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Abstract: The heat transfer equation of oil, pipe wall and soil, combining with the boundary condition, connection 
condition and initial conditions to be the differential equations which can simulate the temperature drop rule of hot oil 
pipeline. Then the numerical solution method is used to solve, constructed difference equations. By the gauss elimination 
method, the temperature changing rule of hot oil pipeline after shutdown can be obtained, so we can determine the safety 
shutdown time and the restart pressure. 
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INTRODUCTION 

 Various accidents may occur inevitably during the 
operation process of the hot oil pipeline, such as natural 
disasters, power outages, planned maintenance and accident 
emergency repair to fault and so on, which contribute to 
pipeline shutdown. Due to the exothermic reaction of the oil 
in the pipeline after the shutdown, the temperature will 
gradually decline, viscosity will increase, the wax layer will 
thicken, and the liquidity of the oil will be affected. When 
the temperature of the save oil drop to a certain degree, it 
will be difficult to restart the pipeline, sometimes, 
condensing tube accidents may even happen [1-5]. 
 Therefore, it is very important to do thermodynamic 
calculation after the shutdown of the hot oil pipeline, which 
helps us know the temperature drop situation and the 
temperature changing with time in various conditions after 
shutdown, and we can determine the safe shutdown time and 
the restarting pressure reasonably, which provides the 
scientific basis with safety production. It is very significant 
to the pipeline accident treatment, planned maintenance and 
the restart of the hot oil pipeline. 

THE THERMAL CALCULATION MODEL 

 As shown in Fig. (1), it is the cross section diagram of a 
buried pipeline, assuming that there are N layers (wall, 
thermal insulation and protective layer, etc.) between the 
inside radius R0  and the outside radius RN , the inside radius 
of any layer is Rn−1 ( n = 1 , 2 , , N ). 
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 The heat transfer problem of the oil can be described in 
polar coordinates ( r ,θ ), and the heat transfer problem of 
semi-infinite soil can be described in Cartesian coordinate 
system ( xoy ) [6, 7]. 

 
Fig. (1). The cross section diagram of a pipeline. 

The Heat Transfer Equation 

 Based on the thermodynamic principle, the heat transfer 
equation of the hot oil pipeline is as follow: 
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 In which, ρ  is the oil density, kg/m3; c  is the oil heat 
capacity, J/(kg·°C); T  is the oil temperature, °C; λ  is the 
thermal conductivity of the oil, W/(m·°C). 
 The heat transfer equation of the wall of the pipeline: 
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( n = 1 , 2 , , N −1 ) 

 In which, ρn  is the material density of the n layer of the 
pipeline, kg/m3; cn  is the heat capacity of the n layer of the 
pipeline, J/(kg·°C); Tn  is the temperature of the n layer of 
the pipeline(wall, thermal insulation and protective layer, 
etc.), °C; λn  is the thermal conductivity of the n layer of the 
pipeline, W/(m·°C). 
 The heat transfer equation of the soil is as follow: 
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 In which, ρg  is the density of the soil, kg/m3; cg  is the 
heat capacity of the soil, J/(kg·°C); Tg  is the temperature of 
the soil, °C; λg  is the thermal conductivity of the soil, 
W/(m·°C). 

The Boundary Condition 

 Considering that the maximum temperature of the oil in 
the cooling process of the pipeline will be misaligned 

(when r = 0 , ∂T
∂r

≠ 0 ), so: 

lim
r→0

r ∂T
∂r

= 0   (4) 

 The convection heat transfer equation between soil and 
outside air is as follow: 

∂Tg

∂y y=0

= − α k

λg

(Tg − T0 )   (5) 

 In which, α k  is the heat emission coefficient of the soil, 
W/(m2·°C); T0  is the temperature of the air,°C. 

The Connection Condition 

 Because the heat flux density of the oil is equal to the 
heat flux density at the innermost layer of the wall, a 
connection condition can be described as follow based on the 
convective heat transfer equation [7]: 

λ ∂T
∂r r=R0

−

= λ1
∂T1

∂r r=R0
+

= −αY (T − T1 )   (6) 

 In which, λ1  is the thermal conductivity of the innermost 
layer of the pipe line wall, W/(m·°C). T1  is the temperature 
of the innermost layer,°C; αY  is the heat emission 
coefficient of the oil to the inner wall of pipeline, 
W/(m2·°C); R0  is The inner radius of the pipeline, m. 

