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Abstract: Competitor density and aggressive behavior influences the ability of fish to use food resources during  

aquaculture production. Using cutthroat trout Oncorhynchus clarkii (Richardson) from the same filial generation, this 

study investigated the effects of both body size and rearing density on aggression and feeding behavior. Four experiments 

were conducted using different numbers of both small and large trout obtained after grading. In each experiment,  

regardless of the number of each size of fish, small fish made significantly fewer attempts to forage in comparison to large 

fish. However, the number of aggressive interactions increased as small fish densities increased. These results suggest that 

grading and rearing differently-sized fish separately during rearing will likely maximize growth and rearing efficiencies in 

wild-strain cutthroat trout during hatchery rearing.  
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INTRODUCTION 

Competitor density is a primary factor influencing the 
ability of fish to defend limited resources, such as feeding 
territories [1, 2]. Keeley [3] found that territory size  
diminishes when competitor density is high in certain strains 
of rainbow trout Oncorhynchus mykiss (Walbaum). Resource 
defense theory claims that an organism will defend a  
resource only when the benefit of aggression is greater than 
the costs, and that aggression should peak at high densities 
allowing less-dominant organisms fewer chances to feed [4]. 
Thus, aggression is at its peak during elevated loading densi-
ties in hatchery rearing facilities.  

In aquaculture, grading fish by size and reducing rearing 
densities are commonly used techniques to decrease  
aggression, and the occurrence of disease, and injuries [5-7]. 
Reduced densities also can lead to higher growth rates [5]. 
Noell et al. [8] observed slow growth rate with convict  
cichlids, Archocentrus nigrofasciatus (Günther), placed in 
tanks with a high density of competitors with high levels of 
aggression. Arnott et al. [9] reported similar findings with a 
specific strain of convict cichlids. Even size related sexual 
dimorphisms, such as in yellow perch Perca flavescens 
(Mitchill), can cause an increase in aggression toward food 
and territory [10-12]. There are costs associated with  
aggression, such as reduced overall fitness, feeding behavior, 
and growth [8, 13, 14]. 
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Aggressive behavior is commonly reported among  
hatchery reared fish species [15-18]. Within a species,  
certain fish can be more aggressive than other fish, and  
aggressive behavior has been correlated to the establishment 
of social hierarchies, where dominant fish are more  
aggressive towards smaller fish lower in the pecking order 
[19, 20]. In feral and wild salmonids, body size predicts  
hierarchy placement within the social rank [21-23]. Vehanen 
et al. [24] concluded that the presence of larger trout can 
exclude smaller fish from favorable feeding conditions 
which may be a factor in reducing individual growth rates of 
smaller fish [25]. Only a few studies encompass both use and 
success of guarding a resource while intruder densities are 
increased [26, 27].  

Within a social hierarchy, dominant fish benefit by hav-
ing improved foraging opportunities [28], although there are 
time, energy, and injury-risk costs associated with territorial 
defense [29]. In order to maximize food availability, a fish 
should defend an area in relation to the food required to sur-
vive [29]. In aquaculture facilities large fish congregate 
where food is most plentiful and aggressively defend that 
territory. Smaller fish are typically found near tailraces or 
furthest from the food source, likely because aggression is 
less in these areas [5]. The objective of this study was to 
evaluate aggression between differentially-sized trout in 
hatchery environments, in an attempt to better understand the 
rationale for grading fish and the effects of rearing densities.  

METHODS 

Cutthroat trout Oncorhynchus clarkii (Richardson) origi-

nating as eggs from Jackson National Fish Hatchery (Jack-

son, Wyoming, USA) were used for this study. All experi-

ments were conducted in a rectangular fiberglass tank (51cm 
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x 63cm x 38 cm) with a side glass window facilitating be-

havioral observations (Frigid Units, Toledo, Ohio, USA). 

Flows of 11º C water were a constant 86 L/min. Experimen-

tal fish were obtained after grading of a filial generation pro-

duction lot of cutthroat trout being reared at Clark’s Trout 

Farm (Spearfish, South Dakota, USA) using a CPM-11 

grader (Aquamerik St. Nicolas, Quebec, Canada). Post-

graded fish were separated into either small (mean length = 

9.3 cm, SE = 0.75) or large (mean length = 15.7 cm, SE 

0.62) sizes. Pelleted food used in all experiments was a 2.0 

mm slow-sinking diet (Silver Cup, Nelson and Sons. Inc., 

Murray, Utah, USA) fed by hand at a location equidistant 
from each side of the tank. 

