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Abstract: A variety of forensic cases need to be based on haploid DNA. The statistical evaluation of the genetic evidence 
in such cases requires particular attention and methods. There may be considerable differences between databases and this 
must be accounted for when there is uncertainty about the population origin of the perpetrator. We here assume access to 
the relevant databases sampled from populations that the perpetrator may conceivably come from. Intuitively, if there are 
strong reasons to claim that a specific database is particularly relevant, the likelihood ratio should be influenced accord-
ingly. Moreover, the haploid evidence is typically weaker than for nuclear DNA and there is therefore a greater need to 
assess uncertainty; here we have chosen the bootstrap method. We also discuss the ability of the proposed method to ac-
count for population stratification when computing the LR. A pilot implementation of the haploeve software is freely 
available.  

INTRODUCTION 

 Haploid genetic data, in particular mtDNA and the non-
recombining part of the Y chromosome, is commonly used 
in many forensic applications (e.g. Carracedo et al. 2000; 
Gill et al. 2001) [1–2]. For instance, when the biological 
material is degraded and only mtDNA may be analysed, or 
in a rape case in which Y-chromosome data could be more 
appropriate than other markers (e.g. in order to facilitate the 
analysis of the DNA mixture coming from a female victim 
and a male suspect); such data may serve to strengthen the 
case against the suspect or the suspect may be cleared. Other 
forensic applications involve identification ranging from 
maternity/paternity cases to larger pedigrees, perhaps extend-
ing over several generations. Such applications may extend 
well beyond the forensic field. Thus, mtDNA and Y-chromo-
some data have played a central role in disentangling the 
ancient and recent past of human populations or their demo-
graphic movements and are commonly used in medical stud-
ies as well. Note that many of these applications are possible 
since these markers are transmitted from parents to their off-
spring in a matrilineal (mtDNA; see Bandelt et al. 2005 for a 
recent discussion) [3] or patrilineal way as pure haplotypic 
blocks. This mode of inheritance has important implications 
for the interpretation of evidence since siblings typically 
share mtDNA and brothers the non-recombining part of the 
Y chromosomes. 

 In a forensic context, it is generally important to assess 
uncertainty when evaluating the weight of the evidence. Al-
though several suggestions (e.g. Roewer et al. 2000; Wilson 
et al. 2003; Balding 2005) [4–6] have been proposed in the 
last few years, we here aim to expand on this problem by 
considering more complex and common scenarios. In par-
ticular, our main aim is to provide a practical solution to the 
statistical evaluation of the mtDNA and Y-chromosome 
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forensic tests when there is uncertainty regarding the 
appropriate reference database that should be used. 

 Before we present the approach of the paper, some words 
on alternative procedures and corrections for coancestry are 
in order. A simple method is to decide on one database for 
the evaluation of the evidence. According to Buckleton et al. 
(2005) [7], “…it is imperative that every effort should be 
made to use appropriate local databases and hence no correc-
tion or low value for…”. While this may sometimes be ade-
quate and lead to reasonable evaluation of evidence, it may 
be questionable to exclude alternative databases. At the other 
extreme, evidence for all conceivable databases may be 
evaluated and reported. However, this may be impractical. 
For instance, the number of databases may be prohibitively 
large; in our last example (Examples 1–4 are provided as 
supplementary material), there are 91 databases and it would 
not be practical to report 91 LRs. Besides, it may not be help-
ful for the decision makers. Moreover, it may appear reason-
able to somehow weigh these databases as we propose. We 
offer a consistent and flexible approach that allows all rele-
vant information to be included. 

