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Abstract:

Objective:

This paper provides a literature review on smart grids and big data. Smart grid refers to technologies used to modernize the energy
delivery of traditional power grids, using intelligent devices and big data technologies.

Methods:

The  modernization  is  performed  by  deploying  equipment  such  as  sensors,  smart  meters,  and  communication  devices,  and  by
invoking procedures such as real-time data processing and big data analysis. A large volume of data with high velocity and diverse
variety are generated in a smart grid environment.

Conclusion:

This paper presents definitions and background of smart grid and big data. Current studies and research developments of big data
application in smart grids are also introduced. Additionally, big data challenges in smart grid systems such as security and data
quality are discussed.
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1. INTRODUCTION

Smart  Grid  (SG)  is  an  important  research  and  development  direction  in  the  energy  industry.  It  modifies  the
conventional power grid by integrating advanced communication and computing methods to improve the entire system
control,  efficiency,  reliability,  and  safety  [1].  Smart  grid  carries  electricity  and  information  between  suppliers  and
consumers, which creates a bidirectional power and information flow system [2]. Many countries have recently adopted
smart grid renovation plans [3]. As an example, the ENEL Telegestore project in Italy is the first commercial project
utilizing smart grid technology which brings annual savings of approximately 500 million Euros [4, 5].

Smart  grids  offer  several  benefits  to  electric  consumers,  producers,  and  operators.  SG improves  the  efficiency,
dependability, sustainability, and economics of electric services [6]. Despite its numerous benefits, smart grid is mainly
utilized in small regions [6]. There are several roadblocks preventing smart grids from being used in larger regions such
as information gathering, storing, processing, and management [7 - 9].

Smart grid requires the capability for processing large volumes of real-time data. For example, in the past, utility
companies read meters  monthly, but  with the Advanced  Meter Infrastructure  (AMI), meters  report data  themselves
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every 15-30 minutes [10]. As a result, the size of electric utility systems’ data reached Terabytes (TBs) [10]. Another
important  requirement  for  smart  grid  is  real-time information  processing.  This  is  because  the  entire  system can  be
interrupted by any delay [3]. Such requirements highlight the importance of applying big data, whether it is machine
learning, aggregation, or analytics, into smart grids.

This survey is arranged as follows. Definition of smart grid and energy big data is presented in Section 2. Current
research and studies of  big data application in smart  grids are reviewed in section 3.  Section 4 deals  with big data
challenges: security, quality, and processing location. The future of research in big data applications in smart grids is in
section 5. Lastly, the survey is concluded in section 6.

2. OVERVIEW OF SMART GRID AND BIG DATA

2.1. Smart Grid

Smart  grid  is  as  a  complex  electric  grid  system,  which  includes  subsystems  such  as  smart  meters,  power
generations, substations, distribution, transmission, networking systems, etc [11]. Smart grid is a modified traditional
power system with six main components: network, user, hardware, software, servers, and data [2]. Because smart grid
operates  and depends  on  two-way communication  flow,  reliability  and security  of  the  communication  methods  are
critical for proper information flow and management [12].

Smart grid has several benefits such as integrated renewable energy, bidirectional power and data flow, data-driven
pricing, and power consumption tracking among others [13]. Recent developments in information, communication and
computation brings the smart grid vision to reality. Smart grid also has unique capabilities to perform self-coordination,
self-awareness, and self-healing actions [14].

Smart grid implementation involves challenges such as outdated technology, transmission and distribution losses,
power quality, renewable energy incorporation, and security vulnerabilities [14]. For example, a smart grid system must
meet security requirements to prevent any vulnerabilities in its communication, control, and computation sub-systems
[15].

Fig. (1) shows the structure of traditional and smart grids [16]. The traditional power grid includes unidirectional
transmission, meaning that power flows from power generators to consumers [17]. Smart grid systems, on the other
hand include bidirectional transmission, data driven system, and renewable energy resources to offer additional utilities
to customers, distributers, and providers [17]. Despite all its benefits, smart grids have difficulty in handling large

Fig. (1). Traditional grid vs. smart grid [16].

volume of data within an acceptable time limit and hardware resources [18].
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2.2. Big data in Smart Grids

“Big  data  has  high  volume,  high  velocity,  and/or  high  variety  information  assets  that  require  new  forms  of
processing,” said Douglas Laney [19]. Smart grids require information from sources including sensors, smart meters,
Phasor Measurement Units (PMUs), Geographic Information Systems (GIS), weather data, population data, internet
data and energy market pricing and bidding data collected through Automated Revenue Metering systems (ARMs). In
addition to the magnitude of these data sets, the lack of physical or temporal correlation between their elements renders
them beyond the scope of traditional analysis methods [2]. Relevant state information from all entities of the grid (at all
levels of generation and load) must be communicated with minimal latency to stakeholding respondents that depend on
this information as operating parameters [12].

