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Abstract: The possibility of using the statically non-equilibrium systems to increase the power cycle efficiency is investi-

gated here. A method of dynamic equilibrium that was applied in this analysis allows the differences of energy potentials 

between a system and an environment as additional components of the equations of system state to be taken into account. 

In this model, a dependence of entropy not only on the thermal effects, as usually, but on the mechanical ones is consid-

ered too. Besides, the adiabatic processes running with entropy decreasing are feasible here as well. The consequence of 

such an approach is the opportunity of creating new regenerative cycles with high efficiency for both the power-

generating systems and the refrigeration ones. The closing of such cycles in this case can be carried out with the transfor-

mation of the consumed mechanical energy not only into the thermal energy, as usual, but also into the kinetic energy. 

The second law of thermodynamics does not put obstacles to extra improvement of the cycle efficiency since for the open 

systems the performance of a cycle can be determined by the relative difference of temperatures of the working fluid (but 

not necessarily by the temperatures of the thermal sources) at the upper and lower temperature levels of the cycle. The re-

ceived results satisfy the general laws of conservation and completely coincide with the classical approach in the quasi-

static approximation. They create the necessary prerequisites for an effective energy development. 

Keywords: Thermodynamics, dynamic equilibrium method, equations of conservation and state, Bernoulli equation, first and 
second laws, regenerative cycles, efficiency. 

1. INTRODUCTION 

 The modern analysis of the Carnot cycle for ideal gas 
which limits the efficiency of the thermal machines by a dif-
ference of temperatures of hot and cold thermal sources is 
based on the application of the quasi-static equilibrium 
method in which it is assumed that the intensive parameters 
of a system practically coincide with the similar parameters 
of an environment and that the process velocities are low, 
and the properties of working fluids remain constant. 

 A consequence of these assumptions is the seeming con-
clusion about the exclusive connection of one of the system 
parameters, namely the entropy, with the heat exchange 
processes, which does not quite agree with the known 
equivalence principle of thermal and mechanical energy. 

 Though these assumptions are justified in many practi-
cally important cases, nevertheless they limit the generality 
of the obtained results and the prognosis completeness of 
energy development prospects. 

 At the same time, it is of interest to estimate additionally 
the degree of the fulfillment of these assumptions in various 
thermodynamic cycles and also the possibility to increase 
efficiency of thermal machines (cycles) outside the above 
assumptions. 

 In order to investigate these problems we analyze some 
typical cycles of both the closed equilibrium thermodynamic 
systems and the open non-equilibrium ones with using a  
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method of dynamic equilibrium offered by the author, in 
which such a coincidence between the intensive system pa-
rameters and the similar parameters of an environment is not 
necessary [1]. 

 Essentially, such an approach can be regarded as an ap-
plication of the Boltzmann’s principle coming from the sta-
tistical thermodynamics according to which the non-
equilibrium states of a system can be described as the equi-
librium ones with due regard for its out-of-balance potential 
energy [2]. Besides, such a method of the thermodynamic 
analysis is similar to the D’Alembert–Lagrange principle 
which determines the ratio between the statics and dynamics 
in the theoretical mechanics. 

 Partially, these questions connected with the relationship 
of the static and dynamic models of thermodynamics were 
considered earlier in a number of papers [3–5], and they have 
also been discussed on a number of international conferences 
[6, 7]. 

 In the present paper, the developed conception of ther-
modynamics as well a comparison of its basic notions with 
those of the known static method is discussed in greater de-
tails. 

2. THE EQUATIONS OF CONSERVATION AND 
STATE OF THE OPEN THERMODYNAMIC SYS-

TEMS 

 Let us consider such a conception on an example of an 
ideal gas steady flow being a statically non-equilibrium sys-
tem. 

 Typically such systems are described from the quasi-
static standpoint owing to the introduction in the implicit 
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shape of the assumption about identity of the equations of 
the first law of thermodynamics for the closed systems 

 
q = du + pdv ,              (1) 

and the open systems 

  
q = dh + l

0
.              (2) 

 This admission can be expressed by the equality 

  
q = du + pdv = dh + l

0
,            (3) 

which defines a change of both an internal energy 

 
du = c

v
dT  and enthalpy 

  
dh = d(u + pv) = c

p
dT  of a sys-

tem under influence of such effects as heat 
 

q = c
n
dT , 

work of expansion (deformation) 
 

l = pdv , technical work 

 
l
t
 or available work 

  
l
0
= vdp = d + l

t
.            (4) 

 In this case, kinetic energy  w = d  of the gas flow 

having velocity  is associated only with the equilibrium 

system parameters such as temperature  T , pressure 
 
p , spe-

cific volume  v  or density , and gas specific thermal ca-

pacities 
 
c

p
, 

 
c

v
 or 

 
c

n
 at 

 
p = const ,  v = const or 

 
pvn

= const  respectively, which determine the static sys-

tem states. 

