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Abstract: We conduct several analyses to examine the link between threatened and endangered species listings and 

macroeconomic activity. Preliminary tests using ordinary least squares are run on both time series data on the national 

level and cross sectional data at the state level. The analysis is then extended using vector autoregressive (VAR) 
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INTRODUCTION 

 Environmental economics is a field dominated by 
microeconomics. Yet macroeconomists have considered both 
the positive and negative effects of environmental protection 
on economic growth. Macroeconomists have documented 
important costs of environmental pollution such as the 
negative health impacts and the resulting losses in labor 
productivity. Environmental regulation leads to improved 
labor productivity and increases in economic growth [1]. On 
the other hand, environmental regulation diverts business 
firms’ resources away from production, raising the cost of 
production and leading to lower economic growth [2]. 

 Another macro environmental economic issue is the 
relationship between Gross Domestic Product (GDP) and 
environmental quality. In general terms, the Environmental 
Kuznets Curve (EKC) may be described as an empirical 
relationship that shows an inverted U-shaped curve relating 
economic growth to environmental degradation. 1  In the 
initial stages of economic development, unregulated 
economic activity damages the environment. As income 
grows, the public demand for environmental quality rises 
and more public policy is focused on environmental 
protection. For example, Earth Day and the establishment of 
the Environmental Protection Agency in 1970 were partially 
the result of a rise in per capita income in the United States. 
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1 Analysis of the environmental Kuznets curve is not limited to empirical 
analysis. For the theoretical underpinnings, see López [3], Selden and Song 

[4], Brock and Taylor [5] and Dinda [6]. 

 The Environmental Kuznets Curve (EKC) hypothesizes 
the existence of an inverted U-shaped relationship between 
national income and pollution. There exists an extensive 
literature regarding the environmental Kuznets curve (EKC) 
including the seminal works: Selden and Song [4] Grossman 
and Krueger [7] and Holtz-Eakin and Selden [8]. Grossman 
and Krueger [7] find the level of emissions is an increasing 
function of GDP to a point and then begin to decrease as 
GDP increases. Selden and Song [4] also found an inverted-
U relationship between per-capita emissions and per-capita 
GDP. López [3] provided a theoretical model that supports 
the inverted-U relationship between per-capita emissions and 
per-capita GDP. 

 As Maddison [9] noted, the interest in the EKC is far 
from declining. The growth in this line of research is 
demonstrated by the variety of the forms of environmental 
degradation. Although the initial focus of the EKC works 
involved emissions such as sulfur dioxide and nitrogen 
oxide, the scope of research has expanded to other areas of 
environmental degradation such as water pollutants (see 
Paudel, Zapata and Susanto [10]), deforestation (Koop and 
Tole [11]) and biodiversity in terms of threatened species 
(Naidoo and Adamowicz [12]). 

 Using international cross sectional data, Naidoo and 
Adamowicz [12] find that a small number of species showed 
the characteristics of an environmental Kuznets curve. Many 
taxonomic groups show an increase in the number of the 
threatened species over the range of income. Also using 
international data, Dietz and Adger [13] do not find an EKC 
for biodiversity. In contrast to Naidoo and Adamowicz [12] 
and Dietz and Adger [13], our focus is on threatened and 
endangered species listings in the U.S. Previous research 
using these data is limited. 

 In addition to the EKC literature, others have investigated 
the links between GDP and the endangerment of species. For 
example, Czech, Krausman and Devers [14] used a bivariate 
regression of federally listed species (i.e., Endangered 
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Species Act) on GDP from 1972-2003 as empirical evidence 
of the correlation between macroeconomic growth and fish 
conservation. Reed and Czech [15] provided similar 
evidence for fish species. 