Big data analytics are the key to developing modern technologies that facilitate interaction among the smart grid
main components including hardware, software, network, user, server, and data [17]. Big data analytics rely on data
mining  and  modeling  algorithms  that  facilitate  corrective,  predictive,  distributed  and  adaptive  decision  making
techniques [18]. The diversity of information in the power grid’s big data sources requires the use of batch, streaming,
and  interactive  processing  methods  for  optimal  handling  based  upon  the  attributes  of  the  data  [17].  The  big  data
attributes can be described by the 4V’s model: volume, velocity, variety, and value [20, 21]. Big data in smart grids
features similar “4V” characteristics [22, 23].

2.2.1. Volume

Utility companies are replacing traditional meters with smart meters, which generate large amount of data [24]. In a
large utility company with one million smart meters, if every 15-minute data is collected, 35.04 billion records with
volume of 2920 TBs data will be generated [25]. The drastic increase in electric power systems data volume introduces
several challenges which will be further discussed in section 4.

2.2.2. Velocity

Velocity in an energy big data context refers to the speed of storing, processing and analyzing the data.  Unlike
traditional data intelligence devices, the storage and processing of energy big data require fast and real-time capability
[26]. Streaming data processing is employed allowing relational data queries to be continuously updated. High velocity
data is analyzed in terms of stream-to-relation, relation-to-relation or relation-to-stream queries [22]. Common querying
languages used include Cassandra Query Language (CQL), Stream Processing Language, Spark Streaming, Storm, and
Fink  Framework  and  Apache  Drill  [2,  17,  22].  The  result  is  the  real-time  interaction  with  data  suffering  nominal
latency. Ad-hoc queries can be processed in PetaByte (PB) magnitudes within a few seconds [2]. Thus, the speed of
data processing can be reduced to a few seconds allowing the energy system to make fast and prompt decisions, such as
fault detection via PMUs and grid self-healing responses [18].

2.2.3. Variety

There are typically three different data types in smart energy systems: Structured, semi-structured, and unstructured.
The degree of structure is defined by the format of the content presented: records with values classified by distinct
categories (e.g. call records from a telecom company) are considered to be structured while graphical data deriving a
relationship  from  the  plot  of  variables  is  considered  semi-structured.  A  completely  free-form  text  entry  such  as  a
Twitter  post  or  online  review  is  unstructured  data  [22].  In  a  smart  grid,  energy  consumption  data  constitutes  the
structured data; communication data between customers and vendor devices form the semi-structured data; and energy
usage email or SMS notifications are examples of unstructured data [24].

2.2.4. Value

Value is a result of the first three V’s with some computation involved. This is why Monica Rogati says, “More data
beats  clever  algorithms,  but  better  data  beats  more  data”  [27].  Energy  big  data  has  value  once  passed  through
computation to support business decisions or help customers [24]. For service providers, value renders into creating
competitive marketing strategies by analyzing the customer energy consumption patterns. Customers could also benefit
from energy savings, transparency in their energy usage and enhanced operational efficiency [24]. Value also depends
on the eye of the beholder. A grid operator would not care about the temperature of a single house or how optimized the
traffic  lights  are  between  each  other.  This  is  why  it  is  so  important  to  include  Value  in  the  description  of  what
constitutes big data.
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3. RESEARCHES RELATED TO BIG DATA APPLICATIONS IN SMART GRID

Three  main  categories  are  identified  for  smart  grid  big  data  applications:  Renewable  Energy  (RE),  Demand
Response (DR), and Electric Vehicles (EV) [2].

3.1. Renewable Energy

With increasing integration of renewable energy sources in power systems,  data management of current  energy
grids  becomes  a  complex  task,  which  should  be  addressed  by  big  data  analytics  [28,  29].  For  example,  historical
weather data and GPS data can be used to improve forecasting of renewable energy power generation, which ultimately
enhances the grid energy efficiency [30]. Data mining and processing have been employed to extract features of time
series data for more accurate forecasting of intermittent renewable resources such as wind and solar [31 - 34].