 However, such an approach connected with applying the 
identical methods of description to the non-equilibrium open 
systems and the closed equilibrium ones is not proved 
strictly enough. 

 Therefore in this paper, the new equations represented in 
the forms of (5) and (6) are offered to describe the law of 
energy conservation as applied to the open thermodynamic 
systems 

 
q = du + pdv + vd p = dh + d            (5) 

  
q l = du + d( pv)+ vd p = c

p
dT + vd p = dh + d . (6) 

 In these equations unlike Eq. (2), a possible difference of 

energy potentials 
 
vd p  between a system and an environ-

ment is considered, and the classical definition of the avail-

able work according to Eq. (4) is replaced by the new ex-

pression (7) 

  
l = l

0
= dh + vd p = dh + d .           (7) 

 In this case, along with the system parameters such as  T , 

 
p ,  v  and others, these equations take into account the con-

ditions of non-equilibrium interaction of the system with the 

environment in the form of kinetic energy  w  of the gas 

flow and pressure difference 
  

p = p p
0

 with the envi-

ronment. 

 With using these equations, the non-equilibrium systems 

can be considered as the dynamically equilibrium ones since 

the available out-of-balance potentials of such systems are 

counterbalanced by the appropriate changes of their kinetic 

energy
 
vd p = d . 

 The equations (5) and (6) may be transformed to the 

known Clapeyron equation 
 
RT = pv  as well the Mayer one 

  
(c

p
c

v
) = R  under conditions of 

 
c

n
= c

p
 and

  
p = p

0
[5]. 

 At the same time, the definition (7) of the available work 

essentially coincides with the known definition of the techni-

cal work of an ideal adiabatic process and, unlike the equa-

tion (4), includes a change of total gas enthalpy or otherwise 

a change of stagnation enthalpy of a flow 

  
h*

= h + vd p = h + d . 

 Besides, in doing so, the equations (5) and (6) for the 
open systems unlike the known equation (2) can not be trans-
formed into Eq. (1) for the closed static systems if the pecu-
liarities of the open systems such as a difference of potential 
energy or a change of mass between a system and an envi-
ronment take place. 

 Moreover unlike the traditional approach, the equations 
(5) and (6) can be represented in the form of the Bernoulli 
differential equation without using any assumptions of the 
quasi-static method. Thus, when being applied to an isen-
tropic process, with using the transformation 

  
(k 1)dh k = d ( p ) = (dp a2d k )           (8) 

and taking into account that sound speed a  is defined by the 

expression 
  
a2

= p , it is possible to find that 

 
dh = cpdT = dp = vdp .            (9) 

 Then, for an isentropic process, in which   ds = 0 , Eqs. 

(5) to (6) can be represented in the form of the Bernoulli 

equation 

  
dp = d 2

2 + l
t

.           (10) 

 From the standpoints developed here, Eq. (10) character-
izes only the adiabatic gas flows, and consequently it can not 
be considered as the common equation of energy in the me-
chanical shape as it was supposed earlier. 

 At the same time, Eq. (6) as well as Eq. (2) agrees with 

the known dependence of the velocity of a gas flow on its 

cross-sectional area
 
f , the squared speed of sound 

  
a2

= p  and the Mach number
 
M = a . 

 So, at a constant pressure of an environment 
  
p

0
= const  

this equation can be represented in the form of Eq. (11) 

  
q l = dh + [ 2 ( M 2 1)]df f ,         (11) 

in which the known correlation (12) takes place 

  
( M 2 1) d = df f .          (12) 

 Besides, in this case the enthalpy of static systems 
 
h

c
 

and the enthalpy  h  of dynamic systems h are described by 

different equations and, in general, do not coincide, contrary 

to what was supposed earlier: 
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dhc = d(u + pv) = du + pdv = cvdT + RdT (n 1) =

= cv (n k)dT (n 1) = cndT
      (13) 

  

dh = d(u + pv) = h
c
+ vdp =

= c
n
dT + nRdT (n 1) = c

p
dT

,             (14) 

 The equality 
  
(du + pdv) = c

p
dT , which is commonly 

used to justify the assumption 
 
dh

c
= dh , is fulfilled only 

under the condition that   n = 0 . 

3. PECULIARITIES OF THE ADIABATIC PROC-
ESSES OF THE OPEN THERMODYNAMIC SYS-

TEMS 

3.1. Description of the Flows with Application of the Ber-

noulli Equation 

 Usually, from the standpoint of the quasi-static method 
the isentropic gas flows are considered as the only possible 
ones in the ideal adiabatic conditions. 