 One of the difficulties in determining the effect of 
economic growth on environmental issues such as 
biodiversity is the problem of measurement. There are 
several measures of biodiversity commonly used by 
environmental scientists, including but not limited to the 
Simpson index, the Shannon index and various distance 
functions. Each of these measures has its own strengths and 
weaknesses, and none is universally accepted as a perfect 
measure. In fact, even defining biodiversity is a controversial 
endeavor. However, one cannot argue with the fact that 
increasing the number of native species in peril does not 
bode well for biodiversity. Rather than solving the problem, 
however, this merely shifts the focus of debate to the 
question of measuring the number of species in peril and 
tracking that number over time. For reasons discussed below, 
the number of officially classified threatened and endangered 
species in the U.S. is an imperfect estimate of the number of 
species in peril. However, there are no other readily available 
sources of data on how the level of threat to species changes 

over time. While sites such as NatureServe report the 
number of species facing various levels of peril, these data 
are not reported in time series form. According to a data 
analyst at NatureServe, the data are not designed to be used 
to track the recovery or decline of a species over time for 
several reasons: changes in rank may occur due to increases 
in knowledge about the species rather than a change in the 
degree to which it is threatened; changes in rank may occur 
due to taxonomic changes, for example when two 
populations previously classified as separate species are 
redefined as one species; some species may have low but 
stable populations by nature, even though they are under 
little or no threat. Therefore, like previous researchers, we 
will use the number of species listed under the Endangered 
Species Act (ESA), with the caution that this may be an 
imperfect proxy. 

 The number of listed species under the ESA is 
determined by a number of factors including government 
budget constraints. Limited government resources devoted to 
listing decisions force the cumulative number of species 
listed to increase over time (Brown and Shogren [16]). Also, 
species listing decisions are not perfect measures of 
endangered status (Brown and Shogren [16]). For example, 

listing decisions reflect the preference for charismatic 
macrofauna over science (Metrick and Weitzman [17]) and 
the importance of interest group politics (Ando [18]). These 
additional factors are not considered as independent 
variables in current empirical research. Econometrically, 
omitted variable bias can lead to statistically significant, 
unexpected signs on the coefficients. 

 In this paper, we conduct several analyses to examine the 
link between threatened and endangered species and 
macroeconomic activity. Preliminary tests using ordinary least 
squares are run on both time series data at the national level and 
cross sectional data at the state level. The analysis is then 
extended using vector autoregressive techniques. VAR results, 
impulse response functions and variance decompositions are 
reported to shed more light on the causal relationships between 
threatened and endangered species, GDP and population. 

DATA AND PRELIMINARY MODELS 

 The time-series analysis is conducted with thirty years of 
annual data from 1973-2002 (Table 1). The cumulative 
number of threatened and endangered species (TES) is 
obtained from the U.S. Fish and Wildlife Service. The 
annual number of TES is constructed from the cumulative 

data. The average number of TES listings annually is about 
40. Annual gross domestic product data is obtained from the 
U.S. Bureau of Economic Analysis. Annual population data 
is obtained from the U.S. Census Bureau. 

 We first replicated the results summarized in Czech, 
Krausman and Devers [14] and Reed and Czech [15]. Using 
ordinary least squares regression analysis, we find an  
R2 = .98 when GDP is regressed on cumulative TES listings. 
In Table 2, we present four time-series regression models. 
We consider both the stock dependent variable of cumulative 
TES listings and the flow dependent variable of annual TES 
listings. Two models are estimated with each dependent 
variable. The first includes only annual GDP as the 
independent variable. The second decomposes annual GDP 
into per capita GDP and the population growth.2 Because the 
error terms are often correlated over time with time-series 
data, we use a model that accounts for the serial correlation. 
Ordinary least squares results are qualitatively similar. 

                                                
2  We also considered the flow variable population growth with little 
difference in results. 

Table 1. Time Series Data 

 

 Mean Std. Dev. Minimum Maximum 

Annual Threatened and Endangered Species Listings 39.97 30.66 0 126 

Cumulative Threatened and Endangered Species Listings 504.13 414.91 7 1199 

Gross Domestic Product ($100,000s) 6737.48 1818.09 4311.20 10048.80 

Per Capita Gross Domestic Product ($1000s) 27.02 4.88 19.96 34.89 

Population (1,000,000s) 245.54 22.15 211.91 287.99 

Cases = 30     
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 We find that GDP is positively correlated with 
cumulative TES listings. GDP per capita and population are 
also positively correlated with cumulative TES listings. But, 
as stated previously, cumulative TES listings are a stock 
variable and will increase over time by definition. In our 
annual TES listing models, we find that neither GDP nor 
GDP per capita and population have any statistically 
significant impact on TES listings. 

