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Abstract: In the present work, the natural convection problem in a two-dimensional square cavity partially filled with 
porous media is simulated by lattice Boltzmann method (LBM). The flow field and temperature field of fluid in the cavity 
are obtained by numerically simulating. A comprehensive study of natural convection heat transfer is carried out for 
various values of the vertical porous layer dimensionless width D, of Rayleigh number, of Darcy number, and of porosity. 
Research results show that in the case of D < 0.1 or D > 0.9, the hot wall average Nusselt number is sensitive to porous 
layer width. Under the conditions of high Rayleigh number and high Darcy number, the effect of natural convection 
becomes distinct and the change of porosity with high Darcy number has obvious influence on heat transfer. 
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1. INTRODUCTION 

 The phenomena of energy, momentum and mass transfer 
in porous media exist in all the field of industrial and 
agricultural. Natural convection heat transfer in porous 
media is a benchmark problem due to its wide application 
background, such as heat pipe, heat insulating material, 
petroleum reserve, groundwater decontamination, thermal 
drying process and casting solidification, etc. Ingham and 
Pop [1, 2] elaborated the natural convection problem in 
porous media in their works. An excellent and 
comprehensive review has been given by Nield and Bejan 
[3]. The natural convection issue in a partially porous cavity 
has been studied by D. Gobin, B. Goyeau and Beckermann 
[4, 5], and the mathematical descriptions of this problem 
were based on one-domain and two-domain formulation of 
the conservation equations, respectively. 
 As a promising numerical method, lattice Boltzmann 
method [6] has became a new tool to simulate fluid motion 
and model complex physical phenomena after decades of 
development. Different from the traditional method of 
computational fluid mechanics, LBM is not based on the 
macroscopic continuous equation but grounded on the fluid 
microscopic model and mesoscopic dynamic equations. 
Then, the evolution mechanism in accord with physical laws 
is constructed to calculate. LBM can be used to simulate the 
fluid flows and heat transfer due to its simple implements, 
good concurrency, simple boundary treatment etc. 
Meanwhile, it has been widely applied in the study of porous 
media by international scholars. Takeshi Seta et al. [7] 
applied lattice Boltzmann method to analyze the 
performance of natural convection heat transfer in porous 
 

media cavity for different Rayleigh number, Darcy number 
and porosity. Yan Weiwei et al. [8, 9] implemented LBM to 
simulate the flow field and the temperature field in a cavity 
filled with porous medium, especially researched the 
influence of porosity of the medium vary from place to place 
on the nature convection. 
 This paper uses the coupled lattice Boltzmann model 
proposed by Guo et al. [10] to solve the natural convection 
heat transfer problem in a partially porous cavity at 
representative elementary volume scale. The velocity field 
and temperature field are modeled by different lattice 
Boltzmann equations and they are coupled through 
Boussinesq approximate equation. On this basis, a 
comprehensive study of natural convection heat transfer is 
carried out for various values of the vertical porous layer 
dimensionless width D, of Rayleigh number, of Darcy 
number, and of porosity. 

2. PHYSICAL MODEL AND GOVERNING 
EQUATIONS 

2.1. Physical Model 

 In this paper, the physical model is a two-dimensional 
square cavity of length L that partially filled with vertical 
porous layer, as shown in Fig. (1). For the model, the vertical 
surfaces are held at constant temperature TL and TH (TH>TL), 
respectively. The two horizontal walls are adiabatic. The 
actual width of the porous layer is d and the dimensionless 
width of the layer is D(d/L). The origin of coordinate system 
is the lower left corner of the cavity. The model takes 
horizontal direction as the x direction and the opposite 
direction of gravity as the y direction. 
 The initial conditions and boundary conditions are as 
follows: 
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Fig. (1). Schematic of physical model of enclosure cavity. 
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2.2. Governing Equations 

 In the study, we assume that the configuration of porous 
media in the cavity is homogeneous, rigid and isotropic. We 
also assume that the fluid is incompressible and viscous fluid 
flow can be described by Brinkman-Forchheimer model and 
it meet the Boussinesq hypothesis. At this point, the flow 
continuity equation and Brinkman-Forchheimer equation can 
be written as the following form:  