EVALUATING THE WEIGHT OF THE HAPLOID 

FORENSIC EVIDENCE 

 The context is the following: a crime has been committed 
and a DNA crime sample denoted EC has been obtained. A 
suspect is apprehended and a suspect’s DNA sample ES is 
obtained. We do not consider the case when the suspect is 
found following the search of a database; see Storvik and 
Egeland (2007) [8] for a recent discussion of this problem. If 
the DNA profile of EC and ES differ, the apprehended suspect 
is exonerated (see, however, Salas et al. 2006b) [9] for some 
discussion of the potential misuses of mtDNA as an exclu-
sion tool). We thus consider the case in which these samples 
coincide. We ignore the possibility of intergenerational mu-
tation and heteroplasmic events as well as the possibility of 
lab errors (Bandelt et al. 2002; Bandelt et al. 2004a; Bandelt 
et al. 2004b; Salas et al. 2005a; Salas et al. 2005b; Salas et 
al. 2006b) [9–14]. The models and data required to include 
these rare effects are not available in our view. 
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 To evaluate the evidence, access to one or more data-
bases is needed. The definition of the group or population 
will depend on the context and specific application. In Ex-
ample 3 (see Supplementary Material), the following seven 
groups are given self-explanatory names: Andalucia (South 
Iberia), Basque Country, Catalonia (Northeast Iberia), 
Galicia (Northwest Iberia), Central Portugal, North Portugal 
and South Portugal (see below for references). Note that our 
choice here consists of samples of populations which are 
very closely (geographically and genetically) related, which 
would allow us to see the effect of different sample sizes, 
haplotype diversity and/or population substructure (if any) in 
a relatively small geographic area (Iberia). The groups are 
disjoint and their union encompasses all possibilities. The 
data used in Example 4 ((see p5) is quite different, consisting 
of more than 12,000 Y-STR haplotypes from 91 different 
populations. Our approach is relevant when databases based 
on samples from different populations or groups differ. In 
other words, the frequency of a sample may vary considera-
bly for different databases. Consequently, what follows is 
particularly relevant for mtDNA and Y-chromosome sam-
ples. Consider the following hypotheses: 

• HP: the suspect is the source of the crime sample. 

• HD: some unknown person, unrelated to the suspect, is 
the source of the sample. 

 Observe that a large number of alternative suspects are 
not considered. For instance, Y-STR samples cannot be used 
to distinguish members of the same paternal lineage. The 
numerical evaluation of these hypotheses will be based on 
the following information and data: 

1. Prior probabilities p j= P(EC comes from population j), j 

= 1,…,G. Prior here implies that the databases have not 
yet been considered (see Sheehan and Egeland 2007 [15] 
for a discussion of priors). 

2. Databases B = (B1,…,BG). 

3. EC and ES. 

 Observe that deciding in advance to use only one specific 
database, say the Central Portuguese, corresponds to assign-
ing prior 0 to the others. A more thorough discussion of the 
role of the prior and other aspects of the model is deferred to 
the discussion section. 

 The likelihood ratio (LR) becomes: 
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where the assumptions underlying the latter equation are the 
usual ones. In fact, the above equation essentially coincides 
with Eq. (2.3) of Evett and Weir (1998) [16]. The only dif-
ferences are notational and the fact that databases are in-
cluded explicitly. It may or may not be in order to remove 
the conditioning on ES, as discussed in Evett and Weir 
(1998) [16]. Below, the conditioning is retained and the de-
nominator may be written 
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 Here, wj is the match probability assuming the sample to 
originate from population j. The estimation of wj is discussed 
in the next section. Furthermore, p*

j is the posterior probabil-
ity for population j. Note that the approach based on (1.1) 
generalizes previous suggestions, specifically (1.1) degener-
ates to a match probability when only one database is used.  

 The evaluation of the posterior will differ depending on 
the application and the data. For the examples in this paper, 
principal component analysis (PCA) and discriminant analy-
sis, as explained in Egeland et al. (2004) [17], is appropriate. 
A general disadvantage of PCA is the lack of scale invari-
ance. A widely used approach to resolving this problem is to 
use variables as they are coded only if there are some natural 
or common units. If this is not the case, scaling to unit vari-
ance is advisable. The first three examples deal with di-
chotomized mtDNA data (the data is on the form explained 
in Egeland et al. 2004) [17] and the data should not be scaled 
prior to PCA. For the Y-chromosome data, the data matrix is 
scaled to have unit variance since the different markers are 
potentially on different scales (a transformation of the Y-
STRs profiles to a binary form could also be carried out, as 
in the case of the mtDNA data). Again, it is possible to check 
different parameter settings. The specific implementation of 
the method will depend on the data type, and detailed in-
structions and examples are provided on the accompanying 
website (http://folk.uio.no/thoree/haploeve/). 

