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Abstract:

Introduction:

The impact of unguarded human movement on the spread of infectious disease like malaria cannot be underestimated. Therefore, this
study examines the significance of short term human travelers on malaria transmission dynamics.

Methods:

A  non-autonomous  system  of  ordinary  differential  equations  incorporating  four  control  strategies,  namely  personal  protection,
chemo-prophylaxis,  chemotherapy and mosquito-reduction  effort  is  presented  to  describe  the  dynamics  of  malaria  transmission
between two interacting populations. Suitable Lyapunov functions are constructed to analyze the global dynamics of the autonomous
version. Moreover, the model which incorporates time-dependent vigilant controls is qualitatively analyzed with the overall goal of
minimizing the spread of malaria and the associated costs of control implementation using the optimal control theory. An iterative
method of forward-backward Runge-Kutta fourth order scheme is used to simulate the optimality system in order to investigate the
effects of the control strategies on the magnitude of infected individuals in the population.

Results:

Analysis of the autonomous system shows that the disease-free equilibrium is globally asymptotically stable whenever the basic
reproduction  is  less  than  unity  and  a  uniquely  determined  endemic  equilibrium  is  shown  to  be  globally  asymptotically  stable
whenever the associated basic reproduction number exceeds unity. In the case of non-autonomous system, necessary conditions for
the optimal control of malaria are derived. It  is shown that adherence to the combination of the control strategies by short term
human travelers helps in curtailing the spread of malaria in the population.

Keywords: Malaria dynamics, Lyapunov function, Vigilant human travelers, Non-autonomous model, Optimal control, Runge-kutta
Method.

1. INTRODUCTION

Malaria is a vector-borne disease caused by parasites of genus Plasmodium whose life cycle depends on the asexual
and sexual phases in humans and mosquitoes respectively [1]. The disease is transmitted to humans through the bites of
infected female  Anopheles  mosquitoes. Of  the five  parasites  species that affect humans,  Plasmodium  falciparum
and  Plasmodium vivax pose  the greatest  public health challenge [2]. It is  estimated that  212  million cases  of malaria
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occurred  globally  in  the  year  2015  with  most  cases  and  deaths  in  the  WHO African,  South-East  Asia  and  Eastern
Mediterranean Regions [3].

The  spread  of  malaria  disease  in  two  interacting  populations  of  humans  and  mosquitoes  has  been  described
mathematically  via  compartmental  models  governed  by  autonomous  and  non-autonomous  systems  of  ordinary
differential  equations.  These  models  have  helped  in  facilitating  the  understanding  of  mechanisms  involved  in  the
transmission dynamics  of  malaria  [4  -  11]  and some of  the  references  therein.  A comprehensive  survey of  malaria
models starting from the basic Ross model [12] has been provided in Mandal et al., [13]. Particularly, the advent of the
non-autonomous  systems  of  ordinary  differential  equations  in  the  description  of  malaria  dynamics  can  be  of  great
importance in assessing the impact of some intervention strategies, namely vector control, chemoprevention and case
management on the disease transmission. Using optimal control theory, a number of studies of non-autonomous malaria
models have been carried out. Blayneh et al., [14] presented an optimal control framework to examine the effects of
time-dependent  prevention  and  treatment  efforts  on  malaria.  Makinde  and  Okosun  [15]  analyzed  the  dynamics  of
malaria infection with infected immigrants by incorporating treatment of infectives and spray of insecticides as control
functions.

In  another  development,  Agusto  et  al.,  [16]  applied  optimal  control  theory  to  investigate  optimal  strategies  for
controlling the spread of malaria using treatment, insecticide treated bed nets and spray of mosquito insecticide as the
system  control  variables,  while  Ozair  et  al.,  [17]  analyzed  the  dynamics  of  vector-borne  disease  with  nonlinear
incidence using similar control variables. Lashari et al., [18] explored the impact of three control variables, namely
vector-reduction,  personal  protection  and  blood  screening  strategies,  on  malaria  dynamics  with  direct  and  indirect
transmissions.  Moreover,  optimal  vaccination  and  bed-net  control  efforts  in  populations  with  different  levels  of
naturally acquired immunity were presented by Prosper et al., [19]. In Otiento et al., [20], the transmission dynamics of
malaria was studied by considering four time-dependent control measures which include insecticide treated bed nets
(ITNS), treatment, indoor residual spray (IRS), and intermittent preventive treatment of malaria in pregnancy (IPTp).