0∇ ⋅ =u  (1) 

   

∂u
∂t

+ u ⋅∇( ) u
ε

⎛
⎝⎜

⎞
⎠⎟
= − 1

ρ
∇ ε p( ) +νe∇

2u+ F   (2) 

where ε is the porosity of porous media; ρ is the density of 
fluid; u and p are the average speed of fluid volume and 
pressure, respectively; ve is the effective kinematic viscosity 
coefficient; F is the total body force due to the presence of 
porous media and other external force fields, which can be 
written as the following form: 

  
F = −

εν
K

u −
εFε

K
u u + εG   (3) 

 On the right side of the equation (3), the first item is the 
frictional resistance of fluid and porous media skeleton, the 
second one is the inertia due to the presence of porous 
medium. v is the kinematic viscosity of the fluid; K and Fε 

represent permeability and geometric function, respectively; 
G is the volume force caused by external forces. If G is 
caused only by gravity, the influence of gravity can be 
expressed as equation (4) under the Boussinesq hypothesis. 

  G = −gβ T − Tm( )   (4) 

where g is the gravitational acceleration; β is the thermal 
expansion coefficient; Tm is the average temperature of the 
system; The geometric function Fε and the permeability K 
have relationship with the porosity ε, respectively. For the 
porous media that is made of solid particles, Fε and K can be 
expressed based on Ergun’s [11] empirical formula as: 

  
Fε =

1.75
150ε 3

,

  

K =
ε 3dp

2

150 1− ε( )2   (5) 

where dp is the diameter of the solid particles. 
 In equation (2), the generalized Navier-Stokes equation 
(2) will be degraded to the standard Navier-Stokes equation 
when the porosity ε→1, namely, in the absence of the porous 
media. 
 The heat transfer problem always involves in fluid flow 
in actual applications. If we ignore the compression work 
and viscous heat dissipation, it can meet local 
thermodynamic equilibrium condition between the fluid and 
solid, and then the energy equation of convection heat 
transfer in the porous media can be expressed as: 

  
σ ∂T

∂t
+ u ⋅∇T = ∇⋅ αm∇T( )  (6) 

where T is the average volume temperature of fluid; The 
formula 

  
σ = ε + 1− ε( )ρscps / ρ f cpf  

represents the ratio 
between the heat capacities of the solid and fluid phase;

  
ρs ,ρ f ,cps ,cpf  are the density and capacity of the solid and 

fluid phase, respectively; αm  
denotes the effective thermal 

diffusivity. 

 In order to represent the characters of natural convection 
heat transfer in porous media, we can introduce several 
dimensionless numbers: the Darcy number 2Da K L= , the 

viscosity ratio eJ ν ν= , the Prandtl number Pr mν α= and 

the Rayleigh number 3
mRa g TLβ να= Δ . 

where L is the cavity length;  ΔT = TH − TL  
is the 

temperature difference between the hot and cold side walls. 

3. LATTICE BOLTZMANN MODEL 

 For the natural convection heat transfer problem in 
porous media in this paper, we use the double distribution 
function model to study the fluid flow field and temperature 
field. Meanwhile, the D2Q9 model is employed and the 
lattice Boltzmann evolution equations [10] can be expressed 
as follows: 
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fi x + eiδ t

, t + δ
t( ) − fi x, t( ) = −

fi x, t( ) − fi
eq x, t( )

τ v

+ δ
t
Fi  (7) 

   
gi x + eiδ t

, t + δ t( ) − gi x, t( ) = −
gi x, t( ) − gi

eq x, t( )
τ t

 (8) 

where 0 8i = : ;  fi  is the distribution function;  fi
eq  is the 

corresponding equilibrium distribution function;  gi  is the 

temperature distribution function and  gi
eq  is the equilibrium 

temperature distribution function; τ v  and  τ t  are the velocity 
non-dimensional relaxation time and the temperature 
relaxation time, respectively. Equation (7) recovers the 
continuity and the momentum Eqs. (1) and (2). Equation (8) 
describes the evolution of the internal energy and leads to 
Eq. (6). 
 Usually the speed configuration of D2Q9 model is 
defined as follows: 
 Usually the speed configuration of D2Q9 model is 
defined as follows:  
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where lattice speed   c = δ x / δ t ; δ x  and  δ t  are time step and 
grid step. Generally the grid spaces on the directions of x and 
y are the same 

 
δ x = δ y . 