 The heat flux density of each layer of the pipeline is 
assumed to be equal, so: 

λn
∂Tn

∂r r=Rn
−

= λn+1
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∂r r=Rn
+

 ( n = 1 , 2 , , N −1 )  (7) 

 In which, Rn  is the outside radius of the pipeline, m. 

 Because the boundary temperature of each layer of the 
pipeline is equal, so 

Tn r=Rn
− = Tn+1 r=Rn

+ ( n = 1 , 2 , , N −1 )  (8) 

 Because the heat flux density of the outer layer of the oil 
pipeline is equal to the soil, so: 

λN
∂TN

∂r r=RN
−

= λg

∂Tg
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  (9) 

 In which, λN  is The thermal conductivity of the outer 
layer of the oil pipeline, W/(m·°C); TN  is The temperature 
of the outer layer of the pipeline, °C; RN  is The radius of the 
outer layer of the pipeline, m. 
 Because the heat flux density of the soil is equal to the 
heat flux density at the outer layer of the pipeline, so: 

TN r=RN
− = Tg r=RN

+   (10) 

Initial Condition 

T t=0 = f (r ,θ )  (11) 

Tn t=0 = fn (r ,θ )   (12) 

Tg t=0
= fg (x , y)   (13) 

NUMERIC SOLUTION OF THE MODEL 

 Equation (1) is a heat transfer problem of the limited area 
described in the polar coordinates system. The oil in the 
pipeline is meshed as Fig. (2). The oil is divided into J0  
equal parts along the θ  direction, 

Δθ = 2π
J0

andθ j = jΔθ ( j = 0 ,1, , J0 ); and M 0  equal 

parts along the r  direction,
 
Δr = R0

M 0 + 0.5
, ri = (i + 0.5)Δr  

( i = 0 ,1, , M 0 ). 

The transfer equation of the oil, the wall and the soil 
will be saluted in the grid system shown in Fig. (2), forming 
one closed differential equations as follows: 
W1Ti, j

m+1 + W2Ti+1, j
m+1 + W3Ti−1, j

m+1 + W4Ti, j+1
m+1 + W5Ti, j−1

m+1 = ξ1Ti, j
m   (14) 

( i = 1 ,2, , M 0 −1 ; j = 1 ,2, , J0 − 2 ) 

′W1Ti,0
m+1 + ′W2Ti+1,0

m+1 + ′W3Ti−1,0
m+1 + ′W4Ti,1

m+1 + ′W5Ti,J0−1
m+1 = ′ξ1Ti,0

m   (15) 

( i = 1 ,2, , M 0 −1 ) 
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Fig. (2). The sketch map of the split-sectional pipeline. 

′′W1 Ti,J0−1
m+1 + ′′W2 Ti+1,J0−1

m+1 + ′′W3 Ti−1,J0−1
m+1 + ′′W4 Ti,0

m+1 + ′′W5 Ti,J0−2
m+1 = ′′ξ1 Ti,J0−1

m   (16) 

( i = 1 ,2, , M 0 −1 ) 

Ti,J0

m+1 − Ti,0
m+1 = 0  ( i = 0 ,1, , M 0 )  (17) 

V1T0, j
m+1 + V2T1, j

m+1 + V3T0, j+1
m+1 + V4T0, j−1

m+1 = µ1T0, j
m  (18) 

( j = 1 ,2, , J0 − 2 ) 

′V1 T0,0
m+1 + ′V2 T1,0

m+1 + ′V3 T0,1
m+1 + ′V4 T0,J0−1

m+1 = ′µ1 T0,0
m   (19) 

′′V1 T0,J0−1
m+1 + ′′V2 T1,J0−1

m+1 + ′′V3 T0,0
m+1 + ′′V4 T0,J0−2

m+1 = ′′µ1 T0,J0−1
m   (20) 

jj(0,1)TM0 , j
m+1 − jj(0,1)TM0−1, j

m+1 + jj(1, 0)T0, j
m+1(1)

− jj(1, 0)T1, j
m+1(1) = 0

 (21) 
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( n = 1 , 2 , , N −1 ; i = 1 ,2, , Mn −1 ; j = 1 ,2, , J0 − 2 ) 
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( n = 1 , 2 , , N −1 ; i = 1 ,2, , Mn −1 ) 
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m+1 = 0  (30) 

( j = 0 ,1, , J0  )  

Tg0, j
m+1 − TMN , j

m+1(N ) = 0  ( j = 0 ,1, , J0  )  (31) 

