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Abstract:

Background:

The replacement of leaded high octane aviation gasoline with an unleaded renewable alternative would decrease the emissions of
lead and fossil-derived carbon into the atmosphere. Replacement has been limited by the requirement of a very high octane number
in many existing general aviation aircraft engines.

Method:

Two  separate  process  pathways  were  developed  that  generate  an  unleaded  octane  fuel  with  a  motor  octane  number  >96  from
triglyceride oils (TGs), such as crop oils and algae oil. A series of experiments coupled with process simulations was used to verify
the feasibility of both pathways and to provide preliminary laboratory scale data that could form the basis for further development
towards a commercial technology. In the first pathway, TG oil is catalytically cracked to produce a high concentration of simple
aromatic hydrocarbons. These aromatic hydrocarbons are then alkylated using propylene to form a mixture, which after purification
acquires fuel properties compliant with those in the ASTM specification for 100 octane low lead aviation gasoline (100LL AvGas).
In the second process pathway, the aromatic hydrocarbons are isolated after cracking using a sulfolane solvent extraction process to
increase alkylation efficiency and fuel quality.

Result:

The results demonstrate that it is technically feasible to produce a replacement for 100LL AvGas using either pathway, and thus these
strategies may be attractive candidates for commercialization.

Keywords:  Catalytic  cracking,  Triglyceride  oil,  Renewable  fuel,  Aviation  gasoline,  Transportation  fuel,  Simulation  modeling,
Advanced biofuel.

1. INTRODUCTION

The sole  U.S.  transportation fuel  that  still  uses  additional  tetraethyl  lead (TEL) is  100 octane aviation gasoline
(100LL AvGas), which is produced for reciprocating engines in certain types of aircraft. Approximately 45% of the
U.S. ambient air  lead inventory derives from the use of leaded AvGas [1].  In addition to environmental and health
concerns,  the  limited  availability  of  TEL  has  increased  the  price  of  the  fuel,  making  renewable  alternatives  more
economically attractive. To  the  best of  our knowledge, there  is  now  only  one  manufacturer, Innospec,  in  the 
world which produces TEL and there are only a very small number of refineries which produce 100LL AvGas. Leaded
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AvGas  requires  (in  the  USA)  completely  separate  transportation  and  storage  facilities  and  the  volume  of  AvGas
production represents an extremely small portion (less than 1%) of the gasoline marketplace [2].

To eliminate TEL from AvGas, octane enhancers must be developed that allow a fuel blend with a lean (motor)
octane number on the order of 100 while still having energy density, freeze point, and flash point values that are similar
to those of 100LL AvGas. An example of such a fuel is the alternative aviation gasoline developed by Swift Enterprises
(Swiftjet). This fuel, produced from cellulosic biomass, contains over 80% 1,3,5-trimethyl benzene with the balance
being primarily 2-methyl butane [3]. Other researchers have looked at renewable options to extend the existing 100LL
AvGas fuel supply, most notably with AGE85 being a certified lead-free replacement for AvGas [4].

It  has  been  proposed  that,  similar  to  the  Swift  jet  product,  other  alkylated  aromatic  hydrocarbons  and/or
cycloparaffins may be blended into a fuel mixture that could replace 100LL AvGas. In this study, two novel pathways
were postulated that generate renewable alkylated aromatic hydrocarbons from a triglyceride (TG) oil feedstock that can
be blended into a high octane AvGas. Lab-scale experimental work coupled with process simulations was then used to
verify that each step of the proposed pathways was technically feasible. The primary objective being to identify one or
two technically feasible pathways that could be developed and optimized into a commercially relevant process facility
by future activities.

The  biosynthesis  of  TGs  is  one  of  the  most  common  energy  storage  strategies  used  in  nature.  They  are  most
commonly  synthesized  by  oilseed  crops  as  well  as  certain  strains  of  microalgae  and  bacteria.  TGs  are  present  in
virtually every one of the earth’s ecosystems, from deserts and tropics to arctic tundra. Abundance and the presence of
hydrocarbon-like moieties make TGs an excellent starting material for the synthesis of a renewable high octane AvGas.
In the present study, TG oil is fed to a catalytic reactor where the catalytic cracking of the TG oil can generate a mixture
containing close to 70% of benzene, toluene, o-, m-, and p-xylene (BTX). The BTX in this mixture can be alkylated
and/or  hydrogenated  to  cycloparaffins  to  produce  high  octane  AvGas  Fig.  (1).  If  a  fuel  with  a  more  controlled
composition or an even higher octane number is desired, the aromatic hydrocarbons can be extracted and purified prior
to alkylation and then mixed to yield a more exact formulation (Fig. 2).

Significant previous work has been documented on the catalytic cracking of TG oils [5 - 14]. Most studies suggest
that using a HZSM-5 zeolite catalyst produced the greatest yield of aromatic hydrocarbons during TG oil cracking. Key
catalyst properties, such as the silica-alumina (Si/Al) ratio, calcination time and calcination temperature, affect HZSM-5
activity and product distribution. From these studies, the optimum reaction conditions for a desirable aromatics-rich
liquid product are in the range of 50-60 Si/Al ratio, with a 500°C calcination temperature and a 6 h calcination time.

Fig. (1). A process scheme to generate a mixed stream of high octane aromatic compounds for use as an aviation gasoline.

Once the cracking product is generated, it can be separated from lighter (non-condensable against room temperature
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water)  and  heavier  materials  leaving  an  aromatics-rich  liquid  product  (ALP).  The  primary  aromatic  hydrocarbons
produced by catalytic cracking with HZSM-5 are simple BTX (benzene, toluene, xylenes) compounds. These simple
aromatic hydrocarbons must be converted into higher aromatic homologues to make a suitable replacement for 100LL
AvGas.  This  can  be  accomplished  by  the  alkylation  of  benzene,  toluene,  and  xylenes  using  propylene  to  cumene,
cymene and isopropyl xylenes, respectively. Previous research has shown that β-zeolite and HZSM-5 catalysts facilitate
these  alkylation  reactions  [15  -  20].  In  a  comparative  study  by  Perego  et  al.  β-zeolite  was  shown  to  be  the  only
commercially available zeolite that had a relatively large propylene conversion [21]. As a result, β-zeolite was used in
all alkylation reaction experiments performed.

For  the alkylation step,  there  are  two process  options available  Figs.  (1  and 2):  a)  direct  alkylation of  the ALP
mixture  and  b)  extraction/purification  of  the  aromatic  hydrocarbons  from  the  ALP  followed  by  alkylation  of  the
individual aromatic hydrocarbons. Both of these options were explored in the present work.

The  separation  of  aromatic  and  aliphatic  hydrocarbon  mixtures  is  challenging  due  to  the  overlapping  range  of
boiling  points  of  the  selected  compounds.  Several  combinations  of  aromatic  hydrocarbons  and  alkanes  also  form
azeotropes. Processes that have been studied for the separation of aromatic hydrocarbons from aliphatic hydrocarbon
mixtures include: liquid extraction, suitable for the range of 20-65 wt.% aromatic content [22], extractive distillation for
the range of 65-90 wt.% aromatic hydrocarbons [23], and azeotropic distillation for high aromatic content, >90 wt.%
[24]. The most common solvent used for the extraction of BTX is sulfolane (tetrahydrothiophene-1,1-dioxide) [22, 25,
26].  This  solvent  was  used  in  the  present  work.  Alternative  solvents  include:  ethylene  carbonate  [27],  n-
formylmorpholine  (NFM)  [28],  glycols  [27,  29],  and  ionic  liquids  [24,  26,  30,  31].