This paper presents an optimal control framework that does not only consider treatment control measure aimed at
the blood-stage infection of malaria in infectious human but also considers a prophylactic measure targeted at treating
liver-stage  infection  in  latently  infected  (exposed)  human  among  other  intervention  measures,  namely  mosquito-
reduction and personal protection efforts. A class of short term vigilant human travelers who adhere to these control
measures  are  incorporated  into  the  human  population.  Using  stability  theory  of  nonlinear  ordinary  differential
equations, global dynamics of the autonomous version of the formulated model is rigorously analyzed. Optimal control
analysis  is  carried  out  on  the  time-dependent  model  using  Pontryagin’s  Maximum  Principle  in  order  to  determine
necessary conditions for the optimal strategies for controlling the spread of malaria.

The rest of this work is organized as follows. In Section 2, the model with four time-dependent control functions is
presented  and  the  qualitative  analysis  of  its  time-independent  version  is  carried  out.  Further,  in  Section  2,  optimal
control analysis of the time-dependent model using Pontryagin’s Maximum Principle and numerical simulations are
performed. Section 3 discuses results by showing the significance of different combinations of the control measures on
the malaria dynamics. The work is wrapped up by giving some concluding remarks.

2. MATERIALS AND METHODS

2.1. Model Formulation

The model presented in this section takes into account time-dependent control functions such as personal protection,
treatments (liver and blood stage therapies) and mosquito reduction intervention strategies. The total human population
at time t, denoted by Nh (t), is subdivided into susceptible Sh (t) (number of individuals not yet infected with malaria
parasite  but  are  capable  of  being infected by infectious mosquitoes  at  time t;  exposed Eh(t)  (number of  individuals
infected with parasite still at the liver stage but not yet infectious at time t; infectious Ih(t) (number of individuals with
malaria parasite at the blood stage and are capable of transmitting the disease to susceptible mosquitoes at time t; and
vigilant Vh (t) (comprises number of human travelers who are protected against malaria for the entire duration of their
short stay in the community). Then,

(1)

The  total  mosquito  population  at  time  t,  denoted  by  Nh  (t),  is  subdivided  into  susceptible  Sm(t)  (number  of

𝑁ℎ(𝑡) = 𝑆ℎ(𝑡) + 𝐸ℎ(𝑡) + 𝐼ℎ(𝑡) + 𝑉ℎ(𝑡) 
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mosquitoes not yet infected with malaria parasite but are capable of being infected by infectious humans at time t);
exposed Em (t) (those infected but not yet infectious at time t); infectious Im (t) (those that are capable of transmitting
malaria parasite to the susceptible humans at time t), so that

(2)

It is assumed that new recruits enter human population by birth or immigration at the rate Λh. A fraction (1 - τ) Λh

enters susceptible population while the remaining fraction τΛh are short term travelers who enter the community taking
antimalarial measures daily for the entire duration of their short stay and then leave without getting infected. This class
of of short term travelers are assumed to be protected against malaria infection. The disease transmission terms for
humans  and  mosquitoes  populations  given,  respectively,  by   are  reduced  by  a
factor of (1 - u1 (t)), where b is the biting rate of mosquitoes, βh (βm)represents the transmission probability in humans
(mosquitoes) and  represents control variable for personal protection using ITNs and mosquito repellent
lotion.

Exposed human progresses at per capita rate αh either to become infectious or recovered due to chemo-prohylaxis
(liver-stage therapy) and travel out of the community without re-infection. Thus, control variable u2 (t) represents the
use of liver-stage therapy which measures the level of effective treatment effort. It is worth stating that P. vivax malaria
has ability to form dormant liver stages (hypnozoites) which often escape blood-stage therapy (WHO [2] and Howes et
al., [21]). Hence, the need for the control variable u2 (t). Infectious human joins the class of vigilant human travelers at
per capita recovery rate u3  (t)γ,  where γ  > 0 is  a rate constant  and 0 ≤ u3  (t)  ≤ 1 represents control  on treatment of
infectious human targeted at blood stage parasites. It is assumed that recovery of infected humans is not spontaneous
but depends only on treatment (liver and blood stage therapies). Every treated individual who recovers is allowed to
enter vigilant class and individuals in this class are protected against infection.