 To understand better the implications of (1.1), we discuss 
an example corresponding to two populations based on arti-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). There are two populations and the posterior for population 
2, p*

2, is on the x-axis. The four curves correspond to four different 
match probabilities in population 2. The match probability for 
population 1 is set to 0.0001. The match probability for the solid 
curve is 0.0005. When p*

2 = 1 
* *

1 1 2 2 2
            0.0005.L w p w p w= + = =  

From this, LR = 1/0.0005 = 2000. 
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ficial data. The match probability for population 1, w1, is 
0.0001. The four curves of Fig. (1) correspond to match 
probabilities 0.0005, 0.0010, 0.0015 and 0.0020 in popula-
tion 2. The curve giving the higher LR values corresponds to 
the lower match probability. The posterior probability for 
population 2, p*

2, is on the x-axis. When p*
2 = 0 then p*

1 = 1 
and, according to (1.1), L = w1 = 0.0001 and LR = 10000, as 
can be seen from Fig. (1). For other values of the posteriors, 
the match probability of population 2 also matters. 

UNSEEN SAMPLES 

 If the sample E is never seen, L = 0 and the LR is infinite. 
Different suggestions have been proposed in the literature to 
avoid this unfortunate LR estimate. A practical proposal is to 
let  
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where the haplotype is observed xi times and nj is the size of 
the database. The choice k = 1, which is our default, amounts 
to adding the evidentiary sample to the database; k = 2 cor-
responds to adding both the defendant and culprit profiles. 
This topic is discussed in several papers including Curran et 
al. (2002), Wilson et al. (2003) and Balding (2005) [5, 6, 
18]. Our suggestion corresponds to Morton's proposal (Mor-
ton 1992) [19] for k = 1. While Morton acknowledges that 
(1.2) may be criticized, he also notes the resemblance with 
Laplace's Rule of Succession (see e.g. http://en.wikipedia. 
org/wiki/Rule_of_succession) and the justification this gives. 
The present context differs from the settings previously dis-
cussed since we are explicitly modelling several populations. 
However, our methods and software can also be used when 
there is only one database and results should coincide with 
previous recommendations for this case. It is also possible to 
compute match probabilities accounting for coancestry using 
formula (6.9) in Balding (2005) [6], as we will discuss in 
more detail in the last section.  

INCLUDING UNCERTAINTY 

 There are various ways of including assessment of uncer-
tainty, e.g. credibility intervals associated with (1.1) and the 
resulting LR. The method we have implemented is based on 
bootstrapping: a sample is drawn with replacement from the 
existing and the p-s and w-s of (1.1) are estimated. By re-
peating this, say 100 times, a distribution for the LR is ob-
tained. 

DISCUSSION 

 We have provided an intuitive method to compute LRs 
with uncertainty when there is also uncertainty about the 
appropriate database to use. There are alternative procedures 
and we will comment briefly on two of these before we dis-
cuss the model of the article in greater detail. Firstly, it is 
possible to report match probabilities rather than LRs. How-
ever, there is a simple relation between LR and match prob-
abilities in the applications motivating the paper, so techni-
cally there is not much difference. Obviously, verbal ver-
sions of the numerical evidence will differ. Secondly, a Bay-
esian formulation entails calculating the posterior probability 
of the event 'NN is the source of the sample' (see Balding 
and Donnelly 1995) [20]. However, such an approach may 

not be admissible in crime cases as it may be seen to inter-
fere with the role of the judge or jury. 