Four experiments were conducted, with three replicates 
per experiment. Different fish were used in each replicate. In 
Experiment 1, one small fish and one large fish were placed 
in the tank. In Experiment 2, five small fish and one large 
fish were used. Experiment 3 consisted of one small fish and 
five large fish, while Experiment 4 used five fish from each 
size group. After placement in the tank, the experimental fish 
were allowed to acclimate for ten minutes. Prior to initiating 
a new replicate, all fish were replaced and also allowed to 
acclimate for ten minutes. 

Experimental periods lasted ten minutes, with one food 

pellet fed every minute, and behavior recorded throughout 

the entire ten-minute period. Six main behaviors were  

recorded (Table 1). Aggression was defined when a fish 

flashed, fought, or charged a subservient fish [30-32]. 

Non-aggression was recorded when aggressive behavior was 

not observed in dominant fish. Stress was recorded if fish 

flashed their operculum, raised their dorsal fin, or schooled 

or shoaled in the corner of the observation tank [5, 33, 34]. If 

none of these stress signs were observed, fish were recorded 

as being not stressed. Eating was recorded when the  

presented food pellet was captured and retained. Not eating 
was recorded when fish were observed not eating.  

The duration of aggressive and stress behaviors was  

recorded over the 600-second interval. The time that each 

size of fish (large or small) spent exhibiting each behavior 

was compared using Chi square analysis, in comparison to 

an assumed equal allocation of time for either performing or 

not performing the behavior. Chi-square analysis was also 

used to determine the differences in the number of pellets 

eaten by either large or small fish in each experiment. Sig-
nificance was pre-determined at P < 0.05. 

RESULTS 

In experiment one, where one large fish was paired with 
one small fish, large fish were observed being aggressive 
over 65% of the time (400 sec) which was significantly 
greater than that observed in the small fish (Table 2). The 
time spent being aggressive by large fish equaled the time 
small fish spent exhibiting stress behaviors, and when large 
fish were being non-aggressive, small fish were not showing 
signs of stress (Table 3). Small fish exhibited stress behav-
iors for a significantly longer period of time than that ex-
pected by chance. Large fish consumed significantly more 
pellets compared to small fish in experiment one (Table 4).  

When five small fish were paired with one large fish in 
experiment two, the large fish again spent nearly all of the 
time exhibiting aggressive behaviors. Just as in experiment 
one, all five of the small fish were observed exhibiting stress 
behaviors for the same amount of time (550 sec) that the 
large fish displayed aggression. Feeding during experiment 
two was dominated by the large fish with a mean (SE) con-
sumption of 0.5 (0.2) pellets, while the other pellets of feed 
were never consumed either by the large fish or small fish.  

The five large fish in experiment three were observed 
displaying aggressive behaviors toward each other and the 
single small fish for the entire ten minute period. Both the 
time spent exhibiting aggressive behaviors by the large fish 
and the time spent exhibiting stress behaviors by the small 
fish were significantly different than that expected by 
chance. Feeding was fully dominated by the larger fish as 
they consumed all ten of the pellets that were presented.  

With an equal number of five large and small fish in ex-
periment four, the time spent exhibiting aggressive behavior 
by the large fish averaged 505 sec. This again equaled the 
amount of time that the small fish were observed exhibiting 
stress behaviors. Feeding was also again dominated by the 
larger fish, with no feeding occurring in the small fish.  

DISCUSSION 

Because a true control was not part of the experimental 
design of this study, the results should be interpreted with 
some caution. A much stronger design would have included 
trials with equal-sized fish, but this did not occur because of 
the added time constraints of incorporating these controls. 
Nevertheless, the results do provide insights into fish behav-
ior, particularly as it relates to size standardization during 
fish rearing. 

Grading fish according to size has become a nearly stan-
dard technique in commercial aquaculture facilities [35-39], 
and is typically conducted under the assumption that larger 
fish may stifle biomass gains in smaller subordinate fish  
[20, 40]. In this study, both the number and size of fish af-
fected foraging behavior. In study one, where one large fish 
and one small fish interacted, the larger fish dominated feed-
ing. However, in study two, where one large fish defended 
the food resource against five smaller fish, foraging behavior 
was almost zero by either size of fish. Although there  
was no inherent gain of food, the larger fish still aggressively  

Table 1. Types and Definitions of Observed Behaviors 

Behavior Definition 

Eating Fish eating administered feed 

Not eating Fish not eating any feed 

Aggression 
Fish flashing, fighting or charging toward subservient 

fish 

No aggression Fish in loose schools or shoals 

Stress 
Fish flashing operculum, with raised dorsal fins, or 

tightly schooled or shoaled. 