Fig. (2). A process scheme to generate a more controlled high octane aromatics product for use as an aviation gasoline.

2. MATERIALS AND METHODS

2.1. Materials

Degummed soybean oil was obtained from Northwood Mills (Northwood, ND, USA). A typical fatty acid profile
for this oil is provided in supplemental Table (S1). The cracking catalyst was commercial ZSM-5 (CVV5524G, Zeolyst
International, Conshohocken, PA, USA) in NH4 form, having a Si/Al ratio of 50 and a surface area of 425m2/g. The
catalyst was calcined as described in section 2.2.1, below. The alkylation catalyst was beta zeolite (CP814E, Zeolyst
International,  Conshohocken,  PA,  USA)  having  an  Si/Al  ratio  of  25  and  an  Na2O concentration  of  0.05  wt%.  The
surface area of the catalyst was 680m2/g. Sulfolane with a purity of 97 wt% was used to extract the BTX out of the
catalytically cracked soybean oil. Benzene, toluene, o-, m-, and p-xylene were obtained from Sigma–Aldrich (St. Louis,
MO, USA). The reaction gases, propylene, hydrogen and nitrogen at 99.9% purity, were obtained from Praxair, Inc.
(Danbury, CT, USA).
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Table S1. Typical soybean oil fatty acid profile.

Fatty Acid Moiety Composition (mol %)
Palmitic (16:0) 11
Stearic (18:0) 4
Oleic (18:1) 26
Linoleic (18:2) 50
Linolenic (18:3) 8
Other 1

Gases used for gas chromatography (GC) analysis were obtained from Praxair (Praxair, Inc., Danbury, CT, USA) at
99.999% or greater purity. For detailed quantitative characterization of samples by gas chromatography, a number of
standards were used. For identification, the following standard mixtures were purchased from Supelco (Bellefonte, PA,
USA):  isoparaffin-,  aromatic-,  naphthene-,  and  olefin-alphagaz  PIANO  [32];  naphtha,  reformate,  and  alkylate
qualitative  reference  standards;  petroleum  crude  qualitative  and  quantitative  standards  [33].

For quantification of the cracking products, individual chromatographic standards of analytical grade were used
representing  the  complete  series  of  unbranched  alkanes  (C5-C18),  selected  alkenes  (C6,  C9,  C14,  C18),  and  aromatic
hydrocarbons (benzene, toluene, o-xylene, m-xylene, p-xylene 1,2,4-trimethylbenzene, indane, naphthalene). Various
solvents were purchased from Fischer Scientific (Waltham, MA, USA): acetonitrile (HPLC grade), methylene chloride
(GC grade). N-methyl-N-trimethylsilyltrifluoracetamide (MSTFA) was used as a derivatization agent for GC analysis of
carboxylic acids and alcohols (Supelco, Bellefonte, PA, USA).

Internal standard calibrations were performed with a mixture of benzene-d6 (102.1 mg·mL-1), 2-chlorotoluene (100.1
mg·mL-1) and o-terphenyl (49.8 mg·mL-1) in methylene chloride. All were purchased from Sigma-Aldrich (St. Louis,
MO, USA). These standards were selected because they are representative of the classes of compounds of interest, will
not  be produced during the reactions,  and provide signals  that  are unlikely to interfere with the product  compound
outputs.

For the quantification of acids and alcohols in derivatized samples, a calibration mixture (0.10-75.0 mg·mL-1) was
used consisting of several representative carboxylic acids (acetic, propionic, butyric, hexanoic, octanoic, decanoic, and
palmitic),  n-butanol,  n-hexanol,  1,3-propanediol,  glycerol,  and  n-decanol.  For  identification,  a  standard  mixture
consisting of C1–C16 carboxylic acids and C1–C10 alcohols was employed. Geraniol (Aldrich, St. Louis, MO, USA) and
o-terphenyl  were  used as  recovery  (10 mg·mL-1  in  acetonitrile)  and internal  standards  (50.0  mg·mL-1  in  methylene
chloride), respectively.

2.2. Catalyst Pretreatment

Both the cracking and alkylation catalysts were activated by calcination. The cracking catalyst was heated at 600°C
while the alkylation catalyst was heated at 450oC, both for six hours in an oven. The catalyst was allowed to cool down
to room temperature in a nitrogen atmosphere. The calcinated catalyst was then transferred to an air tight container until
use.

2.3. Cracking Reactions

All cracking experiments were conducted in a 500 mL volume, high temperature, high pressure batch reactor (Parr
4575 series HP/HT reactor, Moline, IL, USA) as shown in Fig. (3). The specified amount of activated catalyst added to
the reaction vessel was based on the oil/catalyst weight ratio in the design of experiments for the weight of 200 mL of
soybean oil. The reactor was purged with nitrogen to insure an inert environment.

Upon completion, the liquid and residual contents were measured to obtain the overall yield data. No tar was found
in  the  liquid  after  collecting  the  product  on  the  500  mL  batch  reactor  setup  as  all  of  the  highly  viscous  material
solidified in the reactor upon cooling and was mixed with the catalyst to form a residual matter. All of the residual
matter was carefully collected from the agitator blades, cooling coil, thermowell, other internal parts of the reactor and
the reactor vessel. The difference in the weight of the catalyst before and after the reaction was measured and assumed
to be coke. While it is possible that minor levels of absorbed reagents and other material could have also been present,
characterizing all of these as coke was deemed adequate for the proof of concept level study being conducted.

The concentration of BTX in the ALP was increased by selectively separating out the distillate fractions that were
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most  likely  to  contain  the  selected  aromatic  hydrocarbons  based  on  the  boiling  points  of  each  component.  Batch
distillations were performed at atmospheric pressure in a quartz round bottom flask equipped with a distillation column
and a water cooled condenser. Distillation temperatures ranged from 80 to 144oC.

For the sulfolane extraction experiments,  soybean oil  was cracked at  the near  optimum conditions found in the
initial cracking optimization study in the same reactor. The ALP was generated by batch distillation at 135oC.

Fig. (3). Cracking reactor system.

2.4. Sulfolane Extraction Experiments

For the process option shown in Fig. (2), sulfolane was used to extract the BTX from the ALP. Because the ALP is a
unique process mixture, simple extraction experiments were required to determine the partitioning coefficients of BTX
into sulfolane from the ALP. The sulfolane extraction experimental setup replicated a mixer/settler arrangement. All
experiments were conducted in 20mL volume test tubes and at atmospheric pressure. A sonicator (Fisher Scientific
model FS60H, Waltham, MA, USA) was used as the mixer and a centrifuge (Centrific Model 228, Fisher Scientific,
Waltham, MA, USA) was used as the settler.

Five grams of ALP were added to each of six test tubes. The proper amount of sulfolane was added to each test tube
for the three solvent- to-solute ratios and mixed in the sonicator for 10 minutes. The sonicator internal heater was used
to maintain the extraction temperature at  the desired condition (30,  50,  or  70oC).  After  mixing,  the test  tubes were
placed in the centrifuge and spun for four minutes. The two phases, ALP rich solvent (aqueous) and ALP lean solvent
(organic), were collected, weighed, and stored for analysis.

The next step in this process option Fig. (2) is to separate the BTX from the sulfolane and purify the BTX fractions
that will be used in the alkylation reactions. The recovery of BTX from sulfolane and the subsequent separation of the
BTX product mixture into pure components are well developed and used in commercial petroleum-based aromatics
production processes. Thus, it was deemed sufficient to simulate these steps using the ChemCad process simulation
system as described in section 2.6, below.