 As mentioned previously, haploid evidence cannot be 
used to prove individuality. Typically, a number of people 
share the same haplotype. Our formulation assumes that al-
ternative (very closely related) suspects with the same haplo-
type have been cleared out of the case. 

 The use of prior probabilities in forensic settings has 
been criticized. We agree that the forensic expert should 
avoid introducing subjective prior information and at first 
sight it may therefore appear strange that priors appear in the 
model. However, this is due to a number of reasons: most 
importantly, the prior is not directly related to guilt. Fur-
thermore, the prior need not be specified by the expert. Other 
approaches inevitably also involve the use of prior informa-
tion, but in disguise: choosing one specific database corre-
sponds to a very strict prior. Specifically, using, say, the 
Central Portuguese database in a case corresponds to assign-
ing prior 0 to the others. The explicit use of priors can be 
avoided by presenting LRs (or match probabilities) for all 
databases and leaving it to the decision maker to integrate 
the evidence. However, as we have seen, this is impractical 
for some of the applications we have in mind. The use of a 
prior serves to make assumptions explicit, facilitating critical 
examination. As a technical aside, updating information or 
evidence is convenient using Bayes theorem. If one is igno-
rant of or hesitant to specify priors, as will often be the case, 
a flat prior can be used. As often happens, priors can be criti-
cized: it may be considered more reasonable to weigh ac-
cording to population size. However, what population size is 
relevant? In a particular vicinity of the crime scene? Again, 
priors are difficult, but we maintain that the problem cannot 
be avoided and, as always, several calculations can be made 
to examine the impact of the prior. Finally, priors and poste-
riors are, in a sense, relative terms. We have considered prior 
to precede the use of the database and the evidence of the 
case. However, if new evidence is made available, for exam-
ple initially only mtDNA was available and at some later 
point Y-STRs were made available, then the posterior prob-
ability computed based on mtDNA may serve as a prior 
when the Y-STR data is introduced. 

 It can tentatively be said that this explicit modelling of 
population substructure could replace the correction for 
coancestry (assuming there is no further substructure within 
groups). In other words, theta corrections, as summarized by 
Eq. (6.9) in Balding (2005) [6], may not be needed. More 
explicitly, let us imagine we lump together different e.g. Ibe-
rian data sets (of different sample sizes, ranging from 50 to 
196 individuals; see above and also Table 2) into a single 
database. We might wish to correct our LR values using an 
Fst correction (Fst is ~0.007 for our Iberian data sets; data 
not shown). The range of LR estimates using Fst = 0.007 
applied to (6.9) of Balding (2005) [6] approximates values 
computed using the approach of (1.1) applied to the seven 
Iberian data sets. Determining the appropriate correction for 
population stratification is not within the scope of this arti-
cle. It is, however, worth mentioning that, to our knowledge, 
it has not been formally demonstrated that Fst appropriately 
corrects LR estimates in the presence of population stratifica-
tion when using haploid data. For instance, distribution of 
population genetic variation contains information that is lost 
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when characterized by a single measure such as Fst (Neigel 
2002) [21]; and this is certainly the case with mtDNA and 
the Y-chromosome data, both containing variation with 
phylogeographic structure (Avise 2000) [22]. In other words, 
different lineages (haplogroups) can have different local 
geographical patterns as a result of different local demo-
graphic historical events (see, for instance, the Iberian distri-
bution of haplogroup V (Torroni et al. 2001) [23]. Therefore, 
applying the same universal Fst correction to the whole, say 
Iberian, database could be inappropriate because different 
lineages could differ in their frequencies at a more regional 
or local geographical scale. 