The descriptions of variables and parameters used for the model are given in Table 1.

Table 1. Variables and Parameters of the Model

Variable/Parameter Description
Sh (t) Number of susceptible humans
Eh (t) Number of exposed or latently infected humans
Ih (t) Number of infectious humans
Vh (t) Number of vigilant short-term human travelers
Sm (t) Number of susceptible mosquitoes
Em (t) Number of exposed mosquitoes
Im (t) Number of infectious mosquitoes
u1 (t) Personal protection using insecticide-treated bed nets (ITNs) or mosquito-repellent lotion
u2 (t) Chemo-prophylactic measure or liver-stage therapy for latently infected humans
u3 (t) Chemotherapy or treatment of infectious humans
u4 (t) Mosquito-reduction effort using indoor residual spray (IRS)
Λh Recruitment rate of humans
τ Fraction of recruitment rate of humans who are short-term travelers

Λm Recruitment rate of mosquitoes
b Mosquito biting rate
βh Transmission probability per contact of susceptible humans with infectious mosquitoes
βm Transmission probability per contact of susceptible mosquitoes with infectious humans
µh Natural per capita death rate of humans
µm Natural per capita death rate of mosquitoes
αh Per capita progression rate of exposed humans
αm Per capita progression rate of exposed mosquitoes
γ Recovery rate constant of control
r Rate constant of control

The  recruitment  rate  of the  mosquito population  assumed  susceptible,  denoted  by Λm, is reduced  by a  factor (1
- u4 (t)) and each class of the mosquitoes population is reduced at a rate u4 (t)r, where r > 0 is a rate constant and u4 (t) is

𝑁𝑚(𝑡) = 𝑆𝑚(𝑡) + 𝐸𝑚(𝑡) + 𝐼𝑚(𝑡). 

𝑏𝛽ℎ𝑆ℎ(𝑡)𝐼𝑚(𝑡) and 𝑏𝛽𝑚𝑆𝑚(𝑡)𝐼ℎ(𝑡) 
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the control function due to spray of insecticides. Exposed mosquito becomes infectious at per capita rate αm. The death
rates of humans and mosquitoes populations are given by µh and µm respectively.

The transmission dynamics  of  the  disease  is  described by the  following non-autonomous system of  differential
equations:

(3)

with initial data given at t = 0.

2.2. Global Dynamics of the Autonomous Version

In the absence of the four time-dependent control functions (i.e., when
the non-autonomous model (3) becomes the following autonomous system of ordinary differential equations:

(4)

The dynamics of system (4) is studied in the feasible region of the form:

which can be shown to be positively invariant with respect to (4).

2.2.1. Global Stability of the Disease-Free Equilibrium (DFE)

The DFE of the model (4) is given by

(5)

Using the next generation matrix method [22], the basic reproduction number of model (4) is given by

  
𝑑𝑆ℎ

𝑑𝑡
= (1 − 𝜏)𝛬ℎ − (1 − 𝑢1(𝑡))𝑏𝛽ℎ𝑆ℎ(𝑡)𝐼𝑚(𝑡) − 𝜇ℎ𝑆ℎ(𝑡)   

  
𝑑𝐸ℎ

𝑑𝑡
= (1 − 𝑢1(𝑡))𝑏𝛽ℎ𝑆ℎ(𝑡)𝐼𝑚(𝑡) − (𝛼ℎ + 𝜇ℎ)𝐸ℎ(𝑡)   

 
𝑑𝐼ℎ

𝑑𝑡
= (1 − 𝑢2(𝑡))𝛼ℎ𝐸ℎ(𝑡) − (𝑢3(𝑡)𝛾 + 𝜇ℎ)𝐼ℎ(𝑡)    

  
𝑑𝑉ℎ

𝑑𝑡
= 𝜏𝛬ℎ + 𝑢2(𝑡)𝛼ℎ𝐸ℎ(𝑡) + 𝑢3(𝑡)𝛾𝐼ℎ(𝑡) − 𝜇ℎ𝑉ℎ(𝑡)      

        
𝑑𝑆𝑚

𝑑𝑡
= (1 − 𝑢4(𝑡))𝛬𝑚 − (1 − 𝑢1(𝑡))𝑏𝛽𝑚𝑆𝑚(𝑡)𝐼ℎ(𝑡) − (𝜇𝑚 + 𝑢4(𝑡)𝑟)𝑆𝑚(𝑡)  