2.5. Alkylation Reactions

2.5.1. Preliminary Experiments

Preliminary alkylation experiments were conducted to study the feasibility of the reactions based on information
from literature. These experiments were conducted in a 500 mL Parr (Moline, IL, USA) bench-scale autoclave reactor
system similar to that described above for the catalytic cracking work. The actual system is shown in Fig. (S1). In these
experiments, nitrogen was used to pressurize the autoclave to enable the propylene to liquefy and thus be in the same
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phase as the aromatic hydrocarbons, which facilitates adsorption onto the catalyst. At fixed time intervals, samples were
drawn using a dip tube to study the progress of a reaction. At the end of the reaction the slurry of the remaining product
and catalyst was removed from the vessel. The spent catalyst was separated in a centrifuge and the extractant collected
for analysis by GC to determine the change in composition of reactants and products.

Several experiments were carried out to assess the progress of the reaction and also to determine the selectivity of
the catalyst being studied. A BTX blend was used that matched the ALP concentration obtained from the experimental
cracking reactions described above. Propylene was used as the alkylation chemical because it is an abundant by-product
from the cracking of soybean oil [34] and thus would be available internally in a commercial facility.

Fig. (S1). Autoclave reactor system.

2.5.2. Model Compound Alkylation

Once the feasibility of these reactions was established, model compounds were alkylated to measure the yield and
octane number of the products. These experiments also provided the data needed to evaluate the process alternative
described  in  Fig.  (2).  These  reactions  were  carried  out  in  a  5.5  L  Parr  (Moline,  IL,  USA)  high  temperature,  high
pressure batch reactor. The overall configuration of the 5.5 L Parr autoclave was similar to the 500 mL Parr autoclave
that was used in the alkylation and cracking experiments described above in Fig. (3) with the absence of a vacuum
pump being the only difference.

In  these  studies,  model  BTX  compounds  were  alkylated  with  propylene  separately  and  then  in  a  blend  whose
proportions correspond to the ALP generated by the cracking/ concentration scheme described in section 2.3. Reaction
progress was studied by varying the reaction time for 5, 10, 30, and 60 minutes.

2.6. Analytical Methods

The  octane  number  was  measured  on  a  Zeltex  Inc.  (Hagerstown,  Maryland,  USA)  octane  and  fuel  analyzer
(ZX-101XL) having a detection limit of 99.5 ON. Values above this point were estimated using literature values, as
described in section 2.7, below. Prior to each test,  the accuracy of the instrument was confirmed by calibrating the
instrument to octane numbers of compounds within its detectable range, namely hexane and cyclohexane.

GC quantification was performed following the method developed by Kubatova and co-workers [34 - 37].  This
method uses a GC-FID/MS (Agilent 7890N GC, 5975C MS, Santa Clara, CA, USA) equipped with an autosampler
(7386B series)  and a  split/splitless  injector.  Separations were accomplished using a  100 m long DB-1MS capillary
column with a 0.25 mm internal diameter and 0.25 µm film thickness and a constant helium flow rate. The MS and FID
data were simultaneously acquired by employing a two-way splitter with a helium makeup gas with a split flow ratio of
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1:2 (MS:FID). The MS data (total ion chromatogram, TIC) was acquired in the full scan mode using electron ionization.
The standards used are listed in section 2.1 and products were identified based on the NIST MS library.

Key fuel physical properties were determined using commercial (ASTM) standard methods [38]. Standardized test
methods were used to determine the following critical physical properties of the refined fuel: density [39], total acid
number [40], freeze point [41], flash point [42], and heat of combustion [43]. Numerous other specification tests are
required to fully certify fuels, such as distillation analysis [44], and the fraction of olefins in the fuel, and the fraction of
aromatic hydrocarbons in the fuel [45]. However, these were not performed in the present work as the suite of tests that
were performed was considered adequate to assess the potential of the proposed process pathways to generate a viable
aviation gasoline fuel product

2.7. Process Simulation and Parameter Estimation

2.7.1. Extracted BTX Purification Modeling

A model system was built to determine the estimated recovery of BTX and the purity of the regenerated solvent
following the process pathway shown in Fig.  (2)  using the ChemCAD©  (Houston,  TX, USA) version 6.4.1 process
simulator. The following simplifying assumptions were made:

1. Aromatic hydrocarbons heavier than xylenes were all assumed to be one compound – cumene. This was based on
the analysis of this fraction from selected experiments where over 80% of this fraction was quantified as cumene.

2. Only BTX was assumed to be extracted by the sulfolane, with all other compounds staying in the aromatics-lean
extraction product liquid.

3.  The  entire  amount  of  sulfolane  in  the  LLE  was  assumed  to  be  in  the  rich  solvent  stream  (no  sulfolane  in
aromatics-lean extraction product liquid).

The average composition of the rich solvent stream determined from the sulfolane extraction experiments was used
as the feed composition to the solvent recovery system. The feed was assumed to enter the recovery column at 1000 C
and 1atm pressure (Fig. 2).

Different thermodynamic packages are used in process simulators for aromatics/aliphatic mixtures and sulfolane.
Among  the  various  thermodynamic  models,  the  nonrandom  two-liquid  model  (NRTL)  and  the
UNIversalQUAsiChemical  equation  (UNIQUAC)  model  are  universal  methods  for  estimating  TG  oil  compound
properties. Studies show that both models can be used to correlate the experimental data [46 - 48].

Lee et al. [49] measured the VLE for a system containing sulfolane + octane + aromatics (benzene, toluene, and p-
xylene) to improve the correlation and thus the prediction of liquid-liquid equilibrium. They concluded that the NRTL
model provided the best fit of the experimental data. Lee et al. in another study [50] showed that for the calculated
values for liquid-liquid equilibrium data for the systems -- sulfolane + octane + benzene, sulfolane + octane + toluene
and sulfolane + octane + p-xylene -- the NRTL model provided a more accurate estimation than the UNIQUAC model.
Ashour et al. [51] showed that to model liquid-liquid equilibrium data for four ternary systems comprising cyclohexane
+ (benzene, toluene, ethyl benzene, or cumene) + sulfolane measured at 303.15K and at atmospheric pressure, both
UNIFAC and NRTL models represented the experimental data with sufficient accuracy. Therefore NRTL was used in
this study.

2.7.2. Octane Number

Theoretical calculations were performed to predict the octane number of different blends produced by the alkylation
of  BTX  with  propylene  and  methanol.  For  calculating  the  theoretical  octane  numbers,  flash  points  and  heats  of
combustion  of  the  blends,  weighted  averages  of  the  individual  properties  were  used.  For  example,  in  a  mixture  of
cumene (14%), cymene (40%) and TMB (46%), the octane number of the final mixture was calculated by taking a
weighted average from each components MON octane value:

(1)

Calculations  for  the  octane  number,  flash  point,  and  heat  of  combustion  were  based  on  the  values  for  those
compounds found in the API Technical Data Book [52].

ON= ( (0.14*99.3)+(0.40*96.9)+(0.46*110) )=103.24  
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Properties for various blends of cumene (isopropyl benzene), cymenes (1-methyl-2-isopropylbenzene, 1-methyl-3-
isopropylbenzene,  and 1-methyl-4-isopropylbenzene),  and DMIPB (dimethlyisopropyl  benzene)  were calculated by
varying  the  amount  of  each  at  four  different  levels.  As  no  experiments  were  performed  with  methanol  alkylation,
theoretical  blends  from methanol  alkylation  were  constructed  to  evaluate  this  option  for  future  development  work.
These calculations were used to predict the blends that would yield the highest octane number, flash point, and heat of
combustion.

