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Abstract: Multiple Damaging Hydrological Events are rapidly developing into worldwide disasters with effects to the vi-

able habitat for humankind and ecosystems. This research describes how data assimilation friendly models combining re-

motely sensed and ground hydrological data could be used for developing a soft geovisual communication in order to re-

duce the uncertainty in rainstorm hazard mapping. For this, a set of sequential GIScience rules was utilized for converting 

coding data of a Rainstorm Hazard Index (RHI) from point record to spatial information using TRMM–NASA satellite 

rain data as covariate. Examples of probability estimation for different precipitation durations, ranging from 3 to 48 hours 

and the quantification of hydrological hazard fields were used with probability maps of damaging rainstorms prone-areas 

for the test-region of Southern Italy. Results show that sub-regional rainstorm hazard modelling can provide probability 

maps for damaging events in Italy with a spatial variability resolution of around 20 km. Spatially finer estimates (e.g., at 

local-scale: < 10 km) can be ensured only with the availability of more accurate and detailed remote sensing rain data. 
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1. INTRODUCTION 

Multiple Damaging Hydrological Events (MDHE – [1]) 
are rapidly developing into deluges, flash floods, floods, 
mudflows, accelerated erosion, and landslides [2, 3], with 
tragic consequences on the viable habitat for humankind and 
ecosystems, and agriculture [4]. In this context, MDHE 
could have more impact than the frequently cited hazard of 
global warming due to intensification of the hydrological 
cycle and the concentration of rainfall in sporadic- but more 
intense events [5].  

There is, in fact, evidence available from different parts 
of the world of a rising trend of natural disasters since 1993 
[6]. For Southern Italy, the catastrophic events of Sarno in 
1998 [7], and the more recent devastating deluges in Naples 
in 2001, 2003, 2004, and 2006, caused by extreme weather 
events are examples. Therefore, global vision in remote sens-
ing coverage and surveillance loop are important, since we 
do not know where an event might take place [8]. However, 
while terrain information such as land cover, geology, geo-
morphology, and drainage has been frequently derived from 
satellite images for predicting causative hazard parameters, 
satellite-based rainfall estimate, landscape stress patterns and 
their estimates of relative spatial uncertainty for assisting 
development of a hydrological hazard model, are very few 
[after 9-11]. Also while the literature on general model the-
ory is vast, the aims of modellers usually consist of improv-
ing our understanding of a phenomenon and its process, and 
ultimately predicting the response of the landscape [after  
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12]. This is particularly so, because estimating rainfall from 
satellite imagery is rather complex [13], and due to limited 
success of deterministic rainstorm impact modelling tech-
niques [14]. In this context, data assimilation models, that 
combine ground data with remote sensing observations rain-
data, need to accommodate many specific aspects of the ob-
servations and models [15]. While surface data will always 
remain important cornerstones of reference for monitoring 
and modelling geospatial data, ground data suffers especially 
due to mutability of their patterns, even as the modeller is 
compelled to adapt frequently to maintain sufficient condi-
tion of temporal and spatial homogeneity, with time-series 
that are difficult to update.  

The advent of Geographical Information Science 
(GISsci) can confer an innovative role on hazard modelling 
development, satellite data assimilation, model outputs un-
certainty assessment, spatial data scaling, and mapping visu-
alization. Although satellite data are regarded as indirect 
information and not as reliable as surface data, they can be of 
great help when used for scaling and assisting the modelling 
of a dynamic system [16]. However, the problem is that we 
have a significant increase in uncertainty when the meas-
urements and forecasts move from the global to local scale, 
especially in their landscape response to change, such as 
downpours, heavy runoffs and flash-floods, deluges, sedi-
ment transport, and urban stormwater [after 17]. An interest-
ing study for assessing rainfall impact was recently done by 
[18] that analyzed precipitation with the parametric geosta-
tistical approach in order to obtain information for predicting 
natural hazards caused by heavy rains. 