        
𝑑𝐸𝑚

𝑑𝑡
= (1 − 𝑢1(𝑡))𝑏𝛽𝑚𝑆𝑚(𝑡)𝐼ℎ(𝑡) − (𝛼𝑚 + 𝜇𝑚 + 𝑢4(𝑡)𝑟)𝐸𝑚(𝑡)    

       
𝑑𝐼𝑚

𝑑𝑡
= 𝛼𝑚𝐸𝑚(𝑡) − (𝜇𝑚 + 𝑢4(𝑡)𝑟)𝐼𝑚(𝑡),  

𝑢1(𝑡) = 0, 𝑢2(𝑡) = 0, 𝑢3(𝑡) = 0 and 𝑢4(𝑡) = 0), 

𝑑𝑆ℎ

𝑑𝑡
= (1 − 𝜏)𝛬ℎ − 𝑏𝛽ℎ𝑆ℎ(𝑡)𝐼𝑚(𝑡) − 𝜇ℎ𝑆ℎ(𝑡) 

𝑑𝐸ℎ

𝑑𝑡
= 𝑏𝛽ℎ𝑆ℎ(𝑡)𝐼𝑚(𝑡) − (𝛼ℎ + 𝜇ℎ)𝐸ℎ(𝑡)  

𝑑𝐼ℎ

𝑑𝑡
= 𝛼ℎ𝐸ℎ(𝑡) − (𝑢3(𝑡)𝛾 + 𝜇ℎ)𝐼ℎ(𝑡)  

    𝑑𝑉ℎ

𝑑𝑡
= 𝜏𝛬ℎ − 𝜇ℎ𝑉ℎ(𝑡)    

𝑑𝑆𝑚

𝑑𝑡
= 𝛬𝑚 − 𝑏𝛽𝑚𝑆𝑚(𝑡)𝐼ℎ(𝑡) − 𝜇𝑚𝑆𝑚(𝑡)  

𝑑𝐸𝑚

𝑑𝑡
= 𝑏𝛽𝑚𝑆𝑚(𝑡)𝐼ℎ(𝑡) − (𝛼𝑚 + 𝜇𝑚)𝐸𝑚(𝑡)  

𝑑𝐼𝑚

𝑑𝑡
= 𝛼𝑚𝐸𝑚(𝑡) − 𝜇𝑚𝐼𝑚(𝑡) 

Ω =  {(𝑆ℎ, 𝐸ℎ,𝐼ℎ, 𝑉ℎ,𝑆𝑚, 𝐸𝑚, 𝐼𝑚) ∈ ℝ+
7 : 𝑆ℎ + 𝐸ℎ + 𝐼ℎ + 𝑉ℎ ≤

Λh

𝜇ℎ
,   𝑆𝑚 + 𝐸𝑚 + 𝐼𝑚 ≤  

Λ𝑚

𝜇𝑚
} 

ℰ0 = (𝑆ℎ
∗ , 𝐸ℎ

∗ , 𝐼ℎ
∗ , 𝑉ℎ

∗, 𝑆𝑚
∗ , 𝐸𝑚

∗ , 𝐼𝑚
∗ ) = (

(1 − 𝜏)Λℎ

𝜇ℎ
, 0,0,

𝜏Λℎ

𝜇ℎ
,
Λ𝑚

𝜇𝑚
, 0,0) 
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(6)

Other methods for calculating  are provided in van den Driessche [23]. Straightforward calculation shows that
. This  implies  that if  all individuals recruited  into human population are vigilant, then there will not be

malaria infection in the population. However, it is assumed that  and all other parameters are positive. The
dynamical behavior of autonomous system (4) as its solutions approach the disease-free is provided in Theorem 1.

Theorem 1: If,  ≤ 1 then the DFE ε given by (5) is globally asymptotically stable in the region Ω.

Proof: Consider the constructed Lyapunov function of the form

(7)

with the time derivative of along  the solutions of system (4) given by

(8)

Therefore,   provided  if  and only if   = 1 or Ih  = 0 and Im  = 0.  It  follows that the
largest invariant set in  is the singleton {ε0 }, and hence by LaSalle’s invariance
principle [24], the DFE {ε0 } is globally asymptotically stable. This completes the proof.