3. RESULTS AND DISCUSSION

3.1. Catalytic Cracking Reactions

Catalytic cracking of TG oils using HZSM-5 to produce an aromatics-rich liquid product has been well studied [5 -
14]. Therefore, complete optimization of this process step was not considered to be necessary. Instead, a series of 16
experiments were performed using the DOE scheme specified in (Table 1) in order to identify reaction conditions that
would be productive for ALP generation using the available experimental facilities. For example, the cracking reaction
temperature  range was chosen based on results  in  previous  work [53].  Five factors  were  varied in  a  two-level  half
fractional factorial design. The order of experiments was randomized in order to mitigate the effect of any potential
background variables. Soybean oil was chosen since it is the most common crop oil in the world, is readily available,
and has been extensively studied in our previous work on TG cracking [35, 53 - 55]. However, the overall conclusions
reached should be applicable to a wide variety of TG oil feedstocks.

Table 1. Design of experiments for catalytic cracking of soybean oil.

Run
Order Reaction Temp. °C Reaction Time min Weight of Catalyst

g Hydrogen % Gas Pressure MPa

1 430 20 19.1 0 0.1
2 430 20 38.2 100 0.1
3 430 60 19.1 0 1.4
4 410 60 19.1 0 0.1
5 410 20 19.1 0 1.4
6 430 60 38.2 100 1.4
7 410 60 19.1 100 1.4
8 410 60 38.2 0 1.4
9 430 20 38.2 0 1.4
10 430 60 38.2 0 0.1
11 410 20 38.2 0 0.1
12 410 20 19.2 100 0.1
13 430 60 19.2 100 0.1
14 430 20 19.2 100 1.4
15 410 60 38.2 100 0.1
16 410 20 38.2 100 1.4

A summary of the composition of the ALP generated at each reaction condition is shown in Table (2). It should be
noted that these results exclude quantification of short chain fatty acids which have been found in previous work to be
decarboxylated during soybean oil HZSM-5 catalytic cracking to concentrations on the order of <0.05 wt% of the ALP
[53].

The maximum conversion of TG oil to aromatic hydrocarbons was around 35 wt% based on the inlet mass of TG oil
Table (2), Run 8). Note that this is a more rigorous measure than is often seen in the literature where the fraction of the
GC elutable and quantified compounds is used, which would be a much higher value. We use fraction of inlet oil mass
as it is a more accurate measure of conversion efficiency. This value was obtained at the higher cracking temperature
(430oC), atmospheric pressure, longer residence time (60 min), higher catalyst-to-reactant ratio, and in the absence of
hydrogen. Runs 10, 11, 15, and 16 yielded similar results.

Within the bounds of the DOE, there was a clear positive effect leading to higher aromatics concentrations when the
quantity of catalyst used (representing the catalyst-to-feedstock ratio) was increased. Reaction temperature, within the
narrow  range  studied,  had  little  effect.  While  we  had  postulated  that  hydrogen  addition  might  inhibit  aromatics
formation, the results suggest that this is not the case.
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Table 2. Composition results for the ALP excluding fatty acids (PAHs = polycyclic aromatic hydrocarbons, w/w%= mass of
compounds in the category per total GC elutable mass in %).

Run Alkanes Cycloalkanes Alkenes Aromatics PAHs
 Order w/w% w/w% w/w% w/w% w/w%

1 4.4 0.17 0.31 15.1 1.8
2 1.1 0.03 0.18 25.4 5.0
3 3.2 0.13 0.30 17.8 3.4
4 4.5 0.16 0.50 16.0 1.5
5 2.8 0.10 0.42 11.4 1.2
6 2.0 0.09 0.29 34.7 8.9
7 6.1 0.17 0.55 21.4 2.0
8 1.5 0.07 0.26 33.4 8.1
9 2.6 0.08 0.12 28.4 4.4
10 1.7 0.08 0.12 35.4 7.0
11 1.2 0.06 0.15 29.4 7.3
12 4.9 0.15 0.60 13.7 1.4
13 3.5 0.18 0.37 21.3 4.1
14 4.9 0.17 0.47 18.2 2.1
15 1.2 0.04 0.31 31.8 9.7
16 1.2 0.04 0.27 33.4 9.0

3.2. Alkylation Reactions

Several experiments were carried out to understand the progress of the reaction and also to determine the selectivity
of  the  catalyst  being  studied.  Table  (3)  provides  a  summary  of  the  alkylation  reactions  carried  out  along  with  the
products  that  were  identified.  Please  note  that  these  proof-of-feasibility  experiments  provide  insight  into  the
reasonableness of the two potential process pathways and do not represent fully optimized experimental reaction data.

For toluene the most common product detected was 1-methyl-x-(1-isopropyl) benzene. Here, the “x” indicates the
changing  location  on  the  benzene  ring.  This  number  can  be  2,  3  or  4.  1,  2-dimethyl-x-isopropyl-benzene  was  the
product of alkylation of o-xylene with propylene. The “x” here takes the position 3 or 4. Similarly for m- and p-xylene,
the products were 2,4-dimethyl-x-(1-isopropyl) benzene and 1,4-dimethyl-x-(1-isopropyl) benzene with the positions
for “x” as 2, 4 or 5 and 2 and 3, respectively. It should be noted that in all of these experiments, the aromatic stream was
in stoichiometric excess which allowed us to study the selectivity of propylene for alkylation.

Table 3. The alkylation of aromatics with propylene.

Reaction Time
(min) Aromatic

Feed
Aromatic/

Propylene molar
ratio

Propylene
Conversion

%
Products (Selectivity)

60 ALP 5 50 cumene, cymene, isopropyl xylenes
60 ALP 20 50 cumene (20%), cymene(40%), isopropyl xylenes(40%)
60 ALP 10 100 cumene (20%), cymene(40%), isopropyl xylenes(40%)
30 Benzene 50 20 1-(isopropyl)benzene
60 Benzene 10 30 1-(isopropyl)benzene
60 Benzene 50 40 1-(isopropyl)benzene
60 Benzene 1 70 1-(isopropyl)benzene
60 Benzene 15 100 1-(isopropyl)benzene
5 Toluene 1 50 1-methyl-x-(1-isopropyl)benzene (3 isomers)
10 Toluene 20 100 1-methyl-x-(1-isopropyl)benzene (3 isomers)
30 Toluene 10 100 1-methyl-x-(1-isopropyl)benzene (3 isomers)
60 Toluene 80 100 1-methyl-x-(1-isopropyl)benzene (3 isomers)
60 Toluene 10 100 1-methyl-x-(1-isopropyl)benzene (3 isomers)
5 m-Xylene 70 10 2,4-dimethyl-x-(1-isopropyl)benzene
10 m-Xylene 10 30 2,4-dimethyl-x-(1-isopropyl)benzene
30 m-xylene 10 50 2,4-dimethyl-x-(1-isopropyl)benzene
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Reaction Time
(min) Aromatic

Feed
Aromatic/

Propylene molar
ratio

Propylene
Conversion

%
Products (Selectivity)

60 m-Xylene 10 70 2,4-dimethyl-x-(1-isopropyl)benzene
60 m-Xylene 10 80 2,4-dimethyl-x-(1-isopropyl)benzene
60 p-Xylene 10 100 1,4-dimethyl-x-(1-isopropyl)benzene
60 o-Xylene 70 100 1,2-dimethyl-x-isopropyl-benzene

Reaction temperature = 150°C, Pressure= 3.4 MPa Cumene is 1-(isopropyl)benzene
ALP is comprised of model BTX compounds blended to match the experimental
results from the cracking/purification steps

Cymenes are 1-methyl-x-(1-isopropyl)benzene and their
isomers
Isopropyl xylenes are products from Xylenes

The first three experiments support process pathway 1 Fig. (1). The experiments were highly selective for the target
alkylated aromatic compounds and yielded reasonable propylene conversion. A 1:2:2 ratio of cumene, cymene, and
isopropyl xylenes were obtained from the model ALP mixture corresponding to the BTX ratio measured from the Table
(1),  Run  8  experiments.  These  compounds  were  used  in  the  fuel  formulation  blends  and  calculations  described  in
section  3.5,  below.  The  remaining  experiments  support  process  pathway  2  (Fig.  2).  Again,  the  results  show  high
selectivity to the target alkylated aromatic hydrocarbons and high propylene conversion. These results suggest that it
should  be  possible  to  completely  alkylate  BTX,  as  conversion  and  selectivity  of  propylene  for  alkylation  of  each
aromatic, both individually and in a mixture, was high.