K1Tgi, j
m+1 + K2Tgi+1, j

m+1 + K3Tgi−1, j
m+1 + K4Tgi, j+1

m+1 + K5Tgi, j−1
m+1 = K6   (32) 

( i = 1,2, , M β −1 ; j = 1,2, , J0 − 2 ) 

′K1Tgi,0
m+1 + ′K2Tgi+1,0

m+1 + ′K3Tgi−1,0
m+1 + ′K4Tgi,1

m+1 + ′K5Tgi,J0−1
m+1 = ′K6   (33) 

( i = 1,2, , M β −1  ) 

′′K1Tgi,J0−1
m+1 + ′′K2Tgi+1,J0−1

m+1 + ′′K3Tgi−1,J0−1
m+1 + ′′K4Tgi,0

m+1

+ ′′K5Tgi,J0−2
m+1 = ′′K6

  (34) 

( i = 1,2, , M β −1 ) 

Tgi,J0

m+1 − Tgi,0
m+1 = 0  ( i = 0 ,1, , M β −1  )  (35) 

−(e1+ e2)TgMβ , j
m+1 + e1TgMβ −1, j

m+1 = −e2TW   (36) 

 The unknown number of the equations is 

(M 0 +1)(J0 +1) + (Mn
n=1

N

∑ +1)(J0 +1) + (M β +1)(J0 +1) , 

which is equal to the number of the equations. And the 
equations are linear, which can be solved by Gauss 
Elimination Method. 
 Select the Gauss Elimination Method to solve differential 
equations. The differential equations showed before can be 
expressed in matrix form as follows: 

 

C11
(1)T1

m+1 + C12
(1)T2

m+1 ++ C1 j
(1)Tj

m+1 ++ C1sz
(1)Tsz

m+1 = b1
(1)

C21
(1)T1

m+1 + C22
(1)T2

m+1 ++ C2 j
(1)Tj

m+1 ++ C2sz
(1)Tsz

m+1 = b2
(1)



Csz1
(1)T1

m+1 + Csz2
(1)T2

m+1 ++ Cszj
(1)Tj

m+1 ++ Cszsz
(1) Tsz

m+1 = bsz
(1)

⎧

⎨

⎪
⎪

⎩

⎪
⎪

  (37) 

where, Cij
(1)  is the temperature coefficient of point j at the 

tm+1  moment; Tj
m+1  is the temperature matrix at the tm+1  

moment; bi
(1)  is the coefficient matrix related to the 

tm moment known before. 

 The formation of the matrix is: C (1)T m+1 = b(1) , with 
explanation that  
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C (1) =

C11
(1) C12
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⎢
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,

 

b(1) =

b1
(1)

b2
(1)


bsz

(1)

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

,  

besides C (1)  is nonsingular phalanx. 

 Do the augmented matrix 
 

C (1) b(1)⎡⎣ ⎤⎦  elementary 
operation: 
 First, select principal component from the first row. 

 Premise: Ci1,1
(1) = max

1≤i≤sz
Ci1

(1) ≠ 0 , then exchange line i1  and 

line 1 of (C (1) ,b(1) ) , and maintain the mark as Cij
(1)  and bi

(1)  
respectively, then do the elimination. 

 If: li1 = Ci1
(1) / C11

(1) ( i = 2 , 3,  , sz ), Cij
(2) = Cij

(1) − li1C1 j
(1)  

( i, j = 2 , 3,  , sz ), bi
(2) = bi

(1) − li1b1
(1) ( i = 2 , 3,  , sz ) 

 Then ),( )1()1( bA  equals: 

 

C11
(1) C12

(1)  C1sz
(1)

0 C22
(2)  C2sz

(2)

   
0 Csz2

(2)  Cszsz
(2)





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(1)

b2
(2)


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⎥
⎥
⎥
⎥
⎥
⎥

= C (2) ,b(2)⎡⎣ ⎤⎦   (38) 

 Accordingly, the equation set can be expressed as 
C (2)T m+1 = b(2) . 

 Second, select a principle component from the second 
row of Ci2

(2) ( i = 2 ,3, , sz ). 

 Make Ci2 ,2
(2) = max

2≤i≤sz
Ci2

(2) ≠ 0 , exchange line i2  and line 2 

of (C (2) ,b(2) ) , and maintain the mark as Cij
(2) , bi

(2)  
respectively, then do the elimination. 