 Note that there should be some a priori reason to include 
a particular population database in (1.1); for instance, it may 
not be reasonable to add e.g. a sub-Saharan database in the 
Iberian example above if the crime took place in a specific 
Iberian region. This is because if the evidentiary mtDNA 
consists by chance of a sub-Saharan haplotype (which is rare 
in Iberia), L in (1.1) could be overestimated due to an infla-
tion of the term in (1.1) corresponding to the sub-Saharan 
data set added. A high posterior probability would then be 
assigned to this sub-Saharan database concomitant with a 
relatively high frequency for this profile within this database. 
Note in addition that this undesirable effect would not occur 
for a typical Iberian mtDNA profile (for these profiles, the 
posterior probability regarding the sub-Saharan subset and 
the frequency of these Iberian profiles within this African 
data set would be low, and then its effect on the global L 
would be insignificant). The use of phylogenetic/phylogeo-
graphic criteria could help to evaluate the implications of 
considering particular databases in (1.1) and to what extent 
undesirable effects could be affecting LR estimates. 

 It is difficult to provide a universal and practical 
recommendation as to which population databases to include 
when using (1.1). A practical choice would be to consider 
populations which are geographically related (such as the 
example given above for Iberia). In a broader geographical 
context (e.g. Europe), it may be tempting to lump together 
population samples (more or less genetically homogenous) 
and then apply (1.1). Obviously, to lump together for 
example the different SWGDAM databases and apply (1.1) 
is not feasible because of the uncertainty regarding the 
‘ethnicity’ of the groups (if any; see Salas et al. 2006 [9]) 
that is supposed to be represented in these subsets. 
Moreover, the different sample sizes of these subsets, which 
need not be proportional to the ‘ethnic’ groups that they are 
supposed to represent, pose further problems. Population 
stratification within the US territory would be another 
drawback if we take into account the way the SGWDAM 
was conceived (Salas et al. 2006) [9]. 

 An alternative to (1.1) would be to select the population 
data set with the highest posterior probability, and use only 
this data set to estimate the LR. This option tends to underes-
timate the LR; this choice could be overly conservative. 
Again, phylogeographic criteria could assist decision mak-
ing. 

 Last but not least, there are problems related to forensic 
databases. Generally, these databases do not fit forensic aims 
and do not adequately represent the universe of possible per-
petrators. This is, however, a matter of different nature be-
yond the scope of the present study. 

 Note that the use of e.g. phenotypic or cultural features 
(e.g. the US ‘racial’ standards) of the suspects as criteria for 
deciding which particular data set to apply makes no sense. 
Thus, the make-up of the SWGDAM database provides a 
good example. It is naïve to believe that the ‘hispanic’ 
SWGDAM data set consists of a homogeneous genetic unit 
(Salas et al. 2006) [9]; therefore, it makes no sense to clas-
sify an individual as ‘Hispanic’ with the purpose of using the 
‘Hispanic’ data set to estimate a LR. The decision on which 
of the SWGDAM data sets to apply to a particular forensic 
case (occurring in a multi-ethnic city such as New York) 
could be completely arbitrary, and this will generally have 
important implications for the computation of the LR. Cer-
tainly, this problem adds to other important deficiencies of 
the different nature of the SWGDAM (Bandelt et al. 2001; 
Bandelt et al. 2004a; Salas et al. 2005a; Salas et al. 2006a) 
[9,11,13,24]. 

 It is also worth mentioning that different sample sizes 
could obviously affect the uncertainty when using (1.1). For 
the example of Fig. (1), if one population is large, say popu-
lation 1, then w1 will be almost constant for all simulations, 
while if population 2 is small, then w2 will vary in the simu-
lation, so the greatest contribution to uncertainty will come 
from small databases with high posteriors. Therefore, it can 
be said that our approach implicitly accounts for variable 
sample sizes. 