3.3. Extracting BTX from ALP Using Sulfolane

Studies  were  performed  of  the  conditions  required  to  extract  aromatic  hydrocarbons  out  of  the  ALP  generated
during the cracking reactions to support process pathway 2 Fig. (2). The initial DOE set was based on a two-factor,
three-level full factorial experimental design of: 1) solvent-to-solute ratio (3:1, 5:1 and 7:1) and 2) mixer temperature
(30, 50, and 70°C). The response measured was extraction yield. Four replicates were performed for a total of 36 runs.

The results are shown in Fig. (4). Increasing the temperature from 30 to 50oC resulted in a significant increase in
extraction  yield.  However,  increasing  the  temperature  from  50  to  70oC  did  not  significantly  improve  the  yield.
Therefore,  50oC  was  chosen  as  the  approximate  optimum  temperature.

Fig. (4). The extraction yield of BTX into sulfolane as a function of temperature and solvent-to-BTX ratio.

Because the extraction yield was greatest at the higher solvent-to-BTX ratio utilized in the DOE, a parametric study
was then performed with solvent-to-BTX ratios of 8:1, 9:1, 9.5:1, 10:1, 10.5:1, and 11:1 at an extraction temperature of
50oC to predict the saturation point. Fig. (5) shows the extraction yield as a function of solvent-to-BTX ratio. As shown,

(Table 3) contd.....
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saturation is reached when the solvent-to-BTX ratio approaches 9:1 with no further significant improvement at higher
ratios. Therefore a value of 9:1 was used in the simulations described below to generate the process conditions for this
portion of the process.

These  results  provide  data  for  a  single  stage  extraction  with  an  optimum  efficiency  of  around  70%.  For  a
commercially viable process, a recovery of greater than 99% would be desirable. This can be accomplished using a
multi-stage extraction system. The single stage data were used to estimate the efficiency of a multiple stage extraction
following the methods and assumptions described by Shuler and Kargi [56]. This method assumes that the distribution
coefficient is constant, that there is no sulfolane in the raffinate phase, and there is nothing but BTX and sulfolane in the
extract  phase.  With  these  assumptions,  the  number  of  stages  required  to  achieve  a  99.5%  recovery  of  BTX  was
estimated to be three.

Fig. (5). The extraction yield of BTX into sulfolane as a function of solvent-to-BTX ratio.

3.4. BTX Recovery and Purification

Recovery  of  the  BTX  out  of  the  sulfolane  solvent  and  subsequent  purification  were  studied  using  process
simulation.  Cumene  was  found  to  represent  almost  all  of  the  roughly  0.12  wt%  non-BTX  aromatic  hydrocarbons
present in the sulfolane and thus it is assumed that all alkylated aromatic hydrocarbons recovered in the solvent were
cumene. Assuming a sulfolane-to-BTX ratio of 9:1, the composition of the extract stream from the sulfolane extractor
was estimated as shown in Table (4). This composition was used as the feed for the first distillation column.

Table 4. Estimated Aromatics-Rich Solvent Extractant Composition.

Component Concentration (wt%)
Water trace

Sulfolane 89.10%
Benzene 0.71%
Toluene 4.07%

Ethylbenzene 1.04%
p-Xylene 1.03%
o-Xylene 3.92%
m-Xylene trace
Cumene 0.12%
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Three different configurations were modeled with the most efficient configuration shown in Fig. (2). In this scheme,
the first column separates the aromatic hydrocarbons from the sulfolane, allowing the sulfolane to be recycled back to
the  extractor.  In  the  second  column  benzene  is  recovered  as  the  light  key  to  a  purity  of  99.2%.  The  third  column
separates toluene as the light key to a purity of 99.0%, and the last column separates the o- and p-xylenes from the m-
xylene and ethylbenzene.

The key design parameters for the optimum simulated system are shown in Table (5). It should be noted that the
separation  of  ethylbenzene  from  xylene  is  challenging  in  traditional  distillation,  requiring  a  very  large  number  of
separation stages and a high reflux ratio. Even with these rigorous conditions, it is not possible to recover all of the m-
xylene.  Most  of  the  contaminants  in  the  xylene  stream are  heavier  aromatic  hydrocarbons  (mostly  cumene)  which
cannot be practically separated from the xylene at this point in the process.

Table 5. Key Design parameters of the figure 1b 4-column configuration to recover and Purify BTX from sulfolane extract.

Parameter BTEX Recovery Column Benzene Column Toluene Column Xylenes Column
Number of Theoretical Stages 13 33 24 190
1st Feed Stage 3 19 12 4
Approximate Average Column Pressure, bar 1.41 1.34 1.51 2.34
Estimated Overhead Temperature, °C 102 58 117 152
Estimated Bottoms Temperature, °C 310 136 149 156
Estimated Reflux Ratio 1.8 5.0 4.6 9.5
Product Purity (wt%) 99.1 99.2 99.0 98.0

3.5. AvGas Blend Formulations

The key fuel properties from AvGas blend formulations based on the alkylated aromatic hydrocarbons generated
during the study are shown in Table (6). Cumene, cymene, and dimethylisopropyl benzene were used in the theoretical
blend  (CCD)  assuming  that  the  same  ratio  of  benzene,  toluene,  and  xylenes  were  alkylated  as  were  obtained
experimentally  from catalytically  cracking the soybean oil  and concentrating the reaction products,  as  described in
section 2.3, to generate the ALP shown in Table 2 as Run 8. Under these conditions, a fuel with an octane number of
96.2 and with acceptable flash point, freeze point, and heat of combustion is projected.

To verify the accuracy of this theoretical result, the ALP from Table (6), Run 8 was alkylated. After alkylation, the
product was distilled to separate out the unconverted reactants. The resulting alkylated ALP had an octane number that
exceeded the limit of the analyzer (99.5 ON), a flash point of 59.5oC, and a freeze point below the lower limit of the
analyzer (< -75oC). The difference from the theoretical values may be due to the assumption of linear blending used in
the  theoretical  calculations  and/or  due  to  trace  quantities  of  BTX,  ethylbenzene,  or  other  hydrocarbons  in  the
experimental mixture. The similarity of the experimental and theoretical results suggests that it  is likely feasible to
produce a high octane AvGas via a two stage cracking-alkylation pathway from fatty acid-based oils, such as soybean
oil.

Table 6. Key Fuel properties for alkylated aromatic blends for avGas production.