 In this case the integral forms of the differential Bernoulli 
equations (10) or (15) 

  
dp = d 2

2 ,           (15) 

are represented by the expressions 

  
( p / ) + 2 / 2 + R T (k 1) = 0          (16) 

  
( p / ) + 2 / 2 + R T (k 1) + l = 0 ,        (17) 

provided that the gas flow properties are described by the 
Poisson equation for a quasi-static adiabatic process 

 
pvk

= const ,            (18) 

where the exponent of an adiabatic curve is equal to 

 
k = c

p
cv . 

However, according to the Bernoulli equation, other adia-

batic flow regimes are possible as well, for example, the 

flow regimes in which the ratio between the density  or 

the specific volume  v  and pressure 
 p

 of a gas flow is ex-

pressed by the equation of polytropic processes 

 
pvn

= const             (19) 

with the polytropic exponent  n = ± [8]. 

 In this case, the expression (17) can be represented by the 
equations (20) and (21) 

  
( p / ) + 2 / 2 + R T (n 1) = 0          (20) 

  
[n (n 1)] ( p / ) = 2 / 2 ,          (21) 

in which the polytropic exponent n  can be defined by the 

expressions 

  
c

v
T + l = R T (k 1) + l = R T (n 1) ,         (22) 

  
c

p
T + l = kR T (k 1) + l = nR T (n 1) ,        (23) 

 

n =
c

p
T ± l

c
p

T ± l R T
.           (24) 

 These equations show that such an exponent can also 

depend not only on the thermal influences, as it is usually 

supposed, but on the mechanical ones  l , too. 

 Besides, according to the Bernoulli equation the adiabatic 
isothermal processes are feasible theoretically as well. Thus, 
if a polytropic exponent in Eq. (24) tends to unit and the 
density of a gas is specified by the ratio (25) 

 
pv = const ,            (25) 

then the integral form of Eq. (10) coincides with the defini-

tion of the work needed for compression of a gas in an iso-

thermal quasi-static process from the pressure 
  
p

1
 to the 

pressure 
  
p

2
: 

  
l = RT ln( p2 p1) = 2 2 .          (26) 

In this case the ratio of this work to the temperature of the 
said dynamic process 

  
s = l T = R ln( p2 p1)           (27) 

coincides with the similar ratio of the quantity of heat to be 
released by the gas during its compression in a quasi-static 
process 

  
s = q T = R ln( p

2
p

1
) .          (28) 

 And the last ratio is usually used in the quasi-static 
method for the definition of the entropy as a function de-
pending only on the thermal interactions. 

 The above opportunities to regulate the regimes of an 
adiabatic gas flow and to represent the entropy not only as a 
function of the thermal interactions but also the mechanical 
ones are not considered in the modern quasi-static method. 

 Moreover, in this case such opportunities are considered 
as impossible in principle since they do not agree with some 
notions of the quasi-static method that are mechanically ex-
tended from the area of statics to the area of dynamics as 
well. 

 In particular, it is usually assumed that the absence of an 

external heat exchange, i.e. provided that 
  
q = 0 , is sufficient 

to consider an ideal gas flow as an isentropic one owing to 

the known definition 
  

s = q T = 0 . 

 Besides, in descriptions of the adiabatic gas flows two 
concepts of heat capacity are simultaneously used, and they 
are not quite coordinated among themselves. 

 According to one of them the heat capacity of such a 

flow is equal to zero 
  
c = q T = 0  owing to the absence of 

heat exchange processes. 

 While, on the other hand, such a heat capacity, namely 

the heat capacity of a gas in a quasi-static isobaric process 

 
c

p
= q T = const , can also be used for expressing a tem-
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perature dependence of a gas on its kinetic energy even in 

the case when any heat exchange processes are absent. 

 Such an approach is usually expressed by the known 
equations 

  
cpdT = d 2

2 ,           (29) 

  
T

2
= T

1
[1± (k 1) 2 (2 a

2 )]           (30) 

which do not correspond completely to the modern practice, 
for instance with reference to the flows taking place in the 
blades of active gas turbines where such flows can remain 
almost isothermal even despite of significant changes in flow 
velocity. 

3.2. The Flow Analysis with Application of the Common 
Energy Equation 

 In the general case the open adiabatic systems can also be 
described by using the energy equation (7) that can have a 
wider field of application in comparison with that of the 
Bernoulli equation. 

 In turn, the equation (7) can be represented in the form of 
the expression (31) 

  
Tds = dp + d 2

2 + l = dh
c
+ d 2

2 + l ,         (31) 

which assumes the existence of the ideal gas flows with vari-
able entropy and coincides with the Bernoulli equation if the 
entropy of a gas flow is constant. 