In this paper, a different geostatistical criterion was ap-
plied – specifically a non-parametric approach – by trans-
forming ground and satellite information into a continuous 
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probabilistic response consistent with soft descriptions of 
hazards which is referred to in this study to mitigate the un-
certainties in downscaling and geocomputational tracking 
(e.g., spatio-temporal non-homogeneity in the primary vari-
able pattern, accuracy of the supplementary variables, errors 
involving sampling and hazard modelling). Processes operat-
ing to these multiple spatial and temporal scales, however, 
challenge the predictive capability of environmental models 
and integration or scaling of data from different sources [19]. 
Non-parametric geostatistical multivariate analysis, via co-
indicator coding criteria, is able to combine rainstorm indica-
tors (which are recorded at sparse raingauge station-points) 
and supplementary satellite rain data (which are recorded at 
regular grid-points). So that, the novelty of our approach lies 
in how methods and different tools might incorporate uncer-
tainty associated with satellite data into a model of rainstorm 
hazard accounting, and to illustrate how model performs at 
sub-regional scale. In this way, the expansion of a Rainstorm 
Hazard Index (RHI) data from point to spatial information 
can be assessed with the Indicator CoKriging (ICK) tech-
nique, using Tropical Rainfall Mission Monitoring (TRMM–
NASA) satellite rain data as covariate. Thus, spatial informa-
tion is visualized with examples of probability estimations for 
different precipitation durations – ranging from 3 to 48 hours – 
and the quantification of hydrological hazard fields is done us-
ing probability maps of damaging rainstorms prone-areas.  

2. REFERENCE DATA SETS AND METHODOLOGY 

2.1. Study Area and Problem Setting 

Flood disasters between 1974 and 2003 show Italy and 
France Countries, including Asiatic regions, among the more 
vulnerable areas (Fig. 1a). Worldwide is also shown a trend 
of hydrological disasters strongly increasing (Fig. 1b) 
(OFDA/CRED International Disaster Database http://www. 
emdat.be/). These increases are also necessitating a shift 
from a policy focusing on costly relief assistance to one with 
more emphasis on mitigation and personal responsibility for 
living in harm's way. In Fig. (1c) is it also evident as more 
than 60% of the nation's natural disasters are a result of 
weather or climate extremes [20].  

The rainstorms most perceived by the public are the 
large-scale damaging events; however, there is evidence that 
the most deadly floods are those with short lead times – flash 
floods – which in Mediterranean Europe have mostly a 
spatially limited character and can occur far away from 
major rivers [21]. In this respect, a limited test-area, extend-
ing approximately 60000 km

2
, is chosen across a transitional 

and complex terrain of Mediterranean central area of the 
southern Italy (Fig. 2a). In Italy there are different raingauge 
networks, many of which have been recently grouped under 
the SCIA-APAT Database (www.apat.it/) that we utilized for 
collecting ground data. However, ground data are not always 
updated and not all the networks uniformly coincide at all 
times with this database. Satellite rain-data were derived 
from the TRMM-NASA platform, algorithm 3B42 (multi-
satellite precipitation estimates [22], that uses an optimal 
combination (HQ) of 2B-31, 2A-12, SSMI, AMSR, and 
AMSU precipitation estimates, with a resolution of 
0.25x0.25 degree (about 25x25 km) grid boxes (http://disc. 
sci.gsfc.nasa.gov/).  

To illustrate the applicability of the proposed methodol-
ogy, a reference classification was constructed from RHI, 
driven by rainstorm events on 14 November 2004, 24 Janu-
ary 2003, and 4-5 May 1998. This was necessary because 
rainfall retrieval TRMM–satellite data were not available 
prior to 1998 and some ground-gauge data, originating from 
Italian networks, were unavailable after 2004. Data assimila-
tion pattern in the region under study were obtained from 64 
raingauges (Fig. 2a), and 143 supplementary satellite rain 
grid-data (Fig. 2b).  

2.2. Rainstorm Hazard Problem-Solving Logic Process 

Expert systems can be designed to model processes when 
carried out using the IF-THEN logic statement to impose an 
event contingent upon the condition [23]. Problem –solving 
logic process frameworks include first an invariant spatial 
model recognizing critical-thresholds from the response ra-
tios between the two following components of the landscape: 

a) pulsing force that disturbs the system, including 
current rainstorm depth, and; 

 

 

 

 

 

 

 

 

Fig. (1). (a): Flood Disasters by Country: 1974–2003, from EM-DAT database (http://www.emdat.be/); b): natural disasters trends 1900-

2005, from EM-DAT (OFDA/CRED International Disaster Database, http://www.em-dat.net); and c): percentage of geomorphology related 

disasters by type and region from 1900 to 1999 (from Alcántara-Ayala, 2002, modified). 
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b) resistance force, including storm variability that oc-
curred in the system’s climate history. 