Composition
(wt%) Octane Number Flash Point (°C) Freeze Point (°C) H°C

Cumene 14 13.9 6.14 -13.44 5.77
Cymene 40 38.7 19.98 -27.08 16.54
DMIPB 46 43.5 29.90 -34.50 19.16
TMB 46 50.6 52.39 -20.16 18.87

Total CCD 100 96.2 56.02 -75.03 41.47
Total CCT 100 103.2 78.51 -60.68 41.18

HoC = heat of combustion
DMIPB = dimethlyisopropylbenzene
TMB = 1,2,4-trimethylbenzene
CCD = cumene, cymene, and DMIPB (CCD) in the ratio 4:1:1
CCT = cumene, cymene, and TMB were mixed in a 1:1:4 ratio

To improve the octane number further, a second scenario was considered as shown in the final row of Table (6). In
this case cumene, cymene, and 1,2,4-trimethylbenzene (TMB) were used to form a simulated blend (CCT), assuming
the same ratios of benzene, toluene, and xylenes as used above. Previous studies [57] suggest that the alkylation of
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xylenes with methanol yielded TMB which has a reported octane number of 110. Substituting the higher octane number
TMB for DIMPD, which has a reported octane number of 95, increased the octane number of the fuel blend to 103.2
while maintaining the flash point and lower freeze point within the range of acceptable values for these types of fuels.
This higher octane blend could be attractive for those cases where the fuel producer wants to blend in lower octane fuel
compounds, such as linear alkanes, while still meeting the fuel specifications of 100LL AvGas.

CONCLUSION

Two technically viable process pathways were conceived and demonstrated for the production of high octane Avgas
from TG oils. This demonstration was accomplished by a combination of lab-scale experiments and process simulation.
In the simpler pathway, an aromatics rich stream is produced by catalytic cracking of TG oil. The BTX in this stream
are  then  alkylated  with  propylene  to  generate  an  unleaded  fuel  with  an  octane  number  >96  that  meets  the  key
specifications of 100LL AvGas. Scale-up of this simple pathway is recommended.

However it is possible that BTX yields and therefore the final fuel properties may not correspond to those obtained
under  laboratory  conditions.  In  this  case,  this  study has  shown that  the  extraction  of  the  BTX from other  cracking
reaction compounds of similar volatility using sulfolane or an equivalent solvent should be viable. Optimum extraction
yields from simple laboratory experiments were 50oC and a 9:1 solvent-to-BTX ratio. The recovered BTX can then be
alkylated as a mixture or purified into separate aromatic product streams for individual alkylation. This pathway allows
alkylation of xylene with methanol to increase the octane number of the fuel above 100. Further, this pathway allows
more exact blending of the alkylated aromatic hydrocarbons to optimize fuel quality. Any surplus benzene, toluene, or
xylenes produced during cracking can be purified and sold as a by-product(s) or converted into other desirable products.

CONFLICT OF INTEREST

The authors declare no conflict of interest, financial or otherwise.

ACKNOWLEDGEMENTS

Funding  for  this  work  was  received  from  the  North  Dakota  Department  of  Commerce  Centers  of  Excellence
program  via  the  Federal  Aviation  Administration’s  Air  Transportation  Center  of  Excellence  for  General  Aviation
Research (CGAR) Cooperative Agreement No. 04-C-GA-ERAU, the SUNRISE BioProducts Center of Excellence, and
Bayer Crop Science.

REFERENCES

[1] Atwood,  D.  Full-scale  engine  detonation  and  power  performance  evaluation  of  swift  enterprises  702  fuel,  Final  report,  2009.
DOT/FAA/AR-08/53.

[2] EPI, Inc.. The Need for Leaded AvGas http://www.epi-eng.com/aircraft_engine_products/ demise_of_AvGas.htm, 2010.

[3] Bruno,  T.;  Lovestead,  T.;  Windom,  B.  Application  of  the  advanced  distillation  curve  method  to  the  development  of  unleaded  aviation
gasoline. Energy Fuels, 2010, 24, 3275-3284.
[http://dx.doi.org/10.1021/ef100178e]

[4] Helder, D.; Behnken, J.; Aulich, T. Design of ethanol based fuels for aviation; SAE Technical Papers, 2000.
[http://dx.doi.org/10.4271/2000-01-1712]

[5] Idem, R.; Katikaneni, S.; Bakhshi, N. Catalytic conversion of canola oil to fuels and chemicals: roles of catalyst acidity, basicity and shape
selectivity on product distribution. Fuel Process. Technol., 1997, 51, 101-125.
[http://dx.doi.org/10.1016/S0378-3820(96)01085-5]

[6] Katikaneni, S.; Adjaye, J.; Bakshi, N. Catalytic conversion of canola oil to fuels and chemicals over various cracking catalysts. Can. J. Chem.
Eng., 1995, 73, 484-497.
[http://dx.doi.org/10.1002/cjce.5450730408]

[7] Adjaye, J.; Bakhshi, N. Upgrading of a wood-derived oil over various catalysts. Biomass Bioenergy, 1994, 7, 201-211.
[http://dx.doi.org/10.1016/0961-9534(94)00060-7]

[8] Prasad, Y.; Bakhshi, N. Effect of pretreatment of HZSM-5 catalyst on its performance in canola oil upgrading. Appl. Catal., 1985, 18, 71-85.
[http://dx.doi.org/10.1016/S0166-9834(00)80300-0]

[9] Ooi, Y.; Zakaria, R.; Mohamed, A.; Bhatia, S. Catalytic conversion of palm oil-based fatty acid mixture to liquid fuel. Biomass Bioenergy,
2004, 27, 477-484.
[http://dx.doi.org/10.1016/j.biombioe.2004.03.003]

http://www.epi-eng.com/aircraft_engine_products/demise_of_AvGas.htm
http://dx.doi.org/10.1021/ef100178e
http://dx.doi.org/10.4271/2000-01-1712
http://dx.doi.org/10.1016/S0378-3820(96)01085-5
http://dx.doi.org/10.1002/cjce.5450730408
http://dx.doi.org/10.1016/0961-9534(94)00060-7
http://dx.doi.org/10.1016/S0166-9834(00)80300-0
http://dx.doi.org/10.1016/j.biombioe.2004.03.003


92   The Open Fuels & Energy Science Journal, 2017, Volume 10 Seames et al.

[10] Chew, T.L.; Bhatia, S. Catalytic processes towards the production of biofuels in a palm oil and oil palm biomass-based biorefinery. Bioresour.
Technol., 2008, 99(17), 7911-7922.
[http://dx.doi.org/10.1016/j.biortech.2008.03.009] [PMID: 18434141]

[11] Tamunaidu, P.; Bhatia, S. Catalytic cracking of palm oil for the production of biofuels: Optimization studies. Bioresour. Technol., 2007,
98(18), 3593-3601.
[http://dx.doi.org/10.1016/j.biortech.2006.11.028] [PMID: 17208441]

[12] Twaiq, F.; Mohamed, A.; Bhatia, S. Performance of composite catalysts in palm oil cracking for the production of liquid fuels and chemicals.
Fuel Process. Technol., 2004, 85, 1283-1300.
[http://dx.doi.org/10.1016/j.fuproc.2003.08.003]

[13] Twaiq, F.; Zabidi, N.; Bhatia, S. Catalytic conversion of palm oil to hydrocarbons: performance of various zeolite catalysts. Ind. Eng. Chem.
Res., 1999, 38, 3230-3237.
[http://dx.doi.org/10.1021/ie980758f]

[14] Bertero, M.; Sedran, U. Immediate catalytic upgrading of soybean shell bio-oil. Energy, 2016, 94, 171-179.