 In the expression (31) one takes into account the possibil-
ity of representing the enthalpy in terms of the equations 

  

dh = du + pdv + vdp = T[(du + pdv) T ]+

+vdp = dhT + dhc = Tds + vdp
,       (32) 

  

dh = d(u + pv) = d(c
p
T ) = dhc + dhT =

= c
p
dT +Tdc

p
= vdp +Tds

,         (33) 

in which the entropy of the dynamic adiabatic processes is 
defined by Eq. (34) coinciding formally with the similar 
equation of the classical entropy in the quasi-static method 

  
ds = dc

p
= (du + pdv) T .          (34) 

 Besides, it is taken here that 
  
dh

c
= ( h T )

c
dT , 

  
dh

T
= ( h T )

T
dc

p
, and 

 
c

p
dT = vdp  accordingly to Eq. 

(9). 

 A special feature of these equations is that they do not 

point to any obligatory connection of the entropy with the 

processes of external or internal heat exchange and satisfy 

the known result 
 
dcp = ds  obtained earlier in [3] due to a 

statistical analysis of molecular distributions. 

 Earlier, the equations similar to Eqs. (32) and (33) were 
known with reference to the flows having thermal contacts 
with the environment. It is shown here that they are applica-
ble also to the adiabatic flows in which thermal interactions 
are absent. 

 The appearance of thermal summands in the equations of 
the adiabatic flows is connected with the possibility of mu-
tual transformation of kinetic, thermal, and mechanical en-
ergy, what is absent in the quasi-static processes. 

 Let us analyze such polytropic processes by the example 

of the steady subsonic gas flows in narrowed heat-insulated 

channels (nozzles), the images of which are shown in Fig. 

(1). These flows have the identical initial parameters 

  
T

1
, p

1
,v

1
. Besides, the flows 1-2, 1-3 and 1-5 have the same 

final pressure 
  
p

2
= p

3
= p

5
<

  
p

1
 as well. 

 

Fig. (1). The T-s adiabatic curves of gas flows with an equal pres-

sure difference and various conditions of mechanical interactions. 

 In the flow 1-2 a mechanic-geometrical nozzle is used in 
which the velocity of a gas flow can be increased addition-
ally due to the gas obtaining the mechanical or potential en-
ergy with a simultaneous decrease in cross-section of the 
flow. 

 The flow 1-3 in this figure represents an isentropic ex-
pansion of a gas without any mechanical influences. 

 The flow 1-5 corresponds to the polytropic expansion of 
the gas in the same pressure interval, during which process 
the flow is obtaining additional heat from an internal energy 
sources, for example, at the expense of the heat arising due 
to frictional forces. 

 The flow 1-4 is an isentropic gas expansion without any 

mechanical effects from pressure 
  
p

1
 to pressure 

  
p

4
<

  
p

2
 

provided that the gas final temperatures in the processes 1-2 

and 1-4 are the same 
  
T

2
= T

4
. 

 The adiabatic flows like the process 1-5 in which entropy 
can increase owing to the influence of internal thermal 
sources are well-known. 

 It is shown here that the dynamic adiabatic flows with 
decreasing entropy are possible too. At the same time, this 
notion does not relate to the adiabatic quasi-static processes 
in which lowering of entropy is not permitted in accordance 
with the second law of thermodynamics. 

 As is shown in Fig. (1), the flows 1-2, 1-3 and 1-5 have 
various final values of the temperatures, specific volumes 
and entropy changes, while their initial parameters and the 
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pressure drop are the same; in doing so, these final parame-
ters depend on the form and value of external influences. 

 Besides, under these conditions the mechanical energy 
being consumed by the flow in the process 1-2 results in 
additional lowering of the internal energy of the gas, its tem-
perature and entropy in comparison with the similar parame-
ters of the isentropic expansion of the same gas in the proc-
ess 1-3 when any influences in the form of heat or work are 
absent. 

 At the same time, the supply of thermal energy to the 
flow, as it occurs in the process 1-5, results in an increase of 
the internal energy of the gas, its temperature and entropy in 
comparison with the similar parameters of the gas during its 
isentropic expansion in the process 1-3. 

 The correlations between parameters of such adiabatic 
flows can be expressed by the equations 

  
p

1
p

2
= (T

1
T

2
)n (n 1)

= (T
1

T
3
)k (k 1)

= (T
1

T
5
) ( 1)

, (35) 

  

ln( p1 p2 ) =
n

n 1
ln(

T
1

T
2

) =
k

k 1
ln(

T
1

T
3

) =
1

ln(
T

1

T
5

) ,   (36) 

  

ln ( p
1

p
2
) =

n

n k

s
1 2

cv

=
k

s
1 5

cv

,         (37) 

which coincide with the similar ones for quasi-static poly-

tropic processes with the polytropic exponents  n > k ,  k  

and 
 
< k  in the processes 1-2, 1-3 and 1-5 accordingly. 

Here, 
  

s
1 2

, 
  

s
1 5

 are the changes of entropy in the proc-

esses 1-2 and 1-5 correspondingly. 