 On the basis of the continuous Boltzmann equation, we 
can get the equilibrium distribution function according to 
discrete the time and space. It is defined as: 
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where   cs = c / 3  is the speed of sound; The values of the 

weight are given by  ω0 = 4 / 9,    ω i = 1/ 9 i = 1 4( ) ,

   ω i = 1/ 36 i = 5  8( ).  

 In Eq. (7), the forcing term can be given by: 
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 The corresponding effective viscosity and the effective 
thermal conductivity in macro equation are given by: 

  
νe = cs

2 τ v −
1

2

⎛
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⎞
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δ t ,  αm = σ cs
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2
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 The macroscopic quantities, fluid density and internal 
energy are defined as: 

  
ρ = fii

∑ ,  T = gi / σ
i
∑  (14) 

 The speed of the fluid is calculated by using a temporary 
speed, which can be written as: 

   
u =

υ

c0 + c0
2 + c1 υ

 (15) 

where parameters   c0 ,   c1  and υ  are given by: 
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1
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 Both the equilibrium distribution of lattice Boltzmann 
model and the forcing term contain porosity. When the 
porosity is equal to one, they can become the standard form. 
Therefore, in this model, not only the effect of porous media 
but also the feature of fluid free flow are considered. Both 
strictly obey the momentum transfer in different regions. The 
interface between porous medium and free fluid can 
automatically satisfy the continuity conditions, which avoids 
the problem of interface slip. 

4. RESULTS AND ANALYSIS 

4.1. Method Validation 

 In order to test the reliability of the model and method, 
the lattice Boltzmann method was used to simulate natural 
convection in a two-dimensional square cavity filled with 
porous medium. The vertical surfaces of the cavity are held 
at constant hot temperature and cold temperature, 
respectively. The horizontal walls are adiabatic and 
impermeable. To evaluate the calculation results, the 
comparison of average Nusselt numbers on the hot wall 
between the existing literature data and the LBM results is 
tabulated in Table 1. Meanwhile, it shows good quantitative 
agreement. 

4.2. The Influence of Vertical Porous Layer Width on 
Natural Convection Heat Transfer 

 In order to study the effect of variation in the width of the 
vertical porous layer on natural convection heat transfer in 
the cavity, computational parameters are set as follows:  
  Ra = 106 , Da = 10−4 , Pr = 1.0, J = 1,σ = 1,ε = 0.5 .  
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 Fig. (2) is the fluid streamlines and isotherms diagram 
when steady-state is reached under different D. It can be 
clearly seen from Fig. (2) that at D = 0, namely, in the 
absence of the porous media, there is a pair of symmetrical 
distribution of vortex in the cavity. With the increase of 
porous layer width, the left vertex moves to the domain of 
pure fluid and has a little reduction, while the right one 
becomes long and narrow. At D = 1, the cavity is full of 
porous media and there is only one vertex in the body. 
 The impact of dimensionless width D on natural 
convection can be observed in Fig. (3). On the whole, the 
heat transfer intensity decreases with the increase of porous 
layer width. In the case of D < 0.1 or D > 0.9, the hot wall 
average Nusselt number is sensitive to porous layer width. A 
slight increase of porous layer width can result in drastic 
deceasing of Nusselt number. However, with increasing 
porous layer width, there is subtle variation in Nusselt 
number for 0.1 < D < 0.9, which means the central region 
has little contribution to the natural convection heat transfer. 