 If li2 = Ci2
(2) / C22

(2) ( i = 3 ,4, , sz ), Cij
(3) = Cij

(2) − li2C2 j
(2)  

( i, j = 3 ,4, , sz ), bi
(3) = bi

(2) − li2b2
(2) ( i = 3 ,4, , sz ). 

 Then (C (2) ,b(2) )  can be expressed as the following 
forms: 

 

C11
(1) C12

(1) C13
(1)  C1sz

(1)  b1
(1)

0 C22
(2) C23

(2)  C2sz
(2)  b2

(2)

0 0 C33
(3)  C3sz

(3)  b3
(3)

      
0 0 Cn3

(3)  Cszsz
(3)  bsz

(3)

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

= C (3) ,b(3)⎡⎣ ⎤⎦  (39) 

 Accordingly, the equation set can be expressed as 
C (3)T m+1 = b(3) . 

 Do as the steps below until sz −1 , the results can be 
showed as: 

 

C11
(1) C12

(1) C13
(1)  C1sz

(1)  b1
(1)

C22
(2) C23

(2)  C2sz
(2)  b2

(2)

C33
(3)  C3sz

(3)  b3
(3)

   
Cszsz

(sz )  bsz
(sz )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

= C (sz ) ,b(sz )⎡⎣ ⎤⎦  (40) 

 Finally, the original equation set can be expressed as 
C (sz )T m+1 = b(sz ) . 

 Namely, the step k( k = 1 ,2, , sz −1 ) can be expressed 
as follows: 

 Select a principle component from the row k, 
Ci,k

(k ) ( i = k +1 , k + 2 , , sz ). 

 Make Cik ,k
(k ) = max

k≤i≤sz
Ci,k

(k ) ≠ 0 , exchange the line ik  and 

line k of (C (k ) ,b(k ) ) , and maintain the mark as Cij
(k ) , bi

(k )  
respectively, then do the elimination. 

 Make lik = Cik
(k ) / Ckk

(k ) ( i = k +1 , k + 2 , , sz ),  

Cij
(k+1) = Cij

(k ) − likCkj
(k )  ( i, j = k +1 , k + 2 , , sz ),  

bi
(k+1) = bi

(k ) − likbk
(k )  ( i = k +1 , k + 2 , , sz ). 

 After we get the equivalent equation sets 
C (sz )T m+1 = b(sz ) , assume C (1)  as nonsingular phalanx, then 
take it back to the equation step by step, finally we can get 
the solution of the original equation set, which is 

 

Tsz
m+1 = bsz

(sz ) / Cszsz
(sz )

Tk
m+1 = (bkk

(k ) − Ckj
(k )Tj

m+1 / Ckk
(k ) (k = sz −1, sz − 2,,1)

j=k+1

sz

∑

⎧

⎨
⎪

⎩
⎪

  (41) 

APPLICATIONS 

 For a buried hot oil pipeline, the diameter 
is Φ355.6 × 6.4 , the flow is 150×104~320×104t/a, and the 
Oil freezing point is 32°C. The temperature of the soil near 
the pipeline is15°C in summer, while 4°C~5°C in winter and 
8°C~9°Cin spring, autumn respectively. The inlet oil 
temperature is 48~61°C, the outlet oil temperature is 72°C. 
Figs. (3-5) are the temperature change of the pipeline over 
time after shutdown, which help us identify the safety 
shutdown time according to the nature of the oil properties. 
 We think the pipeline is safety when the lowest 
temperature of pipeline is 3 °C more than freezing point. The 
safety shutdown time is shown in Table 1, we can see that 
safety shutdown time is 22 hours in summer, while 15 hours 
in winter and 18 hours in spring, autumn respectively. 
Table 1. Safety Shutdown Time 
 

 Winter Spring and Autumn Summer 

Safety shutdown time, h 15 18 22 
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Fig. (3). The temperature drop diagram of the pipeline in spring and autumn. 

 
Fig. (4). The temperature drop diagram of the pipeline in summer. 

 
Fig. (5). The temperature drop diagram of the pipeline in winter. 
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CONCLUSION 

 Combined with the boundary conditions, connected 
conditions and initial conditions, the heat transfer equations 
of oil in hot oil pipeline, pipe wall and soil are assembled to 
constitute differential equations for temperature drop 
analysis after hot oil pipeline shutdown. The above 
differential equations are solved with numerical method by 
constructing differential equations which can be solved with 
Gaussian elimination method. Thus, the temperature 
variation after the hot oil pipeline shutdown is obtained, 
providing the calculation basis for reasonably determining 
the safe shutdown time and the required re-starting pressure. 
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