 For an analysis of the adiabatic flows it is expedient to 
introduce a new concept of adiabatic heat capacities, in 
which a dependence of the system temperature not only on 
the thermal effects as usually but and on the mechanical ones 
could be taken into account too. 

 Depending on the form of energy in this case, it is possi-
ble here to specify the following: 

 – the heat capacity 
 
c

w
 of kinetic influences at  s = const  

  
c

w
= T = c

p
= kR (k 1) ,         (38) 

 – the heat capacity of mechanical influences 
 
c

l
 

 
c

l
= l T ,            (39) 

 – and the heat capacity 
 
c

n
 of the polytropic processes 

caused by a combined influence of several energy factors 

  
c

n
= ( 2 / 2+ l) T = nR (n 1) .         (40) 

 One of such heat capacities, namely 
 
c

w
, as is shown 

above, is already used in an implicit form in the quasi-static 

method. 

 The seeming heat capacity 
 
c

l
= l T of the mechanical 

effects in the equation (38) characterizes a contribution of 

energy in the form of work in the total heat capacity 
 
c

n
 of a 

gas flow, and its value can be found as a difference between 

the total heat capacity 
n
c  of a flow and its isobaric heat ca-

pacity
  
cp = kR (k 1)  

  

c
l
= c

p
= c

n
c

p
= nR (n 1) kR (k 1) =

= c
v

(k n) (n 1) = c
c

.        (41) 

 In this event the heat capacities of mechanical effects in 

essence coincide with the similar heat capacities of the ther-

mal effects 
 
c

c
= q T  in a quasi-static polytropic process 

  
c

c
= c

v
+ R (1 n) = c

v
(n k) (n 1) .         (42) 

 Moreover, such heat capacities can also be used for defi-
nition of entropy changes in the dynamic polytropic proc-
esses. Thus, for example, an entropy change of the isother-
mal process 4-2 in Fig. (1) can be represented in terms of 
both the pressure and the heat capacity: 

  

s
2 4

= R ln( p
2

p
4
) = R[ln( p

2
p

1
)

ln( p
4

p
1
)]= c

p
ln(T

2
T

1
)

        (43) 

 The quantity of specific work  l  necessary for a change in 

entropy of an adiabatic gas flow by the value 
  

s
1 2

= s
2

s
1
 

can be represented through the expression 

  

l = Tm s = RTm ln( p2 p4 ) = Tm[kR (k 1)

nR (n 1)] ln(T2 T1) = cp T
.        (44) 

 In Eq. (44) it is assumed that the processes 1-2 and 2-4 

have got equal entropy changes 
  

s
1 2

= s
2 4

, 

  
T

m
= (T2 T1) ln(T2 T1)  being the average temperature of 

the temperature range 
  

T = (T2 T1)  and 

  
c

p
= (c

p
c

n
) = c

l
 being the difference of corresponding 

heat capacities in the isentropic and polytropic gas flows. 

 In so doing, the quantity of work consumed in the adia-
batic dynamic process is equal to the quantity of heat re-
leased by the system in the similar polytropic quasi-static 
process. 

 The change of temperature in this case is defined by rela-
tionship (45) 

  
c

p
T =

2
/ 2+ c

l
T           (45) 

and can be represented by using the heat capacities of both 
the thermal and mechanical influences 

  
T = l c

l
= h / c

p
= ( h l) c

n
= ( pv) R .        (46) 

3.3. The Polytropic Exponents of the Adiabatic Flows in 
Mechanic-Geometrical Nozzles 

 Taking into account such heat capacities, the equation 
(24) representing the polytropic exponents of the adiabatic 
flows in the mechanic-geometrical nozzles formally coin-
cides with the known definition of the polytropic exponents 
of quasi-static processes 
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n =
vdp

pdv
=

c
w
± c

l

c
w
± c

l
R
=

c
p
± c

l

c
v
± c

l

.         (47) 

 Besides, in this case the polytropic exponents can also be 
represented by other expressions 

  

n =
vdp

pdv
=

2
/ 2 l

2
/ 2 l R T

,          (48) 

  

n =

2df / [( M 2 1) f ] dl
2df / [( M 2 1) f ] dl RdT

,        (49) 

pointing to a possible dependence of these exponents on the 
Mach number, which was not considered earlier. 

 According to these equations, an adiabatic exponent of a 

gas flow in a mechanic-geometrical nozzle can be equal to 

the ratio 
 
n = k = c

p
c

v
only at its relatively moderate sub-

sonic (  M
2
<<1 ) velocities or at higher supersonic 

(  M
2
>>1 ) ones. 

 However, as the gas velocity increases due to the narrow-

ing of a nozzle channel and the application of external me-

chanical effects, its regime of flowing can deviate from the 

isentropic one and approach the isothermal one because at 

  M 1  the polytropic exponent also tends to unit   n 1 . 