As a more concrete application, we can incorporate, for 
each rainy step of duration h at sampled location s , two 
processes into the rainstorm logic statement linking the RHI 
to the following power equation [after 24, 25]: 

( )
( ) ( )

hours48...1
1

:maxs

2

s

á

á

=
+

= h
f

RSD
RHI

h
Rclim

h
h

     (1) 

where RSDh is the Rain-Storm Depth (mm), that represents 
the pulsing force that disturbs the system during an event of 
duration h, and:  

f Rclim( )
=Med RSDh( ) 8 h( ) Swet                                      (2) 

is a function that represents the system resistance state, that 
is the intrinsic ability of the system to resist change because 
of its history (recent and past). Med(RSDh) –the threshold 
value – is the median of the annual maximum rainfall (mm) 
of duration h, and the term (8– h)Swet, is a function adjusting 
the threshold value with the current variation of the soil hu-
midity. As proxies of the soil humidity, three coefficients 
was introduced as Swet equal to 0.5, 0, and 2 according to dry, 
humid, and very humid soil conditions before the event, re-
spectively; these coefficients can be derived, in turn from 
remote sensing; the duration of rainstorm (h) under square 
root is to explain a major accommodation of the system for 
rainfall spanning over a longer period. Whereas, for each 
sampled location with a Rainstorm Hazard Index (RHI) 0, 
no-rainstorm hazard occurs, and with RHI value barely over 
1, the probability of occurrence of a rainstorm hazard com-
mences at 0.50. 

2.3. Matching Coding Approach for Decision–Making 
Under Uncertainty 

While the above RHI–model is utilized to arrive at con-
clusions at the punctual-scale, the use of geostatistics method 
may help to overcome the inherent difficulties in spatial scal-
ing, when the above RHI discrete data must accommodate a 
continuous spatial solution and data collection across sam-
pled- and unsampled locations. Thus, the RHI–results are 
converted to a binary vector and matched to satellite rain-
data under a GIS flow and supported by indicator cokriging 
technique (Fig. 3).  

Consider the following information obtained over the 
study area: 

- values of the random primary variable Z (RHI), at m 
locations s , z(s ),  = 1,2 … n1; and 

- y(s) TRMM satellite rain-data at supplementary grid loca-
tions s within the area. 

Indicator approach of the primary variable requires that 
all data be coded as local prior probability values. Precise 
measurements of zk at hard data locations s  are then coded 
into a set of K binary (hard) indicator data defined as:  

with  i s ; zk( ) =
1 z s( ) > zk
0 otherwise

                                 (3) 

The z–values are hard in both senses: (1) they are di-

rectly derived from measurements of ground rainfall-data, 

and (2) are successively transformed into binary vector data. 

These measurements are often supplemented by a relatively 

large amount of indirect data, such as those conditioned on 

remotely sensed spectral response y(s). Each of these data 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). (a): Geographical setting and data assimilation patterns from in-situ-raingauges with coded-station-points, and (b): TRMM-RS sat-

ellite rain data pixel centroid grid of 25 x 25 km, superimposed on elevation data of hillshade land derived from DEM (SRTM)-90 meters 

http://srtm.csi.cgiar.org/. 
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provides only indirect information about the value of the 

variable Z. Using both ground and satellite information such 

as matching data, the approach is aimed at assessing the 

probability that the value of z at any unsampled site s is 

greater than a given critical zk value. In this way, Indicator 

CoKriging (ICK) is able to take into account both the infor-

mation to be processed together, and then used in the ordi-

nary cokriging equations [26, 27]. To account for both cate-

gorial (RHI) and continuous (satellite data), we used stan-

dardized variables to produce composite indices compatible 

to indicator cokriging [27, after 28]. So that, both covariance 

and cross-covariance functions were applied on the above 

standardized primary and auxiliary variables for incorporat-

ing exhaustively sampled satellite data using the indicator 

datum that is collocated with the location being estimated. 

Availability of coregionalization between indicator ground 

and satellite at critical values of RHI for each location so 

within the study area allows a grid layer of: the hazard (s ) 

of declaring a location vulnerable to damage by rainstorms 

on the basis of the estimate I s; zk( )
oIOK

*
 when actually Z(s) 

> kz =  pc (critical value = 1).  

3. RESULTS AND DISCUSSIONS  

3.1. Rainstorm Hazard Modelling–Control Runs 

In order to validate RHI–time evolution, Monte Pino Met 
European Research Observatory of the TEMS(FAO) Net-

work (http://www.fao.org/gtos/tems/tsite_show.jsp?TSITE_ 
ID=3730) was selected as reference site, because for this 
location both RHI–data and MDHE database were available. 
The RHI–control runs depicted in Fig. (4) (blue bars) enable 
to examine how predicted hazard met landscape response – 
so far referred as MDHE – along 2000-2002 interval. RHI 
graphs were accompanied by daily or sub-daily rainstorms 
depth also (black bars in Fig. (4), with scale decreasing), 
when almost 20 mm of rain falls.   