4.3. The Influence of Rayleigh Number on Natural 
Convection Heat Transfer 

 Fig. (4) shows the effects of different Rayleigh numbers 
on the average Nusselt number. The value of the Rayleigh 

numbers are 103,104,105,106 and 107, respectively. As it can  
be seen from Fig. (4), with increasing Ra, the average 
Nusselt number on the hot wall jumps significantly. This is 
because the greater the Rayleigh number, the stronger the 
motivation of natural convection and vortex intensity. 
Conversely, at the low Rayleigh numbers (103 to 104), the 
change of hot wall average Nusselt number is not obvious. 
However, at a relative small Darcy number, the change of 
Rayleigh number has little influence on the intensity of 
natural convection. 
 Fig. (5) shows the vertical velocity and temperature 
comparison along the horizontal line at mid-height for 
different Rayleigh numbers. When the value of Ra  is small, 
the velocity is almost zero in the porous media region and 
the free fluid region. With increasing Ra, the fluid flow in 
free space gradually enhances and the velocity boundary 
layer gradually thins. Along with the further increase of 
Rayleigh number, natural convection heat transfer in porous 
media becomes stronger. At Ra  = 103, the temperature 
profile is almost linear distribution, since only conduction 
occurs. With increasing Ra, the temperature is almost flat in 
the bulk region, but the temperature gradient changes greatly 
near the vertical walls. Meanwhile, because of the existence 
of thin porous layer in the left side, the temperature 
boundary near the left wall is thicker than the right. 

Table 1. Comparison of average Nusselt numbers on the hot wall with other numerical results. 
 

Ra ε  Da Pr Literature Data [12] LBM Resulta LBM Resultb Calculated Value of this Paper 

103 0.4 10-4 1.0 1.010 —— 1.007 1.001 

105 0.4 10-4 1.0 1.067 1.066 1.063 1.058 

106 0.4 10-4 1.0 2.550 2.602 2.544 2.573 
aCorresponds to the reference [8], b Corresponds to the reference [7]. 

 

Fig. (2). Streamlines (a) and isotherms (b) for a variable D.   Da = 10−4 , Pr = 1.0, Ra = 106 ,ε = 0.5 ; from left to right, D=0,0.1, 0.5,1.0. 
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Fig. (3). Nusselt number as function of the dimensionless width D. 

 
Fig. (4). The effects of Rayleigh number on the Nusselt number for 
different Darcy numbers, D = 0.1, ε = 0.5. 

4.4. The Influence of Darcy Number on Natural 
Convection Heat Transfer 

 Fig. (6) shows the effects of different Darcy numbers on 
average Nusselt number. With increasing Darcy number, the 
average Nusselt number on hot wall increases greatly. 
However, when the Darcy number is in the range of 10-5, the 
curve remains horizontal and the Nusselt number has a little 
growth, which is because the heat transfer mainly rely on 
solid heat conduction. At Da > 10–5, the Nusselt number 
increases rapidly, which can be explained by the coexistence 
of natural convection and heat conduction in the porous 
media cavity. 

4.5. The Influence of Porosity on Natural Convection 
Heat Transfer 

 Fig. (7) shows the influence of the porosity on heat 
transfer for different Darcy numbers. Here we can see that 
the variation of porosity has little impact on the average 
Nusselt number of the hot wall at low Da. At Da ≥ 10–3, the 
influence of the porosity on natural convection is significant. 

(a) 

 
(b) 

 
Fig. (5). Vertical velocity distribution (a) and temperature 
distribution (b) and at mid-height of cavity for different Rayleigh 
numbers. 

 
Fig. (6). The effects of Darcy number on the Nusselt number, Ra = 
106, ε = 0.5. 
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Fig. (7). Nusselt number as function of the porosity for different 
Darcy numbers, Ra = 106, D = 0.1. 

CONCLUSION 

 A systematic numerical study of natural convection in the 
cavity partially filled with porous media has been presented 
by using the lattice Boltzmann method. Based on the results, 
following main conclusions can be achieved: 
1. The lattice Boltzmann method and the proposed 

model are capable of solving natural convection in 
porous media at the representative elementary volume 
scale. 

2. In the case of D < 0.1 or D > 0.9, the hot wall average 
Nusselt number is sensitive to porous layer width. 
However, at 0.1 < D < 0.9, the change of thickness 
has little influence on heat transfer. 

3. The Rayleigh number and Darcy number have a great 
impact on natural convection, of which the effect of 
the former is more distinct than the latter. 
Furthermore, in the case of high Darcy number, the 
flow and heat transfer in compound cavity enhance 
significantly with the increase of porosity. 
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