 In this case a change of flow enthalpy is equal to zero 

  
h = c

p
T = 0 , and the equation of continuity 

  
dG = d( f )  can be represented in the form of expression 

  

dG

G

df

f

d
= 0 ,           (50) 

provided that the gas flow velocity in the critical outflow 

section of such a nozzle is equal to a sonic speed 

 = a = const . 

 According to Eq. (50), the density of subsonic gas flow 

can increase both at raising the mass gas flow   dG > 0  and 

at decreasing its cross-sectional area
  
(df < 0) . 

 Generally, the adiabatic exponents of the adiabatic gas 

flows can coincide with the similar polytropic exponents of 

the corresponding quasi-static processes. In particular, the 

ratios  n = k , 
  
cn = (c + c

l
) = cp  correspond to the isen-

tropic gas flows. An isochoric regime of gas flowing corre-

sponds to the other conditions, at which  n ± , 
 
c

n
R , 

the work necessary for such a regime can be represented by 

expression 

  
l
t
= c

l
dT = [c

v
(n k) (n 1)]dT = c

v
dT .        (51) 

 The Bernoulli equation in this case is transformed to a 

view being characteristic for a flow of an incompressible 

fluid, i.e. for the flow with constant density
 

= const  

  
p / + l = 2

/ 2 .           (52) 

 Diagrams (trajectories) of such dynamic adiabatic proc-

esses in various coordinate systems can coincide with similar 

trajectories of the corresponding quasi-static polytropic 

processes, as shown in Fig. (2) where the isochoric process 

1-2 with the polytropic exponent  n ± , the isentropic 

process 1-3 with the exponent  n = k , as well as the poly-

tropic process 1- 4 with   k > n > 1  can simultaneously be 

considered both as quasi-static polytropic and as dynamic 

adiabatic ones. 

 

Fig. (2). The adiabatic diagrams of gas flows in an equal tempera-

ture interval under the following conditions: 
  

= 1 v = const in 

the process 1-2, 
 
pvk

= const  in the process 1-3, and 

 pv
n
= const  in the process 1-4, where 

  
s
1
,s

2
,s

3
 are isentropic 

curves. 

4. ADDITIONAL INTERPRETATION OF SOME NO-
TIONS OF THE QUASI-STATIC METHOD 

 The classical method of quasi-static equilibrium for the 
closed systems can be represented as a special case of the 
general thermodynamic model. 

 The basic assumptions of this method as to the exclusive 
connection of entropy with the heat exchange processes and 
the impossibility of the ideal gas adiabatic curves to intersect 
among themselves are not carried out strictly enough not 
only in the open systems but also in the closed statically 
equilibrium ones. 

 In particular, the adiabatic curves (trajectories) of ideal 

gases can intersect among themselves in any coordinate sys-

tems including T (temperature) - s (entropy) diagrams if they 

represent various ideal gases with different adiabatic in-

dexes, for example
  
k

1
> k

2
> k

3
. In this case such adiabatic 

curves can coincide with the similar trajectories of polytropic 

processes if their adiabatic indexes coincide with the similar 

polytropic exponents 
 
k

i
= n

i
, as shown in Fig. (3). 

 The other idea of the quasi-static method as to the exclu-
sive dependence of the thermodynamic cycle efficiency on 
the temperatures of thermal sources is not general enough 
also since it can be complemented by the other notion of 
dependence of such efficiency on the corresponding tem-
peratures of working fluids. 

 Such a conclusion about the nature of the quasi-static 
equilibrium method can be made on the basis of an extended 
interpretation of the Carnot cycle for ideal gas, the diagram 
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of which is represented by the processes 1*-2*-3*-4* in Fig. 
(4). 

 According to such an interpretation the isothermal proc-

esses of this cycle ( T = const ) can also be considered as the 

isoenergetic processes in which internal energy of a gas is 

kept as a constant ( U = const ). 

 In this case the isothermal processes (1*-2 *) and (3*-4*) 

of this cycle along with the flows of heat energy q have also 

the equivalent flows of mechanical energy, work  l , which 

are usually not considered. When taking it into account, both 

the respective entropy changes  s  in these processes and 

cycle efficiency  can be defined not only by the known 

expressions 

  
s = q

i
T

i

*

            (53) 

  
= (q1 q2 ) q1 = 1 T2

*
T1

* ,          (54) 

in which 
  
T

i

*
 are the temperatures of heat sources, but also 

by other expressions 

  
s = l

i
T

i

*
,            (55) 

  
= (l

1
l
2

) l
1
= 1 T

2

*
T

1

*
,          (56) 

in which 
  
T

i

*
 are the temperatures of a working fluid but not 

temperatures of thermal or mechanical energy sources. 