[15] Han, M.;  Lin,  S.;  Roduner,  E.  Study on the alkylation of benzene with propylene over H[beta] zeolite.  Appl.  Catal.  A Gen.,  2003,  243,
175-184.
[http://dx.doi.org/10.1016/S0926-860X(02)00565-3]

[16] Perego, C.; Ingallina, P. Recent advances in the industrial alkylation of aromatics: new catalysts and new processes. Catal. Today, 2002, 73,
3-22.
[http://dx.doi.org/10.1016/S0920-5861(01)00511-9]

[17] Tian, Z.; Qin, Z.; Wang, G.; Dong, M.; Wang, J. Alkylation of benzene with propene over Hbeta zeolites near supercritical conditions. J.
Supercrit. Fluids, 2008, 44, 325-330.
[http://dx.doi.org/10.1016/j.supflu.2007.09.003]

[18] Lei, Z.; Yang, J.; Gao, J.; Chen, B.; Li, C. Gas-liquid and gas-liquid-solid reactors for the alkylation of benzene with propylene. Chem. Eng.
Sci., 2007, 62, 7320-7326.
[http://dx.doi.org/10.1016/j.ces.2007.08.043]

[19] Lei, Z.; Li, C.; Li, J.; Chen, B. Suspension catalytic distillation of simultaneous alkylation and transalkylation for producing cumene. Separ.
Purif. Tech., 2004, 34, 265-271.
[http://dx.doi.org/10.1016/S1383-5866(03)00199-0]

[20] Bellussi, G.; Pazzuconi, G.; Perego, C.; Girotti, G.; Terzoni, G. Liquid-phase alkylation of benzene with light olefins catalyzed by [beta]-
zeolites. J. Catal., 1995, 157, 227-234.
[http://dx.doi.org/10.1006/jcat.1995.1283]

[21] Perego,  C.;  Amarilli,  S.;  Millini,  R.;  Bellussi,  G.;  Girotti,  G.;  Terzoni,  G.  Experimental  and  computational  study  of  beta,  ZSM-12,  Y,
mordenite and ERB-1 in cumene synthesis. Microporous Mater., 1996, 6, 395-404.
[http://dx.doi.org/10.1016/0927-6513(96)00037-5]

[22] Firnhaber, B.; Emmrich, G.; Ennenbach, F.; Ranke, U. Separation processes for the recovery of pure aromatics. Erdol. Erdgas. Kohle., 2000,
116, 254-260.

[23] Lee, F.; Coombs, D. Two-liquid-phase extractive distillation for aromatics recovery. Ind. Eng. Chem. Res., 1987, 26, 564-573.
[http://dx.doi.org/10.1021/ie00063a024]

[24] Meindersma,  G.;  Podt,  A.;  De  Haan,  A.  Selection  of  ionic  liquids  for  the  extraction  of  aromatic  hydrocarbons  from  aromatic/aliphatic
mixtures. Fuel Process. Technol., 2005, 87, 59-70.
[http://dx.doi.org/10.1016/j.fuproc.2005.06.002]

[25] Hamid, S.; Ali, M. Comparative study of solvents for the extraction of aromatics from naphtha. Energy Sources, 1996, 18, 65-84.
[http://dx.doi.org/10.1080/00908319608908748]

[26] Canales, R.; Brennecke, J. Comparison of ionic liquids to conventional organic solvents for extraction of aromatics from aliphatics. J. Chem.
Eng. Data, 2016, 61, 1685-1699.
[http://dx.doi.org/10.1021/acs.jced.6b00077]

[27] Mohsen-Nia,  M.;  Doulabi,  F.  Liquid-liquid  equilibria  for  mixtures  of  (ethylene  carbonate  +  aromatic  hydrocarbon  +  cyclohexane).
Thermochim. Acta, 2006, 445, 82-85.
[http://dx.doi.org/10.1016/j.tca.2006.03.012]

[28] Huang, X.; Xia, S.; Ma, P.; Song, S.; Ma, B. Vapor-liquid equilibrium of N-formylmorpholine with toluene and xylene at 101.33kPa. J.
Chem. Eng. Data, 2008, 53, 252-255.
[http://dx.doi.org/10.1021/je7005665]

[29] Mohsen-Nia, M.; Doulabi, F.; Manousiouthakis, V. Liquid + liquid) equilibria for ternary mixtures of (ethylene glycol + toluene + noctane). J.
Chem. Thermodyn., 2008, 40, 1269-1273.
[http://dx.doi.org/10.1016/j.jct.2008.03.014]

[30] García,  J.;  Fernández,  A.;  Torrecilla,  J.;  Oliet,  M.;  Rodríguez,  F.  Liquid-liquid  equilibria  for  {hexane  +  benzene  +  1-ethyl-3-
methylimidazolium  ethylsulfate}  at  (298.2,  313.2  and  328.2)K.  Fluid.  Phase.  Equilib.,  2009,  282,  117-120.

http://dx.doi.org/10.1016/j.biortech.2008.03.009
http://www.ncbi.nlm.nih.gov/pubmed/18434141
http://dx.doi.org/10.1016/j.biortech.2006.11.028
http://www.ncbi.nlm.nih.gov/pubmed/17208441
http://dx.doi.org/10.1016/j.fuproc.2003.08.003
http://dx.doi.org/10.1021/ie980758f
http://dx.doi.org/10.1016/S0926-860X(02)00565-3
http://dx.doi.org/10.1016/S0920-5861(01)00511-9
http://dx.doi.org/10.1016/j.supflu.2007.09.003
http://dx.doi.org/10.1016/j.ces.2007.08.043
http://dx.doi.org/10.1016/S1383-5866(03)00199-0
http://dx.doi.org/10.1006/jcat.1995.1283
http://dx.doi.org/10.1016/0927-6513(96)00037-5
http://dx.doi.org/10.1021/ie00063a024
http://dx.doi.org/10.1016/j.fuproc.2005.06.002
http://dx.doi.org/10.1080/00908319608908748
http://dx.doi.org/10.1021/acs.jced.6b00077
http://dx.doi.org/10.1016/j.tca.2006.03.012
http://dx.doi.org/10.1021/je7005665
http://dx.doi.org/10.1016/j.jct.2008.03.014


High Octane Gasoline Using Renewable Aromatic Hydrocarbons The Open Fuels & Energy Science Journal, 2017, Volume 10   93

[http://dx.doi.org/10.1016/j.fluid.2009.05.006]

[31] Pereiro, A.; Rodriguez, A. Application of the ionic liquid ammoeng 102 for aromatic/aliphatic hydrocarbon separation. J. Chem. Thermodyn.,
2009, 41, 951-956.
[http://dx.doi.org/10.1016/j.jct.2009.03.011]

[32] ASTM D5134-98 Standard Test Method for Detailed Analysis of Petroleum Naphthas through n-Nonane by Capillary Gas Chromatography;
ASTM International:: West Conshohocken, PA, 2008.

[33] ASTM D5307-97 Standard Test  Method for Determination of  Boiling Range Distribution of  Crude Petroleum by Gas Chromatography;
ASTM International:: West Conshohocken, PA, 2007.

[34] Fegade, S.; Tande, B.; Cho, H.; Seames, W.; Sakodynskaya, I.; Muggli, D.; Kozliak, E. Aromatization of propylene over HZSM-5: a design
of experiments a DOE Approach. Chem. Eng. Commun., 2013, 200, 1039-1056.
[http://dx.doi.org/10.1080/00986445.2012.737385]

[35] Seames, W.; Luo, Y.; Ahmed, I.; Aulich, T.; Kubátová, A.; Štávová, J.; Kozliak, E. The thermal cracking of canola and soybean methyl
esters: improvement of cold flow properties. Biomass Bioenergy, 2010, 34, 939-946.
[http://dx.doi.org/10.1016/j.biombioe.2010.02.001]

[36] Šťávová, J.; Beránek, J.; Nelson, E.P.; Diep, B.A.; Kubátová, A. Limits of detection for the determination of mono- and dicarboxylic acids
using gas and liquid chromatographic methods coupled with mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2011,
879(17-18), 1429-1438.
[http://dx.doi.org/10.1016/j.jchromb.2010.11.027] [PMID: 21185238]

[37] Sťávová, J.; Stahl, D.C.; Seames, W.S.; Kubátová, A. Method development for the characterization of biofuel intermediate products using gas
chromatography with simultaneous mass spectrometric and flame ionization detections. J. Chromatogr. A, 2012, 1224, 79-88.
[http://dx.doi.org/10.1016/j.chroma.2011.12.013] [PMID: 22245174]

[38] ASTM D1655-11b Standard Specification for Aviation Turbine Fuels; ASTM International:: West Conshohocken, PA, 2011.