 As an alternative model of the impact of economic 
growth on TES listings, we consider cross-sectional data for 
the 48 mainland states. The dependent variable is the number 
of threatened and endangered species listed in each state 
according to the USFWS. The independent variables include 
the decomposed measures of regional economic growth in 
each state for 2004: State per capita personal income is 
obtained from the U.S. Bureau of Economic Analysis and 
state population data are obtained from U.S. Bureau of the 
Census. Control variables are the land area and inland water 
area in each state, both of which are measured in thousands 
of square miles. In addition we include Census Region 
dummy variables to control for regional variation in TES 
listings (Table 3). 

 Correlations among these variables indicates that per 
capita income has little correlation with species listings (r = 
0.02) but population is highly correlated (r = 0.75). To 
determine the impact of per capita income and population on 
species listings while holding other factors constant, we 
estimate a multivariate regression model. The ordinary least 
squares regression analysis reveals that increases in human 
population increase the number of listed species (Table 4). 
The most striking result is that increases in per capita income 
lead to decreases in the number of listed species. The 
independent variables explain almost all of the variation in 
the dependent variable, which is quite high for state level 
cross-sectional data. 

 One criticism of the cross-section results is that they do 
not measure regional (measured at the state-level) economic 
growth because they are a snapshot in time. As one potential 
way of addressing this, we consider the time period of 1972-
2004 and consider regional economic growth and the change 
of TES listings over that time period. Because TES listings 
began in 1973, the state-level listings in 2005 also measure 
the change over this time period. 

 We compute the state level change in per capita personal 
income and population from 1972 - 2004 and include these 
variables in another set of cross-section regression models. We 
find results similar to the cross-section results. Population 
growth from 1972 - 2004 is positively correlated with TES 
listings. Per capita personal income growth from 1972 - 2004 is 
negatively correlated with TES listings, although this effect is 
not strongly statistically significant (p = 0.10). 

VAR MODELS 

 Simple OLS regressions can provide suggestive results 

regarding the relationships between variables, but one can 
draw only tentative conclusions regarding causality from 

such results. To further examine the relationship between the 

number of threatened and endangered species, population, 

and GDP, we employ several techniques based on VAR 

models. Let the dependent variable of equation of i be 

written as yi = [yi1,…,yiT], where T is the sample size in terms 

of years. Let Y* be a (T x k) matrix of regressors of lagged 

value of the yi’s where k = pN with p being the number of 

lags and N being the number of variables. In general, the 

model is given by  
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 In our specification, we consider a three equation, second 
order VAR using real GDP, population and the cumulative 
number of endangered species.3 

 The results of this VAR are given in Table 5. In the GDP 
equation, the first and second lags of GDP and the second 
lag of population are significant (p=0.01, 0.05 and 0.05 
respectively). F-tests indicate that lagged values of GDP are 
highly significant and lagged values of population are 
significant at the 5% level. Lags of species are insignificant 
individually and jointly, as indicated by the F-test. The only 

                                                
3 We also tested a number of alternative specifications using real GDP, 

population and annual listings; per capita GDP, population and annual 
listings; and per capita GDP, population and cumulative number of TES. 
Our results were similar across all models. 

Table 2. Time Series Data Models* 

 

Threatened and Endangered Species Listings 

Cumulative Cumulative  Annual  Annual 

 Coeff. t-Ratio Coeff. t-Ratio Coeff. t-Ratio Coeff. t-Ratio 

Constant -804.02 -6.01   -0.021 0.00 175.90 0.82 

Gross Domestic Product ($100,000s) 0.19 11.33   0.006 1.38   

Per Capital Gross Domestic Product ($1000s)   34.21 3.74   9.91 1.27 

Change in Annual Population (1,000,000s)   8.77 4.28   -1.65 -0.97 

 0.94 14.45 0.95 15.95 0.37 2.13 0.30 1.70 

Durbin-Watson 1.50 1.41 2.29 2.26 

*AR(1) Model: e(t) = *e(t-1) + u(t). 