 We realize that there may be additional problems related 
to the size and the representativity of databases. In particular, 
the databases may not be large enough to encompass all dif-
ferent haplotypes with acceptable probability. Then, adjust-
ments to frequency estimates may be reasonable. Thus, the 
frequency estimate generally depends heavily on the sample 
size, and ignoring phylogeographic circumstances could lead 
to an overestimation of haplotype frequencies. For example, 
a typical sub-Saharan haplotype is probably rare in the An-
dalucian population in comparison with many other haplo-
types that are probably relatively common in this region but 
that still remain unsampled due to the stochastic effects in-
herent in the sampling process. 
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SUPPLEMENTARY MATERIAL 

 In what follows, we provide some examples to illustrate 
the methods proposed in previous sections. Data sets, R 
(http://www.r-project.org/) code, and a tutorial are available 
from http://folk.uio.no/thoree/haploeve/. 

Example 1 

 Excerpts from a simulated data set are shown in Table 1. 
The data is only intended to illustrate the methods. There are 
three groups or populations, numbered 1, 2 and 3, all con-
taining 100 individuals. We assume a priori that the three 
populations are equally likely. There are 10 sites considered 
and a 1 indicates a deviance from a reference sample. Indi-
viduals from population i have a 1 for site i with probability 
0.8. For the remaining sites, the probability of a 1 is 0.2. As-
sume a person has a profile with a 1 for the first and last sites 
and 0 for the remaining sites. Such a profile is seen three 
times for population 1 and never for the two other popula-
tions. The following posteriors (based on PCA) are obtained 
for populations 1, 2 and 3, respectively: 0.941, 0.027 and 
0.032. Using (1.1), the likelihood of the data under the alter-
native hypothesis becomes  

L = w1 0.941 +w2 0.022 +w3 0.031. 

 If the match probabilities correspond directly to the ob-
served frequencies, then w1 = 3/100, w2 = w3 = 0, while L = 
0.941  3/100 = 0.0282 and LR = 1/0.0282 = 35.4. If, on the 
other hand, Eq. (1.2) is used with default option k = 1, then, 
w1 = 0.0297, w2 = w3 = 0.0099 and LR = 35.0. 

Table 1. Excerpts of the Data, Corresponding to Four Indi-

viduals (ID), Used in Example 1. The Column 'gr' 

Indicates Population Origin whereas X1–X10 Dis-

play the Haplotype 

ID gr X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

1 1 1 0 0 1 0 1 0 0 0 1 

2 1 0 0 0 0 0 0 0 0 0 0 

299 3 0 0 1 0 1 1 0 0 0 0 

300 3 0 0 1 0 1 0 1 0 0 0 

 
 The bootstrap procedure with 100 samples and default 
options leads to a 95% interval ranging from 14.9 to 101.0. 
Using Fst =  = 0.01 reduces the LR (following Balding 
2005) [1] further to 26.1 with a 95% bootstrap interval (13.1, 
50.5). 

Example 2 

 Consider next mtDNA from three populations: Germans 
(N = 1,314; Pfeiffer et al. 1999; 2001) [2–3], Icelandic (N = 
396; Helgason et al. 2000) [4] and Mozambicans (N = 309; 
Salas et al. 2002) [5]. For our example below, we used the 
most frequent sequence of the Mozambicans as the eviden-
tiary sample, one occurring in 46 or 15.0% of the individuals 
(C16148T T16172C C16187T T16188G C16189T C16223T 
A16230G T16311C C16320T; Salas et al. 2002) [5] and 
never seen in the Europeans (Salas et al. 2004) [6]. This se-
quence is classified as Mozambican with probability virtu-
ally equal to 1 and we expect and find an LR close to 1/0.15 

= 6.666, namely 6.7. A 95% interval is 5.6–8.8 while a his-
togram is shown in Fig. (2). Using only the Mozambican 
database gives a virtually unchanged result. If, on the other 
hand, only the German and Icelandic databases are used, the 
resulting LR changes dramatically to 667.8.  

 This example illustrates the implications of considering 
particular data sets when computing the LR (see below). The 
scenario represented by these three data sets (or whatever 
combination of other data sets) may not be realistic and the 
expertise and choices of databases made could be critical.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Distribution of LR in Example 2. The evidentiary sample is 
the most frequent sequence of the Mozambicans. Three databases 
are combined to obtain the distribution of the LR. Using only the 
database of Mozambique would lead to almost identical distribu-
tion. 