The epidemiological implication of Theorem 1 is that malaria elimination is possible regardless of the initial sizes of
the sub-populations of the model (4) whenever  ≤ 1. This result is graphically illustrated in Fig. (7).

2.2.2. Global Stability of the Endemic Equilibrium

First, the existence of endemic equilibrium (where the components of the infected variables are non-zero) of the
model (4) is explored. Let the endemic equilibrium be represented by

(9)

and solving (4) at steady-state gives

(10)

with forces of infection for humans and mosquitoes at steady-states given, respectively, by

(11)

Substituting (10) and the expression for  in (11) into the expression for  in (11) gives the following linear
equation:

ℛ0 =  √
𝑏2𝛽ℎ𝛼ℎ(1 − 𝜏)Λℎ𝛽𝑚𝛼𝑚Λ𝑚

(𝜇ℎ𝜇𝑚)2(𝛼ℎ + 𝜇ℎ)(𝛼𝑚 + 𝜇𝑚)
 

ℛ0 

ℛ0 

ℛ0 

ℛ0 

ℛ0|𝜏=1 = 0 

𝜏 ∈ (0,1) 

𝔉 = (
𝛼ℎ

(𝛼ℎ + 𝜇ℎ)𝜇ℎ
) 𝐸ℎ +

𝐼ℎ

𝜇ℎ
+ (

𝜇𝑚ℛ0

𝑏𝛽𝑚Λ𝑚
) 𝐸𝑚 + (

𝜇𝑚(𝛼𝑚 + 𝜇𝑚)ℛ0

𝑏𝛽𝑚𝛼𝑚Λ𝑚
) 𝐼𝑚, 

𝔉̇ = (
𝛼ℎ

(𝛼ℎ+𝜇ℎ)𝜇ℎ
) [𝑏𝛽ℎ𝑆ℎ𝐼𝑚 − (𝛼ℎ + 𝜇ℎ)𝐸ℎ] +

1

𝜇ℎ
[𝛼ℎ𝐸ℎ − 𝜇ℎ𝐼ℎ]    

+
𝜇𝑚ℛ0

𝑏𝛽𝑚Λ𝑚

[𝑏𝛽𝑚𝑆𝑚𝐼ℎ − (𝛼𝑚 + 𝜇𝑚)𝐸𝑚] +
𝜇𝑚(𝛼𝑚 + 𝜇𝑚)ℛ0

𝑏𝛽𝑚𝛼𝑚Λ𝑚

[𝛼𝑚𝐸𝑚 − 𝜇𝑚𝐼𝑚] 

          =
𝑏𝛽ℎ𝛼ℎ𝑆ℎ𝐼𝑚

(𝛼ℎ+𝜇ℎ)𝜇ℎ
− 𝐼ℎ +

𝜇𝑚ℛ0𝑆𝑚𝐼ℎ

Λ𝑚
−

𝜇𝑚
2 (𝛼𝑚+𝜇𝑚)ℛ0𝐼𝑚

𝑏𝛽𝑚𝛼𝑚Λ𝑚
  

                                ≤ [
𝑏𝛽ℎ𝛼ℎ(1−𝜏)Λℎ

(𝛼ℎ+𝜇ℎ)𝜇ℎ
2 −

𝜇𝑚
2 (𝛼𝑚+𝜇𝑚)ℛ0

𝑏𝛽𝑚𝛼𝑚Λ𝑚
] 𝐼𝑚 + (ℛ0 − 1)𝐼ℎ  

                      = [(√
𝛽ℎ𝛼ℎΛℎ(1−𝜏)(𝛼𝑚+𝜇𝑚)𝜇𝑚

2

(𝛼ℎ+𝜇ℎ)𝜇ℎ
2𝛽𝑚𝛼𝑚Λ𝑚

) 𝐼𝑚 + 𝐼ℎ] (ℛ0 − 1)   