[39] ASTM D1298-99 Standard Test Method for Density, Relative Density (Specific Gravity), or API Gravity of Crude Petroleum and Liquid
Petroleum Products by Hydrometer Method; ASTM International:: West Conshohocken, PA, 2003.

[40] ASTM D974-11 Standard Test Method for Acid and Base Number by Color-Indicator Titration; ASTM International:: West Conshohocken,
PA, 2011.

[41] ASTM D5972-05 Standard Test Method for Freezing Point of Aviation Fuels (Automatic Phase Transition Method). ; ASTM International::
West Conshohocken, PA, 2005.

[42] ASTM D3828-05 Standard Test Methods for Flash Point by Small Scale Closed Cup Tester. ; ASTM International:: West Conshohocken, PA,
2005.

[43] ASTM D4809-00 Standard Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb Calorimeter (Precision Method);
ASTM International:: West Conshohocken, PA, 2005.

[44] ASTM  D86-11a  Standard  Test  Method  for  Distillation  of  Petroleum  Products  at  Atmospheric  Pressure.  ;  ASTM  International::  West
Conshohocken, PA, 2011.

[45] ASTM D1319-10 Standard Test Method for Hydrocarbon Types in Liquid Petroleum Products by Fluorescent Indicator Adsorption; ASTM
International:: West Conshohocken, PA, 2010.

[46] Abrams, D.; Prausnitz, J. Statistical thermodynamics of liquid mixtures: A new expression for the excess Gibbs energy of partly or completely
miscible systems. AIChE J., 1975, 21, 116-128.
[http://dx.doi.org/10.1002/aic.690210115]

[47] Huang, X.; Xia, S.; Ma, P.; Song, S.; Ma, B. Vapor-liquid equilibrium of N-formylmorpholine with toluene and xylene at 101.33 kPa. J.
Chem. Eng. Data, 2008, 53, 252-255.
[http://dx.doi.org/10.1021/je7005665]

[48] Renon, H.; Prausnitz, J. Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J., 1968, 14, 135-144.
[http://dx.doi.org/10.1002/aic.690140124]

[49] Lee, S.; Kim, H. Liquid-liquid equilibria for the ternary systems sulfolane + octane + benzene, sulfolane + octane + toluene, and sulfolane +
octane + p-xylene at elevated temperatures. J. Chem. Eng. Data, 1998, 43, 358-361.
[http://dx.doi.org/10.1021/je9702246]

[50] Lee, F.; Coombs, D. Two-liquid-phase extractive distillation for aromatics recovery. Ind. Eng. Chem. Res., 1987, 26, 564-573.
[http://dx.doi.org/10.1021/ie00063a024]

[51] Ashour,  L.;  Abu-Eishah,  S.  Liquid-liquid  equilibria  of  ternary  and  six  component  systems  including  cyclohexane,  benzene,  toluene,
ethylbenzene, cumene, and sulfolane at 303.15K. J. Chem. Eng. Data, 2006, 51, 1717-1722.
[http://dx.doi.org/10.1021/je060153n]

[52] American Petroleum Institute. Technical Data Book - Petroleum Refining; API, 1997, Vol. 1, .

[53] Kadrmas, C.; Khambete, M.; Kubátová, A.; Kozliak, E.; Seames, W. Optimizing the production of renewable aromatics via crop oil catalytic
cracking. Process, 2015, 3, 222-234.
[http://dx.doi.org/10.3390/pr3020222]

http://dx.doi.org/10.1016/j.fluid.2009.05.006
http://dx.doi.org/10.1016/j.jct.2009.03.011
http://dx.doi.org/10.1080/00986445.2012.737385
http://dx.doi.org/10.1016/j.biombioe.2010.02.001
http://dx.doi.org/10.1016/j.jchromb.2010.11.027
http://www.ncbi.nlm.nih.gov/pubmed/21185238
http://dx.doi.org/10.1016/j.chroma.2011.12.013
http://www.ncbi.nlm.nih.gov/pubmed/22245174
http://dx.doi.org/10.1002/aic.690210115
http://dx.doi.org/10.1021/je7005665
http://dx.doi.org/10.1002/aic.690140124
http://dx.doi.org/10.1021/je9702246
http://dx.doi.org/10.1021/ie00063a024
http://dx.doi.org/10.1021/je060153n
http://dx.doi.org/10.3390/pr3020222


94   The Open Fuels & Energy Science Journal, 2017, Volume 10 Seames et al.

[54] Fegade,  S.;  Tande,  B.;  Kubátová,  A.;  Seames,  W.;  Kozliak,  E.  A  novel  two-step  process  for  the  production  of  renewable  aromatic
hydrocarbons from triacylglycerides. Ind. Eng. Chem. Res., 2016, 54, 9657-9665.
[http://dx.doi.org/10.1021/acs.iecr.5b01932]

[55] Kubátová, A.; Št’ávová, J.; Seames, W.; Luo, Y.; Sadrameli, S.; Linnen, M.; Baglayeva, G.; Smoliakova, I.; Kozliak, E. Triacylglyceride
thermal cracking: pathways to cyclic hydrocarbons. Energy Fuels, 2012, 26, 672-685.
[http://dx.doi.org/10.1021/ef200953d]

[56] Shuler, M.; Kargi, F. Bioprocess Engineering: Basic Concepts, 2nd ed; Prentice Hall: Englewood Cliffs, NJ, 2011.

[57] Nishi, H.; Nowinska, K.; Moffat, J. The alkylation of toluene with methanol on microporous heteropoly oxometalates. J. Catal., 1989, 116,
480-487.
[http://dx.doi.org/10.1016/0021-9517(89)90114-0]

© 2017 Seames et al.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a
copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and
reproduction in any medium, provided the original author and source are credited.

http://dx.doi.org/10.1021/acs.iecr.5b01932
http://dx.doi.org/10.1021/ef200953d
http://dx.doi.org/10.1016/0021-9517(89)90114-0
https://creativecommons.org/licenses/by/4.0/legalcode

	High Octane Gasoline Using Renewable Aromatic Hydrocarbons 
	[Background:]
	Background:
	Method:
	Result:

	1. INTRODUCTION
	2. MATERIALS AND METHODS
	2.1. Materials
	2.2. Catalyst Pretreatment
	2.3. Cracking Reactions
	2.4. Sulfolane Extraction Experiments
	2.5. Alkylation Reactions
	2.5.1. Preliminary Experiments
	2.5.2. Model Compound Alkylation

	2.6. Analytical Methods
	2.7. Process Simulation and Parameter Estimation
	2.7.1. Extracted BTX Purification Modeling
	2.7.2. Octane Number


	3. RESULTS AND DISCUSSION
	3.1. Catalytic Cracking Reactions
	3.2. Alkylation Reactions
	3.3. Extracting BTX from ALP Using Sulfolane
	3.4. BTX Recovery and Purification
	3.5. AvGas Blend Formulations

	CONCLUSION
	CONFLICT OF INTEREST
	ACKNOWLEDGEMENTS
	REFERENCES