A Danish power company improved the efficiency of their wind integration by optimizing turbine placement after
analyzing the weather reports, tidal conditions, and satellite images [35]. Another study presented a system that allows
for an optimum mixture of renewable energy resources while meeting the cost-benefit tradeoffs [36].

3.2. Demand Response

Demand response refers to changes in customers’ electricity consumptions in response to changes in the electricity
cost and availability [37]. Flexible loads such as Heating, Ventilation and Air Conditioning (HVAC), which “need to
run but their exact time of operation is not critical” and other controllable loads such as electric vehicles are the targets
of demand response programs [38]. Traditional power systems do not offer real-time demand response, which degrades
grid  reliability  and  adequacy.  Therefore,  big  data  technologies  are  used  in  smart  grid  management  to  improve  the
electricity consumption data accessibility, which expands the demand response [39]. For example, advanced meters
apply game theory and modern communication technologies enabling smart grids to provide real-time demand response
capability for more efficient and reliable operation of the grid [40, 41].

A study reported that during the California electricity crisis, the price of electricity could have been halved if the
demand decreased by five percent [42]. U.S. government issued Federal Energy Regulatory Commission (FERC) Order
719  to  improve  the  electricity  wholesale  markets  by  establishing  rules  and  regulation  for  demand  response  [43].
Additionally, the US government enacted the American Recovery and Reinvestment Act of 2009, which is a 4.5 billion
U.S. dollar funding of smart grid technologies as a means to improve the U.S. electric grid systems [44].

3.3. Electric Vehicles

The International Energy Agency reports that more than 1.2 million Electric Vehicles (EVs) were operating in 2015
[45] in the world. In the US in 2015, 400,000 were operating making about 1/3 of the world’s total use of EV’s.

EVs charge their batteries through the grids, which imposes a significant impact on electric grid systems [46 - 48].
For example, charging EVs in a populated area during the peak time may have consequences such as fuse blowouts,
decreased efficiency, and transformer degradation [49 - 51]. Through its bidirectional communication technology, smart
grids  can  address  these  issues  by  scheduling  the  EV charging  for  off-peak  hours  [52].  In  addition,  by  coordinated
discharging  through  their  vehicle-to-grid  (V2G)  capabilities,  EVs  can  provide  several  benefits  such  as  ancillary
services, mitigating uncertainties of intermittent renewable energy sources such as wind and solar, etc [53], [54 - 56].

There  are  several  studies  for  coordinating  the  EV  charging/discharging  to  benefit  electric  utilities  and  their
customers using genetic algorithms. EV driving and charging data have been extensively analyzed by researchers to
address the issues associated with high penetrations of EVs in electric grids. A team of researchers used an Estimation
of  Distribution  Algorithms  (EDAs)  and  population-based  probabilistic  search  algorithms  to  optimally  manage  the
enormous number of EV’s charging [57]. Such algorithms require the capability to process vast and large volume of
real-time data, which heavily depends on server-based processing or distributed processing networks. Another study
presented a framework for EVs charging demand using big data analysis on data generated by smart meters [58]. Big
data  modeling  for  EV  battery  was  proposed  in  [59]  to  improve  estimation  of  driving  ranges  with  big  data  cloud
computing. Another study presented decision making strategies for EV charging by analyzing the predicted generation
and demand through the use of queue distributions in a distributed network [60].

Table 1 offers interesting research for big data applications in smart grids.
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Table 1. Big Data Applications in Smart Grids – Methods and Case Studies.

Application Ref.
# Method(s) Case Studies

Renewable
energy

[28]
The means of communications through long distance

or remote stations using energy efficient cellular
communication networks.

Off-grid or standalone base stations powered by local small-scale
renewables to not require grid power for communication.

[29]
Multiple models for current, future, and virtual energy
markets used to optimize PV integration into a micro

grid.

A 65 solar panel array with 15 kWH energy storage is simulated. The
system operation is evaluated without any energy sales, with sales
restricted to local users, and sales to both local users and the grid.

[31]

An enhanced K-means algorithm, named Time Series
Clustering (T.S.C) K-means, combined with Multilayer

Perceptron Neural Networks (MLPNN) for solar
radiation forecasting.

Several meteorological time-series datasets are used to assess the
performance of the proposed T.S.C K-means clustering method and its
comparison with other clustering techniques including K-means*, K-

means++, K-means, self-organizing map (SOM), fuzzy C-means
(FCM), and K-Medoids.