82    Open Environmental Sciences, 2009, Volume 3 Chambers et al. 

significant variables in the population equation are lagged 
values of population itself. The first lag of population is 
significant at the 1% level and F-tests indicate that the first 
and second lags are jointly significant. The two lags of real 
GDP are jointly significant at the 10% level. Our main 
interest, however, is with the species equation. Note that 
none of the lags of real GDP or population are significant 
individually or jointly. Thus, it does not appear that changes 
in population or GDP have significant impact on the 
cumulative number of threatened and endangered species. 

 Like OLS results, the results of this VAR provide some 
insight into the relationships between the three variables 
included. To further explore the causal relationships 
involved, we used this VAR to conduct two additional forms 
of analysis. First, we estimated impulse response functions, 
which measure the responses of each variable in the system 
to a shock to one of those variables. We measured these 
responses for ten periods. For example, if there is a shock to 
real GDP at time (t), the impulse response functions estimate 
the response of GDP, population and the cumulative number 
of species at each point in time from (t) to (t+9). The impulse 
responses, however, are point estimates, and can therefore be 
misleading. If there is a positive response to a shock to 
population, is that response significant or merely a statistical 
coincidence? In order to answer this question, we used 
Monte Carlo integration to construct confidence bands 
around our impulse response functions. The impulse 
responses with confidence bands are shown in Fig. (1). A 
response is significant if the confidence band does not 
include zero. 

 When a shock is imposed on real GDP, there is a positive 
and significant response of real GDP contemporaneously and 
for the next three periods. The response then becomes 
insignificant, but is again significant for periods 7, 8 and 9. 
Although population does not immediately respond to the 
change in real GDP, after 2 periods the response is positive 
and significant and remains so in all subsequent periods. The 
more interesting result for our analysis is the fact that the 
response of the cumulative number of species is never 
significant (although it is generally positive). A shock to 
population creates a significant positive response in real 
GDP after four periods and significant responses in 
population at each step. Again, the response of species is 
insignificant throughout. The only significant response by 
species is to shocks to species itself. Interestingly, both real 
GDP and population (of humans) also respond positively to 
shocks to species, GDP after two periods and population 
after five. 

 The final analysis we performed was a variance 
decomposition. The VAR is used to compute forecasts for 
each of the variables in the system and the standard error of 
the forecasts is estimated. The variance of this forecast error 
is then broken down into the proportion that can be attributed 
to innovations in each variable (Table 6). Whereas the total 
variance of forecast standard error does not depend on the 
ordering of variables in the equation, the decomposition of 
that variance does. For that reason, we ran this test using 
several possible orderings. Results were not significantly 
different. Variables listed first are expected to have the 
greatest predictive power, whereas the last variable is 
expected to have no predictive value. The variance 

Table 3. Cross-Section Data 

 

 Mean Std. Dev. Minimum Maximum 

Threatened and Endangered Species Listed in State 42.54 46.50 9 308 

Per Capita Personal Income (1000s, 2004) 31.91 4.61 24.52 45.32 

Population (1,000,000s, 2004) 6.07 6.58 0.51 35.84 

Per Capita Personal Income Growth (1000s, 1972-2004) 11.81 2.69 8.08 19.58 

Population Growth (1000s, 1972-2004) 57.05 64.29 0.17 345.38 

Land Area (1000s of square miles) 61.65 46.81 1.04 261.80 

Inland Water Area (1000s of square miles) 12.39 24.50 0.36 121.59 

Northeast Region 0.13 0.33 0 1 

Middle Atlantic Region 0.06 0.24 0 1 

East North Central Region 0.10 0.31 0 1 

West North Central Region 0.15 0.36 0 1 

East South Central Region 0.08 0.28 0 1 

West South Central Region 0.08 0.28 0 1 

Mountain Region 0.17 0.38 0 1 

Pacific Region 0.06 0.24 0 1 

South Atlantic Region 0.17 0.38 0 1 

Cases = 48     
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decompositions reported here are based on the ordering: real 
GDP, population, species. This ordering will result in the 
strongest possible impact of innovations in real GDP on 
species (and conversely, the weakest impact of species on 
real GDP). 