Example 3 

 Consider next the seven databases of Table 2 (the first 
hypervariable region of each specified data set): Portugal (N 
= 540; González et al. 2003, Pereira et al. 2004) [7–8], 
Basques (N = 171; Bertranpetit et al. 1995, Côrte-Real et al. 
1996, Richards et al. 1996) [9–11], Catalonia (N = 118; Cre-
spillo et al. 2000) [12], Galicia (N = 135; Salas et al. 1998, 
González et al. 2003) [7, 13]. These are more (genetically) 
homogeneous populations than those of the previous exam-
ple. Assume a sample corresponding to the revised Cam-
bridge Reference Sequence (rCRS; Andrews et al. 1999) 
[14] is derived from the defendant and the scene of the 
crime. The number of observations of this haplotype is given 
in Table 2. Our software, with default options (e.g. flat priors 
for the probabilities to all the subsets), gives LR 4.9 and 
95.0% interval 4.3 to 5.6. 

 It is also of interest to study the range of likelihood val-
ues that can be expected in a database. Thus, for example, 
there are 1,014 samples in the Iberian database. Their values 
range from 4.9, corresponding to the previously mentioned 
rCRS, to 1039.1. Fig. (3) shows the distribution correspond-
ing to a random sample of 100 of the 1014 haplotypes. 
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Table 2. The Data Used for Example 3. The Frequency of the 

rCRS is Indicated in the Rightmost Column 

Group N obs 

Andalucia 50 7 

Basques 171 38 

Catalonia 118 20 

Galicia 135 34 

PortCent 160 32 

PortNorth 184 40 

PortSouth 196 41 

 

Example 4 

 In this example, we consider a large database of Y-
chromosome data (http://www.yhrd.org/; see also Roewer et 
al. 2000) [15]. Table 3 shows three haplotypes of the 12,727 
haplotypes from 91 populations; the names of the popula-
tions are given in the rightmost column. The sample sizes in 
the various populations vary between 25 and 573. This data 
set differs from the previous ones and those of Egeland et al. 
(2004) [16] in two important senses: the number of markers 
per individual is much smaller, and more importantly, the 
markers are not dichotomous. It is therefore reasonable to 
scale to unit variance prior to PCA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). The distribution of LRs for a random sample of 100 of the 
1,014 Iberian samples (see Example 3). 

 Consider first a common haplotype. Assume first the 
evidentiary sample is the second in Table 3, i.e. number 
6,476. This is a common haplotype observed 661 times, cor-
responding to 5.1%, and seen in 80 of the 91 populations. 
The resulting LR 14.3 is lower than the naive LR obtained as 
1/0.052 = 19.2, and this makes sense since the latter includes 
databases which may not be appropriate for this evidentiary 
sample. The 95% interval is 12.6 to 15.3. 

 Consider next a much rarer haplotype: the first of the 
below table. This is observed three times (Albania, Budapest 
[Hungary], Leipzig [Saxony]). Assume first there is no prior 
information on the origin of the sample. Then LR 94.8 (88.8, 
98.0). 

 Prior information: if one has some prior information in-
dicating that the sample is of, say, Albanian origin, the above 
analysis may not be appropriate. One could then choose to 
use only the Albanian population. This and more general 
prior information can be included, as explained on the web-
site. 

Table 3. Three of 12,727 Haplotypes used in Example 4. 

Haplo. 

No. 
Pop. 

DYS 

19 

DYS 

389I 

DYS 

389II 

DYS 

390 

DYS 

391 

DYS 

392 

DYS 

393 
Pop.  

1 1 12 13 30 24 10 11 13 Albania 

6476 42 14 13 29 24 11 13 13 
Madrid, 

Central 
East Spain 

12727 91 17 13 30 25 10 11 13 
Anatolia, 

Turkey 
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