3.2. Mapping the Rainstorms Hazard Prone-Areas 

Figs. (5a,b,c) shows high-probability cokriged (p > 50%) 

maps of areas prone to rainstorm hazards (dark grey zones), 

and superimposed by areas where multiple damaging hydro-

logical events (MDHE) were observed. It was found that 

areas with high probability of predicted hazard matched the 

area actually subject to injurious phenomena, such as severe 

erosion, landslides, floods, and mudflows. The severity of 

the damage suffered in these areas was not uniform for each 

rainstorm level, i.e., the damage observed depended not only 

on the amount of rainfall but also on the sensitivity of each 

specific landscape and on soil humidity (others topographi-
cal conditions were not considered in this work).  

The most extreme hydrogeomorphological processes oc-
cur over orographically complex terrain where vegetation is 
sparse (especially lands that are under autumn tilling, or after 
the rainy season), and where drainage systems may be ob-
structed by sediment erosion to contain large volumes of 

Fig. (3).  Flow chart of general process for estimation of rainstorm hazard mapping via GIS rules. 
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runoff. MDHE are more spatially limited in the period April-
November, but more intensive, such as those which occurred 
on 14 November 2004 (Fig. 5a) and on July 9, 2000 (Fig. not 
shown).  

Although the event of May 4-5, 1998 was expected to be 
of lower intensity, because of its long duration, the impact 
was catastrophic at the Sarno location (Campania region), 
where the several mudflows destroyed over one hundred 
people (Fig. 5c). This occurred because the meteorological 
perturbation originated from convective-clouds in larger sys-
tems, which are today more dominant in rain-producing 
mechanisms of high-impact over small areas [29]. 

On the contrary, MDHE associated to prologed rain usu-
ally occur during the winter season only, such as the event 
that occurred on January 24, 2003, when rainstorm prone-
areas assumed winding configurations (Fig. 6a). In this re-
spect, an anisotropic neighboring was selected in order to 
study of the above event of duration of 24 hours, which 

simulated well the orographic force (rainy-band that lies on 
the eastern slope of the Apennine chain) driven by the up-
wind eastern circulations that accompanied the large- and 
oblong stormy event. Under these conditions, MDHE oc-
curred with landslides and accelerated erosion accompanied 
by transport of sediment toward the Adriatic coast (Figs. 6b, 

c). Here, damage were very large and affected lands with 
different rainstorm depths, ranging from 40 to 100 mm in 24 
hours, and fallen after a precedent rainy period. 

However, our results also show that sub-regional rain-
storm hazard modelling can provide probability maps for 
damaging events in Italy with a spatial variability resolution 
of approximately 20 km. Spatially finer estimates (e.g., at 
local-scale: < 10 km) can be ensured only with the availabil-
ity of more accurate- and detailed supplementary satellite-
rain data, although, as noted by [31], all satellite sensors are 
affected by errors originating from the non-unique, non-
linear relationship of rainfall characteristics to observations 
and by sampling frequency and sensor resolution issues. 

 

 

 

 

 

 

 

 

 

 
 

Fig. (4). Daily rainstorms (black bars, with rain>20 mm day
-1

), and simulated RHI (blue bars) with associated multiple damaging hydrological 

events–MDHE ( ) around Monte Pino Met European Research Observatory during 2000-2002 period. RHI–critical values equal to 1 (alert in red 

line) is signed too. 

 

 

 

 

 

 

 

 

Fig. (5).  High-probability (p > 50%) cokriged maps of areas prone to rainstorm hazards (dark grey zone) for rainstorms of duration 3, 24, 

and 48 hours (a, b, and c, respectively). Note: the damaging hydrological events superimposed were almost all matched by the cokriged 

model. 
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4. CONCLUSIONS 

The model presented here provided the minimum but 
valuable set of data from which a rough tool for estimating 
early impacts soon after rainstorms can be derived. Damag-
ing rainstorms collected for this retrospective experiment are 
documented in the category of localized events (14 Novem-
ber 2004 and 4-5 May 1998), and a major rainstorm large 
event (3 January 2003). Impact of the damage was deter-
mined by an optimum scaling critical value for predicting 
hazard prone-areas of three rainstorm types, although the 
RHI–model is capable of performing with data of storms of 
different intensities. These first results show that sub-
regional rainstorm hazard modelling can provide probability 
maps for damaging events in Italy with a spatial variability 
resolution of approximately 20 km. Spatially finer estimates 
can be ensured only with the availability of more accurate- 
and detailed satellite-rain data, or during forecast stages, if 
real-time monitoring is implemented on an operational basis, 
where supplementary satellite information is then replaced 
by Quantitative Precipitation Forecasting.  
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