 For real GDP, the forecast error is explained only by 
innovations in GDP for the first step. But note that the 
percentage of variance explained by innovations in 
population and species increases at the longer steps. After 
ten steps, over 32% of the variance is explained by 
innovations in species, 14.5% by innovations in population 
and 52% by innovations in real GDP. The variance of 
forecast error for population is largely explained by 
innovations in real GDP after three steps. After seven steps, 
real GDP becomes more important than population itself. 
For species, however, over 90% of the forecast error 
variance is explained by innovations in species itself. 
Innovations in real GDP and population do not have a strong 
impact on species. 

ALTERNATIVE EXPLANATIONS 

 Given that our results suggest that real GDP and 
population  do  not explain the  variations  in  the  number  of 
threatened and endangered species listings, are there  
alternative explanations for the number of threatened and 
endangered species listings? Loss of habitat and habitat 
fragmentation are well known sources of species extinction 
 

Table 5. Vector Autoregression Results 

 

 Real GDP Population TES 

RGDPt-1 1.15 
(6.03***) 

.003 
(1.70*) 

.003 
(.06) 

RDGPt-2 -.47 
(-2.29**) 

-.00006 
(-.03) 

-.03 
(-.53) 

Populationt-1 -23.11 
(-1.20) 

.56 
(2.66***) 

-3.35 
(-.64) 

Populationt-2 39.80 
(2.31**) 

.18 
(.96) 

6.59 
(1.40) 

Cumulative # Speciest-1 .35 
(.42) 

.008 
(.90) 

1.22 
(5.34***) 

Cumulative # Speciest-2 .31 
(.36) 

.009 
(.92) 

-.25 
(-1.06) 

F-tests 
RGDP 

Population 
Species 

 
21.70*** 
3.71** 

1.68 

 
2.73* 

22.04*** 
.43 

 
.23 
1.53 

56.45*** 

t-Statistics in parentheses. 
*** Significant at the 1% level. 

**Significant at the 5% level. 
*Significant at the 10% level. 

 

(for example, see Pearce and Moran [19]; Lawton and May 
[20]; Jenkins [21]). Unfortunately, there is not a simple,  
 

Table 4. Cross-Section Data Models* 

 

Dependent Variable = Threatened and Endangered Species Listed in State 

 Coeff. t-Ratio Coeff. t-Ratio 

Constant 49.35 3.27 33.65 3.16 

Per Capita Personal Income (1000s, 2004) -1.18 -2.22   

Population (1,000,000s, 2004) 7.27 7.36   

Per Capita Personal Income Growth (1000s, 1972-2004)   -1.73 -1.70 

Population Growth (1000s, 1972-2004)   0.72 7.19 

Land Area (1000s of square miles) -0.24 -2.63 -0.22 -2.30 

Inland Water Area (1000s of square miles) 0.03 0.34 0.04 0.53 

Northeast Region -1.95 -0.30 -2.50 -0.34 

Middle Atlantic Region -66.50 -4.35 -70.73 -4.32 

East North Central Region -38.20 -4.77 -39.60 -4.49 

West North Central Region 1.74 0.22 3.86 0.47 

East South Central Region 35.09 2.31 39.64 2.61 

West South Central Region -7.76 -1.18 -4.96 -0.68 

Mountain Region 27.04 2.53 22.97 2.24 

Pacific Region 40.31 2.27 38.41 2.16 

R2 0.88 0.88 

F 22.53 21.93 

*Ordinary Least Squares with White heteroscedasticity robust covariance matrix. 
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Table 6. Variance Decompositions 

 

Decomposition of Variance for Real GDP 

Step Standard Error RGDP Population Species 

1 91.21 100% 0.00% 0.00% 

2 140.56 96.94% 2.70% 0.36% 

3 163.50 93.88% 2.00% 4.12% 

4 176.91 86.26% 3.07% 10.67% 

5 189.64 76.46% 6.27% 17.26% 

6 201.88 68.16% 9.62% 22.22% 

7 212.95 62.26% 11.99% 25.75% 

8 223.39 58.24% 13.34% 28.42% 

9 233.90 55.32% 14.06% 30.63% 

10 244.71 52.85% 14.50% 32.65% 

     