 Moreover, the well-known constancy of entropy or the 

equality   s = 0  in the adiabatic processes (2*-3 *) and  

(4*-1*) of this cycle in which q is equal 0 can be explained 

not only by absence of the heat exchange processes, as it is 

usually supposed, but also by the mutual compensation of 

two component parts of the entropy change 

  s = s(T ) + s(v) , one of them   s(T )  is defined by a 

change in gas temperature and another   s(v)  is defined by a 

change in gas volume or by gas density . 

 The similar results that allow the entropic changes to be 

defined by means of the work quantity and the temperatures 

of the working fluid (instead of the temperatures of the heat 

sources) have also been obtained with reference to the Lor-

entz cycle (Fig. 4) including its polytropic processes repre-

sented by the equation 
  pv

n
= Tv

n 1
= const . 

 

Fig. (4). The Carnot (1*–2*–3*–4*) and Lorentz (1–2–3–4) cycles 

with the quasi-static processes. 

 In particular, in this case both the entropy changes in the 
polytropic processes of such cycles and their efficiency can 
be expressed not only by the traditional equations 

  
s = c

v
[(n k ) (n 1)] ln(T

2
T

1
) ,         (57) 

  
= 1 T

2

*
T

1

*
,            (58) 

which include the initial 
  
T

1
, final 

  
T

2
, and middle 

  
T

i

*
 tem-

peratures of thermal sources, but also by using the additional 

expressions 

  
s
1 2

= c
v
(n k) ln(v

1
v

2
) = R ln(v

1
v

2
) ,        (59) 

  
= (l1 l2 ) l1 = 1 T2 T1 ,          (60) 

taking into account the mechanical interactions 
  
l
1

, 
  
l
2

 and 

the middle temperatures of a working fluid 
  
T

1
and 

  
T

2
 at the 

upper and lower temperature levels of the cycle accordingly, 

where 
  
T

i

*
= (T

i+1 T
i
) ln(T

i+1 T
i
) . 

 

Fig. (3). The adiabatic and polytropic quasi-static curves of three various ideal gases with adiabatic 
  
k

1
,k

2
,k

3
 and polytropic 

  
n

1
,n

2
,n

3
 

indexes under the condition that 
 
k

i
= n

i
. 
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 Moreover, the temperature range 
  

T = (T
1

T
2

) of 

such a cycle as well as its efficiency  depends on the prop-

erties of the working fluids, including such characteristics as 

the polytropic exponent n , the thermal capacities 
  
c

v

*
 and 

  
c

n

*
 

of the working fluid in such processes 

  
n = vdp pdv = c

n
c

v
= (c

p
c) (c

v
c) ,        (61) 

  
c

v
= p v T = (c

v
c) = R (n 1) ,         (62) 

  
c

n
= v p T = (c

p
c) = nR (n 1) .         (63) 

 These thermal capacities in essence are similar to the 

known thermal capacities 
 
c

p
 (at p=const) and 

 
c

v
 (at 

v=const) and differ from them by the size of corrections 

 
c = q T  that consider the influence of internal or external 

energy exchange and of changes in structure or composition 

of a working fluid. 

 With reference to the open dynamic systems the entropy 

can be considered not only as a function of thermal interac-

tions 
 
ds = q T , as usually, but also of the mechanical ones 

 
ds = l T . 

 Besides, the entropy changes can be represented in this 
case as a function of the molecule concentrations (or the 
thermal capacities) of a system in the isothermal processes 
for which the external heat exchange is not necessary: 

  

s = kN
1
ln (v

1
v

2
) = kN

1
ln (

2 1
)=

= kN
1
ln(N

2
N

1
) = k N = R

v

.         (64) 

 Here, 
  
N

1
, N

2
 are the initial and final concentrations of 

molecules, 
  

N = (N
2

N
1
) << N

1
 is a change of the 

molecule concentration, and 
  

R
v
= R

v
ln(R

v2
R

v1
) = k N  

is a change of the gas constant 
 
R

v
related to the units of the 

volume but not of the mass as usually. 

5. PECULIARITIES OF THE APPLICATION OF THE 
2

ND
 LAW OF THERMODYNAMICS TO THE OPEN 

NON-EQUILIBRIUM SYSTEMS 

 The used approach corresponds to the extended interpre-

tation of the second law of thermodynamics according to 

which the efficiency  of a cycle is determined by the rela-

tive temperature difference of a working fluid (but not by 

that of the heat sources) at the upper and lower temperature 

levels of the cycle [4, 5]. 

 Such an interpretation of this law permits the regenera-
tive cycles that have got a contact only with one thermal 
source to exist. 

 One of the ways of the realization of such an opportunity 
is creation of the cycles with dynamic regeneration at which 
the energy of a cycle closure arising at its lower temperature 
level will be transformed not into the thermal energy as in 
the Carnot cycle but into the kinetic energy of the flow. 