Solar radiation datasets from different US states are used to evaluate
the accuracy performance of the developed hybrid forecasting method

and its comparison with state-of-the-art forecasting techniques.

[32]

A novel time-series based K-means clustering method,
named T.S.B K-means, combined with discrete

Wavelet Transform (DWT), Harmonic Analysis Time
Series (HANTS), and MLPNN for wind power

forecasting.

Wind speed, wind power, wind direction, and air temperature data
from National Renewable Energy Laboratory (NREL) are used to
evaluate the novel clustering and hybrid forecasting methods. A

comparative analysis of the proposed hybrid method with other well-
established forecasting models including Persistence, New Reference
(NR), Adaptive Wavelet Neural Network (AWNN), and Phase Space

Reconstruction (PSR) are also performed.

[33]
A Transformation-based K-means algorithm, named

TB K-means, combined with MLPNN for solar
radiation forecasting.

Several different datasets are used to evaluate the proposed TB K-
means clustering and compare it with different variants of K-means

algorithm.
Solar radiation time series with different characteristics are used to

provide a comparative analysis between the proposed hybrid
forecasting and benchmark forecasting models.

[34]

A novel Game Theoretic Self-organizing Map
(GTSOM), combined with Neural gas (NG) and

Competitive Hebbian Learning (CHL), DWT and
Bayesian Neural Network (BNN) for solar radiation

forecasting.

Historical solar radiation data are used to assess the performance of the
hybrid forecasting with the proposed GTSOM and other clustering

methods.

Demand
response

[39],
[40]

An extended framework of the Stackelberg game
model for demand response optimization.

Homogeneous and heterogeneous generation supply quantities,
generator profit and consumer welfare are evaluated in scenarios with

few and many generation units and a large consumer population.

Electric
vehicle

[49]
Method of defining a more accurate model of electric
consumption by light duty Plug-in Electric Vehicles

(PEVs).

Uncontrolled home charging of EVs and uncontrolled “opportunistic”
charging at public locations are simulated based on travel survey data.

[51] A fuzzy expert method for online management of EVs’
charging demand.

An IEEE 38 bus distribution test feeder including charging stations at 4
nodes is simulated. .Different charging solutions/scenarios are

implemented on the test system and compared.

[52]
A sliding horizon-based method for real-time data

management and optimal coordination of EV charging
with photovoltaic (PV) generation.

A 33 bus system including DG units and EV charging stations is
simulated. EV charging coordination and its effect on PV power

curtailment is evaluated.

[55]

A hybrid of Auto Regressive Moving Average
(ARMA), Fuzzy C-Means (FCM) clustering, Monte

Carlo Simulation (MCS), and Particle Swarm
Optimization (PSO) methods for optimal scheduling of
EVs to increase the use of PV power for EV charging

while providing economic revenues for EVs’
participation in V2G services.

A 12 MW PV system with 424 EVs is simulated. A collaborative
strategy is developed between the EV aggregators and PV producers to
minimize the penalty cost of PV over/under-production by charging the

EVs using the PV power in excess of the scheduled output and
discharging the V2G power to compensate the PV power under-

production. The system performance with and without EV optimal
charging/discharging are evaluated and compared.

[56]

A hybrid of ARMA, FCM clustering, MCS, and
Genetic Algorithm (GA) methods for optimal

scheduling of EVs to increase the use of wind power
for EV charging while providing economic revenues

for EVs’ participation in V2G services.

A 10 MW wind system with 484 EVs is simulated. A bilateral contract
is developed between the EV aggregators and wind producers to use

the extra wind power for EV charging and to discharge the V2G power
during the periods of wind power deficits. The system performance

with and without EV optimal charging/discharging are evaluated and
compared.

4. SMART GRID BIG DATA CHALLENGES AND PROPOSED SOLUTIONS

Three main challenges are identified for big data in smart grids: security, quality, and processing location.
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4.1. Big Data Security

The  use  of  big  data  technology  in  smart  grids  substantially  improves  the  network  connectivity  at  the  price  of
increased security vulnerabilities [61]. In a big data context, security exposures can be divided into three main parts:
privacy, integrity, and authentication.