Decomposition for Population 

1 1.00 1.74% 98.26% 0.00% 

2 1.22 9.52% 87.75% 2.73% 

3 1.42 23.38% 73.92% 2.70% 

4 1.61 36.12% 61.76% 2.12% 

5 1.77 43.69% 53.60% 2.71% 

6 1.92 46.40% 48.51% 5.09% 

7 2.07 45.98% 45.22% 8.79% 

8 2.21 44.16% 42.85% 12.99% 

9 2.36 42.02% 40.88% 17.10% 

10 2.51 40.06% 39.08% 20.86% 

     

Decomposition of Variance for Species 

1 24.98 5.08% .01% 94.91% 

2 39.46 4.90% .86% 94.24% 

3 50.11 3.68% .54% 95.79% 

4 57.95 2.76% .90% 96.34% 

5 63.81 2.29% 1.90% 85.80% 

6 68.11 2.01% 3.02% 94.97% 

7 71.31 1.91% 3.95% 94.15% 

8 73.88 2.07% 4.67% 93.26% 

9 76.15 2.51% 5.24% 92.25% 

10 78.30 3.10% 5.77% 91.13% 

 

generally accepted definition for habitat, especially given the 
magnitude of the land mass considered in our study. 4 
Compounding the conceptual problems associated with 

                                                
4 To illustrate this difficulty, Rosenzweig [22] notes that earlier studies 

found over twenty types of habitat varieties for woodland mites. In more 
general terms, Vanreuse and Hans Van Dyck [23] state that “[t]he 
unambiguous recognition of a species’ habitat is a matter of debate. “ 

defining habitat are data limitations. If one was to consider 
forest area as a measure of habitat, a potentially poor proxy 
given the variety of forest cover, one would find incomplete 
time series regarding this measure. 

 Greenwald, Suckling and Taylor [24] suggest an 
alternative explanation for the variations in the species. They 
argue that the differences in listings are largely due to 
changes in the administrative environment. They divide the 
post-ESA era (from 1974-2003) into four distinct periods 
based on major changes in the regulatory environment. 
According to the authors, in the years immediately following 
the passage of the Endangered Species Act, listings 
increased steadily. In 1978, Congress amended the act to 
require that any proposal for listing be withdrawn if it was 
not finalized within two years. The amendment also 
prohibited listings from being re-proposed unless new 
information came to light and required the designation of 
“critical habitat.” When these changes were implemented, 
the number of listings dropped dramatically. Shortly after 
taking office in 1981, Ronald Reagan issued an executive 
order requiring an economic impact analysis prior to listing. 
As a result of this order, combined with additional 
bureaucratic reviews, in 1981, for the first time since the 
ESA was passed, no species were listed. 

 

 The second period described by Greenwald, Suckling and 
Taylor [24] is 1983-1990. In 1982, Congress amended the 
ESA again to reduce administrative delays in the listing 
process. Congress also reversed the Reagan administration’s 
economic impact requirement. As a result, the number of 
listings increased to an average of forty species per year for 
this period. There was another dramatic increase in the 
number of listings starting in 1991. This shift was caused 
primarily by a series of petitions and lawsuits by NGOs 
designed to force the USFWS to move quickly in listing the 
backlog of candidate species. During the period 1991-1995 
(Period three), 66% of species were listed following 
lawsuits. Following this sharp increase in the number of 
listings, Congress imposed a twelve month moratorium on 
the listing program from April 1995 - April 1996. 

 The final period examined is 1996-2004. In 1995, the 
Interior Department issued a policy prohibiting NGOs from 
petitioning to list a species that was currently on the 
candidate list. This limited the use of lawsuits to increase 
listings. To address the issue of petitions on species not on 
the candidate list, the USFWS began using a statutory 
provision that allowed them to delay issuing initial findings 
if it was “not practicable”. The final factor influencing the 
number of listings per year is funding. Despite the large 
backlog of candidate species and the additional workload 
created by amendments to the ESA, the Department of the 
Interior has not requested sufficient funds to keep up with 
the workload. In fact, in 1998, it requested that Congress 
legislatively cap the amount of funds available for the listing 
process. This cap has been renewed at the request of the 
Secretary of the Interior every year from 1999-2004. 