No stress Fish exhibiting no stress behaviors. 
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Table 2. Mean (+ SE) Time in Sec Spent Being Aggressive or Non-Aggressive by Large Fish in Each of Four Different Experiments 

(N = 3 for Each Experiment) 

 Behavior    

Experiment Aggressive Non-aggressive Expected 
2
 P 

1 400 200 300 66.67 <0.0001 

2 550 50 300 416.67 <0.0001 

3 600 0 300 600.00 <0.0001 

4 505 95 300 280.17 <0.0001 

 
Table 3. Mean (+ SE) Time in Sec Spent Exhibiting Stress and Non-Stress Behaviors by Small Fish in each of Four Different Experi-

ments (N = 3 for Each Experiment) 

Experiment Stess Nonstress Expected 
2
 P 

1 400 200 300 66.67 <.0001 

2 550 50 300 416.67 <.0001 

3 600 0 300 600.00 <.0001 

4 505 95 300 280.17 <.0001 

 
Table 4. Mean (+ SE) Number of Pellets Eaten by Either Large or Small Fish Time Fish in each of Four Different Experiments. One 

Pellet was Presented Every 60 Secs During a 600 Sec Period (N = 3 for each Experiment) 

Experiment Big Small 
2
 P 

1 9.25 0.75 7.225 < 0.0071 

2 0.5 0 9.05 < 0.0026 

3 10 0 10 < 0.0016 

4 10 0 10 < 0.0016 

 

guarded the resource. Aggression from the larger fish to-
wards the subservient fish in this study was almost always 
occurring regardless of food gained or lost, which also justi-
fies size-grading to maximize production.  

Several authors [35-41] have reported improvements in 
overall weight gain or survival of aquaculturally-reared fish 
that have been subjected to grading. However, the use of 
grading is not supported by Kamstra [39], Pyle et al. [42-44], 
Sunde et al. [45], Wallace and Kolbeinshavn [46], Car-
michael [47], Strand and Øiestad [48], Makinen and Rucho-
nen [49], and Onders et al. [50]. The lack of effect by grad-
ing in the prior studies may be due to the ineffectiveness of 
grading to eliminate dominance hierarchies and aggression 
[35]. In addition, gains in biomass due to grading may only 
be species specific [38, 41, 46, 48].  

Many features related with age, such as body size [51], 
number of social encounters [52], and former territory hold-
ers [53], may be correlated with social hierarchal placement 
during territorial defense. Similarly, several species of fish 
exclude smaller individuals from optimal eating locations 
and shelters [24], which may have an effect on correlated 
fitness attributes [54]. Some behaviorists propose a non-
territorial strategy for cultured salmonids when reared in 
high densities [55]. However, a handful of studies have ex-

amined the effect of competitor densities on resource defense 
in salmonids in ex-situ or semi-natural environments [21, 56] 
and these studies were all performed with same filial genera-
tions or one age group with equally sized competitors. Keen-
leyside and Yamamota [56] studied smolt Atlantic salmon 
Salmo salar (Linnaeus) with tank densities of 3 to 44fish/m

2
, 

and noted that aggression peaked near 11-fish/m
2
. Also, 

Kalleberg [21] revealed an increase in aggression in Baltic 
salmon fry when densities ranged from 3 to 25 fish/m

2
, with 

dominant fish disavowing their territories at the highest den-
sities. Kaspersson et al. [27] found that as competitors grew 
closer in size to dominant fish, the cost of defending a re-
source become increasingly high. This is in agreement with 
the fact that large under-yearlings in their study were more 
exposed to yearling aggression than in smaller ones, and is 
consequently also in agreement with the size-assessment 
theory stated by Enquist and Leimar [57]. 

The feeding efficiency of larger cutthroat trout used in 
this study decreased when an increased density of small 
grade-off fish were added. It was only when larger fish den-
sities were increased that foraging become more frequent. 
Thus, the results of this study support the prediction that the 
ability of a small fish to monopolize a shared resource will 
decrease as the number of dominant intruders increases. 
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Similar results of foraging activity in salmonid culture have 
been found in several studies [26, 58, 59]. However, Johnson 
[60] found, in a specific population of rainbow trout, that 
although the density of competitors increased, so did forag-
ing behavior. 

Fish in this study were restricted from moving in a large 
tank and were subjected to different competitor densities. 
This may have influenced the small grade-off fish from eat-
ing some of the shared food resource. Some studies propose 
that similar effects can be found in-situ [61].  

The small cutthroat in this study spent a lower proportion 
of time occupying the feeding area and had the lowest eating 
success. Larger fish had the highest success holding the feed-
ing area and eating the highest proportion of the food items 
when small fish of the same species and filial generation 
were present. These results are relevant not only for sal-
monid aquaculture, but also have implications for the man-
agement of wild salmonid stocks [18]. 
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