 The performance  of such regenerative closed cycles 

with one thermal source can coincide with the similar ex-

pression for the Carnot cycle 

  
= 1 T

2

*
T

1

* .            (65) 

 However, unlike the Carnot cycle, 
  
T

2

* and 
  
T

1

* are here 

suitable average temperatures of a working fluid (but not of 

those of the thermal sources as it is usually supposed), and 

the quantity  characterizes the ratio between the useful and 

full work of a cycle. 

 As an example, the diagram of the closed ideal gas cycle 

with dynamic regeneration is represented in Fig. (5). This 

cycle consists of the isothermal process 2-3 with the flows of 

the heat q1 and the work l1, and of the three adiabatic proc-

esses with the adiabatic indexes being equal to 

 
n = k = c

p
c

v
 in the processes 1-2 and 3-4, as well to 

 n  in the process 4-1. 

 

Fig. (5). T–s diagram of the closed ideal gas cycle with dynamic 

regeneration. 

 During process 4-1 the adiabatic gas flow is partially 

compressed with the transformation of the consumed me-

chanical energy into the kinetic energy which, in turn, regen-

erates in the form of thermal energy at the upper temperature 

level 
  
T

1

* of the cycle. The full work of the cycle amounts to 

  
l
1
= l*

+ l
2
= q

1
+ l

2
= T

1

* s , its work output   l
*

is equal to 

q1 (
  
l*
= q

1
), while the work of the regeneration in the proc-

ess 2-5 is equal to 
  
l
2
= T

2

*
s =

2
/ 2 . 

 Moreover, the similar approach can also be realized in 
the cycles with the use of the vapor as a working fluid. One 
of such opportunities is a new design of absorption com-
bined heat pump (CHP) offered by the author [9]. It is in-
tended for both joint and separate production of electricity, 
heat and cold from different types of fuel, including renew-
able low-potential energy sources. The schematic diagram of 
the offered CHP is represented in Fig. (6). 

 In such a CHP, unlike the similar machines known ear-
lier, the absorption of vapor in a weak solution (brine) can be 
an adiabatic process, and the lower border of its useful tem-
perature range can be reduced to the values smaller than the 
temperature level of an environment. During the absorption 
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of such a CHP, the temperature of the liquid solution (of the 
absorbent) increases due to the thermal energy that is re-
leased in this process, and in doing so the solution pressure 
also grows by means of an ejector in which a difference of 
potential energies of the solution in the separator and the 
absorber is used. 

 The offered CHP allows the ecological safety and eco-
nomic efficiency to be significantly increased (almost by a 
factor of 1.5–2) in comparison with any similar systems 
known earlier. This technology can be basically realized with 
the commercially available equipment, so it can be imple-
mented industrially in a relatively short time. 

 

6. CONCLUSION 

 The analysis of the statically non-equilibrium systems 
carried out with the application of the method of dynamic 
equilibrium enables the thermodynamic concept to be ex-
tended beyond the borders of the classical method based on 
the notions as to the equilibrium systems and their quasi-
static processes. 

 Within the framework of such a concept, the differences 
of energy potentials between a system and an environment 
are taken into account as additional components of the equa-
tions of the first law and the equations of system state. 

 In this case, the entropy is the function of the system pa-
rameters, in which the known inseparable association of the 

entropy with the heat exchange processes is not necessary 
and its change in the adiabatic processes can be not only a 
positive quantity as it takes place in the quasi-static proc-
esses but also a negative quantity. 

 The adiabatic processes running with entropy decreasing 
can be particularly realized in the flows of working fluids, 
for example in the gas flows with the fixed density, and the 
combination of the Poisson’s adiabatic processes with the 
Bernoulli’s similar processes creates an opportunity to regu-
late the adiabatic indexes (parameters of adiabatic curves) 
similar to the adjusting of the polytropic exponents in the 
quasi-static processes. 

 At such an approach the second law of thermodynamics 
has the extended interpretation according to which the per-
formance of heat-mechanic transformations in the cyclic 
processes is defined by the relative temperatures difference 
of a working fluid at the upper and lower temperature levels 
of a cycle, but it is not necessarily by the analogous tempera-
tures of thermal sources as it was supposed earlier. 

 Such an interpretation unlike classical one corresponds to 
the equivalence principle, allows considering behavior fea-
tures of non-equilibrium irreversible systems as well, and 
supposes an opportunity for existence of the thermodynamic 
cycles having thermal contact only with one thermal reser-
voir. 

 The obtained results also give grounds to believe that the 
new generation of thermal machines capable to provide sub-

 

Fig. (6). The CHP schematic diagram. 
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stantial increase of the production efficiency of electricity, 
heat, and cold in using both renewable energy sources and 
fossil fuel can be created now even at the existing level of 
techniques. 

 The use of these possibilities can apparently be consid-
ered as the relatively simple and economical method for the 
solution of some modern topical problems of the environ-
mental and energy safety. 
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