 Although it appears that political factors affect the listing 
process, changes in the regulatory environment are difficult 
to specify for a multitude of reasons. Both Democratic and 
Republican administrations have mixed records regarding 
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listing. Alternatively, political influences may be detected 
through a structural break. Unfortunately, the limited 
numbers of years since passage of the ESA combined with 
the high number of potential regimes implied by Greenwald, 
Suckling and Taylor [24], limits the use of tests for structural 
change. However, we did run several stability tests which 
provide suggestive results. All tests were performed on a 
simple regression with cumulative species as the dependent 
variable and real GDP and population as independent 
variables. The first test is a CUSUM test (Brown, Durbin and 
Evans [25]), which uses recursive estimation. The null 
hypothesis is that the recursive residuals should act as a 
random walk. If they do not, there is evidence of a structural 
break. Results from this test, shown in Fig. (2), indicate that 
there is a break in 1994, which represents the boundary 
between the third and fourth periods identified by 
Greenwald, Suckling and Taylor [24]. A Hansen [26] test for 
parameter stability also rejects the null that the coefficients 
and variance of the regression are jointly constant at the 1% 
level. Finally, using a series of Chow tests with hypothesized 
breaks in 1982, 1991, and 1995 (the break points in the 
periods described by Greenwald, Suckling and Taylor [24]) 
we can reject the null hypothesis of no structural shift at the 
1% level for two of these shifts. There does not appear to be 
a significant structural break in 1995. Results of the Hansen 
[26] and Chow tests are shown in Table 7. Whereas all of 
these results indicate at least one structural break, they 
should be interpreted with caution due to the limited size of 
the data set, as noted above. 

 More recent events suggest that political appointees may 
be influencing the listing process. Stokstad [27] notes that 

Julie MacDonald, deputy assistant secretary at the U.S. 
Department of the Interior, “intimidated U.S Fish and 
Wildlife Service scientists to alter biological reports about 
endangered species”. Less than a month after the publication 
of Stokstad’s Science article and a week prior to appearing in 
front of a House oversight committee, MacDonald resigned.5 

CONCLUSIONS 

 We find that in simple OLS models GDP is positively 
correlated with cumulative threatened and endangered 
species (TES) listings. GDP per capita and population are 
also positively correlated with cumulative TES listings. 
However, in our annual TES listing models, we find that 
neither GDP nor GDP per capita and population have any 
statistically significant impact on TES listings. With the 
more rigorous vector autoregressive analysis (VAR), we find 
that neither GDP nor population affects TES listings. 

 Our results indicate that there is little or no evidence that 
GDP growth rates lead to changes in the number of 
threatened and endangered species listings. The possible 
explanations are varied. As Kongsamut et al. [29] found, 
cleaner service sectors increase as economies grow. 
Increases in GDP fueled by growth in these sectors may have 
little or no negative impact on the environment. Also, 
because environmental protection is a normal good, rising 
incomes lead to greater demand for programs that will 
protect species. Including spending on such programs in a 

                                                
5Eilperin [28] reported that various allegations against MacDonald were 
under investigation by the inspector general of the Department of Interior. 
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vector autoregressive system would elucidate its 
relationships to GDP and threatened and endangered species. 

Table 7. Stability Tests 

 

Hansen Test 

Test Statistic P-Value 

Joint Stability 1.97 0.00 

Variance .41 0.07 

Constant .43 0.06 

Real GDP .41 0.07 

Population .42 0.06 

Chow Test 

Structural Break 1982 107.15 0.00 

Structural Break 1991 11.02 0.00002 

Structural Break 1995 1.22 0.34 

 

 These results are not intended to definitively answer the 
question of the relationship between economic growth and 
environmental quality. They are quite suggestive, but 
represent only one more piece to a complicated puzzle that 
includes evidence on both sides of the issue. Because of the 
difficulty in measuring ecological concepts like biodiversity, 
methodological differences and data limitations, as well as 
the complicated nature of the underlying relationships 
between economic activity and a variety of measures of 
environmental quality, it is both inevitable and important 
that the debate continue. 
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