers (LESO and NESO) for a
magnetic levitation system using Feedback device (33-942S) [18].

Fig. (4). Feedback instrument of magnetic levitation system.

The experimental observer-based magnetic levitation system consists of levitation coil, ferrite ball, driver, sensor
and  Personal  Computer  (PC).  The  observer  algorithms  (ELSO  and  NELSO)  are  implemented  within  MATLAB
environment (R2016b). Both ELSO and NELSO receive the input signal from MATLAB software, while the real ball
position  is  measured  from the  hall  sensor  shown in  Fig.  (4).  However,  the  feedback  device  supplies  a  simple  PID
controller to stabilize the ball at equilibrium position. The control signal from PID controller actuates the coil via a
driver (Feedback 33-210).

Table 1 lists the parameters of considered magnetic levitation systems.

Table 1. The values of system parameters.

Parameter Symbol Value
Electromagnetic constant k 2.5 10-5

Current driver constant k1 1.05
Ball mass M 0.02 [kg]

Gravity constant g 9.8 [m/s2]
Coil resistance R 22 Ω
Coil inductance L 0.277 H at 1 k Hz

It  is  worthy to  mention that  the  model  of  Maglev system,  described in  Eq.  (7),  is  only  for  theoretical  analysis.
However,  the  model  developed  by  feedback  instruments  (33-942S)  take  into  account  some  practical  aspects  and
measurement.  For  instant,  the  position  is  expressed  in  volts  instead  of  meter.  The  model  supplied  by  feedback
instruments is given by [18];
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where  the  position  is  measured  in  voltage  scale.  This  would  motivate  us  to  set-up  a  new optimization  process  for
optimal tuning of parameters before indulging into experimental results. Table 2 gives the settings of PSO algorithm.
Tables 3 and 4 report the optimized design parameters of LESO and NESO, respectively.

Table 2. PSO parameters

Parameter Name Value
w 1
c1 1.5
c2 1.5

Table 3. LESO optimal parameters.

Parameter Name Value
wo 100
L1 300
L2 3 × 104

L3 1 × 106

b 1

Table 4. NESO optimal parameters.

Parameter Name Value
L1 300
L2 3 104

L3 1 106

b 1
α1 1
δ1 0.01
a2 0.5
δ2 0.01
α3 0.25
δ3 0.01

The above tuning process took into account the ranges of α and δ to be 0 < α ≤ 1 and 0 < α < 1.2, respectively.

Before starting observation process, the magnetic levitation system has to be firstly stabilized. The stabilization
controller  used  for  this  systems  is  a  simple  proportional  integral  derivative  (PID)  controller.  The  suitably  selected
setting of controller terms for the satisfactory response of magnetic levitation systems Kp = 4.2, Kl = 2.2 and KD = 0.02.

The  first scenario  of state  estimation  is based on  simulated results  within MATLAB/SIMULINK  environment.
Fig.  (5)  shows  the  estimated  states  of  ball  position,  velocity  and  the  extended  state  representing  the  lumping  of
nonlinearity by both LESO and NESO. The measure of observer performance is based on Root Mean Square Error
(RMSE) between the actual measurement and estimated state. The best observer is the one that has less RMSE. Table 5
reports  that  the  RMSE resulting  from LESO is  less  than obtained from NESO,  which means  that  LESO has  better
observation characteristics than NESO.

The second scenario represents the realization of both observers in real time environment using Feedback magnetic
levitation device. Fig. (5) shows the estimates of LESO and NESO, which stands for ball position, velocity and the
lumped nonlinearity of Eq.(8). Again, based on RMSE measurements, LESO shows better performance than NESO as
indicated in Table (5).
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Fig. (5). The estimation of ball position, velocity and extended state for LESO and NESO based on simulation results.

Fig. (6). The estimation of ball position, velocity and extended state for LESO and NESO based on experimental results.

Table 5. NESO optimal parameters.

Type of Results RMSE of LESO RMSE of NESO
By Simulation 2.9797 × 10-4 3.36361 × 10-4

By Experiment 9.3599 × 10-4 9.5948 × 10-4
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CONCLUSION

In this paper, two types of extended state observers, linear and nonlinear, are addressed for the magnetic levitation
system. The observers are applied in order to estimate the velocity of ball and the unmeasured states of the magnetic
levitation system from the measured ones. Based on the information reported in Table 5, one can conclude that LESO
has better performance than NESO in terms of estimation error they produce.
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