4.1.1. Data Privacy

Smart meters can be a main privacy concern if their data is not securely transferred and stored [62]. Smart meters
collect  power  consumption  data  of  grid  customers.  Smart  grid  providers  analyze  such  data,  which  provides  great
intuition about users’ behaviors and habits, to offer intelligent customized services [63]. Several methods have been
proposed  to  eliminate  and  minimize  the  privacy  issue.  These  methods  include,  but  are  not  limited  to  distributed
incremental data collection method [64], and masking of consumption data embedded information [65]. Because most
of the existing solutions do not consider the tradeoff between costs of lost privacy and data dissemination (utility), a
new method is proposed to satisfy both privacy and utility requirements of smart metered data [66].

4.1.2. Data Integrity

Risk of integrity attacks is a valid concern because any violation of integrity may cause security vulnerabilities [67].
Customer and network data are usually the targets for integrity attacks, and any modification of such data interrupts the
data  communication exchange and reduces the entire  grid functionality  [2].  For  example,  attackers  can remove the
higher degree nodes and replace them with higher probability nodes in the power network, which affects the integrity of
data [67].

The  data  integrity  in  smart  grids  and  energy  markets  has  been  extensively  investigated.  A  study  presented  the
consequences  of  virtual  bidding,  which  is  a  method  of  creating  profitable  integrity  attacking  strategies  with  no  or
minimal detection in energy markets [68]. Another investigation showed that data integrity attacks can cause unwanted
energy generations and routings, which increase the grid operating costs [69]. Market revenues and their changes due to
data integrity attacks are used as a measure of adversary impact of such attacks [70, 71].

4.1.3. Data Authentication

Users  in  smart  grids  access  the  communication  system  through  authentication,  a  process  that  verifies  the  user
credentials against the accounts credential database [2]. Authentication is used as a tool to identify valid vs non-valid
identities within the majority of existing security countermeasures [72]. One critical challenge that smart grids face is
message injected attacks. If such attacks are not addressed properly, they can significantly reduce the entire smart grid
performance [73]. To address such challenges, a group of scientists proposed an authentication method to secure smart
grid data communication exchange with the use of Merkle hash-tree techniques [73]. Another study proposed a secure
message authentication mechanism by integrating Diffie-Hellman protocols and hash-based message authentication
methods [74]. Such structure allows smart meters within the smart grids to complete mutual message authentication
tasks with minimal signal exchange and latency [74].

4.2. Big Data Quality

Data quality refers to identifying and to removing the outliers before transferring the data to the system [75]. Energy
power  consumption  data  should  have  high  degrees  of  quality  to  ensure  correct  data  analysis  and  ultimately  proper
decisions. The quality issues of energy consumption data are categorized into noise data, incomplete data, and outlier
data [76].

4.2.1. Noise Data

Generally, any data that is difficult to comprehend and/or to decode by computers is considered noise data, which
degrades the data quality [76].  In a smart grid context,  logical errors and inconsistent energy consumption data are
considered noise [77, 78]. Logical errors are defined as the data that violates any given rules and characteristics [79].
For  example,  if  the  daily  customer  energy  consumption  data  includes  25  hours,  it  is  not  logical  as  it  exceeds  the
maximum 24 hours [76]. Moreover, inconsistent data occurs when data does not follow its previously agreed format
[80], or it lacks sense when comparing its individual features [81, 82].
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4.2.2. Incomplete Data

As the smart grid data complexity increases, incompleteness is occasionally observed in energy consumption data.
Several methods such as delete tuple and data filing are developed to address incomplete data [82]. Delete tuple method
simply removes the entire record with incomplete data. However, this method is not appropriate for cases where the
data  set  has  several  incomplete  observations [76].  In  such cases,  the incomplete  data  will  be filled using advanced
algorithms such as average value, artificial value, and regression analysis [82].

4.2.3. Outlier Data

In  statistics,  if  a  point  of  data  is  considerably  distant  from other  data  points,  it  is  called  outlier  [83].  In  energy
consumption data, an outlier may be treated as noise and removed. However, they may hold valuable information and
therefore, should be detected to preserve the data quality. One method of detection is data quality mining, which is to
audit  the data to automatically find outliers [84].  In smart grid systems, outliers should be detected, identified, and
analyzed as they contain critical information such as power rationing, device failures, and suspicious indicators among
others [85].

4.3. Big Data Processing Location

Processing is a key function for utilizing the algorithms required by big data. The current model for processing is
that information is aggregated and sent to a data center to get processed and passed to whomever needs the resultant
information. The current framework as described by H. Jiang is the three-level design with the main data processing at
the center with two layers around it for aggregation and distribution [2]. There are intermediary processors called FOGs
that are regional collection points that also do minimal amounts of processing before passing its collected information
to the data center [87].

Edge based processing is becoming a larger part of the framework of big data. With the drop-in price to compute,
researchers have started to look back when processors had limitations and are creating low power solutions that can go
anywhere and still be able to process at least parts of a machine learning algorithm on small amounts of data. This helps
to create the non-invasive load measuring that is only made possible with low power embedded systems [88].

Table 2  provides the literature for each category of big data challenges, their proposed solutions along with the
solution’s main advantage/disadvantage.

Table 2. Big Data Challenges in Smart Grids and Proposed Solutions.

Challenge Ref. # Solution Advantage / Disadvantage

Security

[63]
A regulatory framework equivalent to Health Insurance

Portability and Accountability Act (HIPPA) for smart grid
privacy and consumer fraud problems

Would provide clear legislative and legal avenues should
problems occur / Bureaucracy would not solve some of the

problems provided

[64]
A distributed incremental aggregation framework for smart

meters to protect users’ privacy by using homomorphic
encryption

Unidirectional functionality not allowing for passing information
back to a specific unit; Time delay of communication in possible
real time operations; Does not look into malicious or fraudulent

data acquisition.

[65]

Using a battery connected between the home and the grid so
that anyone looking at the power usage will see a battery

charging and not the current profiles of the actual items using
power

Makes power usage indistinguishable from one day to the next;
Overhead of installation and usage and wear and tear costs of a
battery system in a home; Difficult to hide high power usage

items such as AC, washer, dryer, etc.

[66] Privacy vs utility: How to get the best of both worlds without
sacrificing too much on either side.

Balanced framework / Gives up privacy information of high
power item usage as well as the price of the battery

[67]
Targeted attacks vs random attacks to smart grid: Building

faster and more resilient networks to fend off attacks through
the communication networks

Faster networks would entail creating a faster protocol to
transfer information; Faster connections mean less encryption or

protections increasing privacy and attacker problems.

[69] Load Redistribution (LR) attacks: Using Multi-start Benders
decomposition to find the most damaging immediate attack. Good attack prevention strategy for this specific type of attack

[70] Proposing strategies to detect and localize malicious attacks Capable of detecting attacks on multiple locations / The number
of locations being attacked expands computation.
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Challenge Ref. # Solution Advantage / Disadvantage

Quality

[75] The data mining-based and the state estimation-based
electricity consumption outlier data detection methods

Data mining algorithms are faster and better at detecting outliers
than traditional methods / Does not account for missing or

redundant data.

[82] Developing a data mining prototype system (RMINE) for fault
diagnosis or system malfunction detection

Capable of obtaining the minimal diagnostic rule set to derive a
logical decision in assisting maintenance engineers to diagnose

faults

[86]
Introducing a new class of attacks, called false data injection
attacks against monitoring of PMUs or smart grid sensors for

state estimation
N/A

Processing
location

[88] Using embedded neural networks to analyze edge-based load
information.

Offers privacy concerns by identifying what is being used in a
specific area.

[89] Creating a micro grid out of a smart home Makes a good framework out of the smart home / Lack of
intelligent connections to the grid makes it unusable.

[90]
Applying edge computing in the Power Internet of Things

(PIOT), such as in monitoring transmission lines, managing
smart homes, etc.

Bandwidth issues, locational solutions

5. FUTURE OF BIG DATA IN SMART GRIDS

The future of research in big data use in smart grids is diverse. Big data offers many solutions to the bi-directional
flow of information as well as processing and analyzing that information. For a smart grid, big data will be a necessity
for realizing the best possible solutions for how we as a society should distribute and utilize renewables as well as how
to analyze systems for abnormal conditions such as faults or power outages. The future of the smart grid will depend on
building these frameworks such that they can be implemented and utilized in a meaningful way. This will include the
planning to real time operation for generators and consumers for current practices to those planned for by 2050 [91].

CONCLUSION

This paper presents the definitions and applications of integrating big data technologies in smart grid systems based
on  current  studies  and  research  developments.  Several  research  articles  are  reviewed  to  understand  the  current
challenges and solutions of big data applications in smart grids and to identify research gaps. Thus, this survey provides
new directions to further investigate such applications and challenges to propose innovative solutions for filling the
identified research gaps.
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