𝔉

𝔉̇ ≤ 0 ℛ0 ≤ 1, with 𝔉̇ = 0 

{(𝑆ℎ, 𝐸ℎ,𝐼ℎ, 𝑉ℎ,𝑆𝑚, 𝐸𝑚, 𝐼𝑚)  ∈ Ω: 𝔉̇ = 0} 

ℰ𝑒 = (𝑆ℎ
∗∗, 𝐸ℎ

∗∗, 𝐼ℎ
∗∗, 𝑉ℎ

∗∗, 𝑆𝑚
∗∗, 𝐸𝑚

∗∗, 𝐼𝑚
∗∗), 

𝑆ℎ
∗∗ =

(1−𝜏)Λℎ

ℱℎ
∗∗+𝜇ℎ

,  𝐸ℎ
∗∗ =

ℱℎ
∗∗(1−𝜏)Λℎ

(ℱℎ
∗∗+𝜇ℎ)(𝛼ℎ+𝜇ℎ)

,  𝐼ℎ
∗∗ =

ℱℎ
∗∗(1−𝜏)Λℎ

(ℱℎ
∗∗+𝜇ℎ)(𝛼ℎ+𝜇ℎ)𝜇ℎ

, 𝑉ℎ
∗∗ =

𝜏Λℎ

𝜇ℎ
,  

 

 

 

𝑆𝑚
∗∗ =

Λ𝑚

ℱ𝑚
∗∗+𝜇𝑚

,  𝐸𝑚
∗∗ =

ℱ𝑚
∗∗Λ𝑚

(ℱ𝑚
∗∗+𝜇𝑚)(𝛼𝑚+𝜇𝑚)

,  𝐼𝑚
∗∗ =

𝛼𝑚ℱ𝑚
∗∗Λ𝑚

(ℱ𝑚
∗∗+𝜇𝑚)(𝛼𝑚+𝜇𝑚)𝜇𝑚

, 

ℱℎ
∗∗ = 𝑏𝛽ℎ𝐼𝑚

∗∗ and ℱ𝑚
∗∗ = 𝑏𝛽𝑚𝐼ℎ

∗∗.  

ℱ𝑚
∗∗ ℱℎ

∗∗ 
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(12)

where  which is always positive since  and

. It is should be noted from (12) that 
and no endemic equilibrium exits. On the other hand .  Thus, an endemic equilibrium
exists only at  > 1 and this result is summarized hereunder.

Theorem 2:  The autonomous model  (4)  has a  unique endemic  (positive)  equilibrium whenever  >  1,  and no
endemic equilibrium otherwise.

Next, the global stability property of the endemic equilibrium εe of the model (4) is explored in Theorem 3 with
graphical illustration given in Fig. (7).

Theorem  3:If  >  1,  then  the  endemic  equilibrium  εe,  of  the  autonomous  model  (4),  given  by  (9)  is  globally
asymptotically stable in the interior of the region Ω.

Proof: The use is made of the following Goh-Volterra type Lyapunov function [25 - 28].

(13)

with suitably determined coefficients,  The time derivative of 

in (13) along the solutions of the model (4) is given by

(14)

The following equilibrium relations hold from (4) at steady-state:

(15)

Substituting  appropriate  equations  of  model  (4)  and  the  equilibrium  relations  (15)  into  (14)  with  algebraic
simplification  gives
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Consequently,
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Finally, since arithmetic mean is greater than or equal to geometric mean, it follows that

Therefore,   since  all  the  model  parameters  are  positive,  with   if  and  only  if
 It follows from this that Vh →  as t → ∞, and hence

by LaSalle’s invariance principle [24], the endemic equilibrium Ee is globally asymptotically stable whenever  > 1.
The proof is complete.

The  epidemiological implication  of the Theorem 3 is that malaria  will  establish itself  in the community whenever
 > 1 irrespective of the initial sizes of the infectious individuals in the population.

2.3. Optimal Control Analysis

In this section, the detailed qualitative analysis of the non-autonomous model (3) is carried out using Pontryagin’s
Maximum Principle. The bulk of models in the literature of mathematical epidemiology that uses optimal control theory
depends on the Pontryagin’s Maximum Principle [29 - 31]. This is so because necessary conditions for the optimal
strategies aimed at controlling the disease spread can explicitly be derived using Pontryagin’s Maximum Principle [32].
For a collection of these models, readers may check Sharomi and Malik [33]. The following objective functional  is
used to minimize the number of exposed human Eh  (t), infectious human Ih  (t) and total mosquito population Nm  (t)
while keeping the costs of applying the controls u1 (t), u2 (t), u3 (t) and u4 (t) as low as possible.

(18)

where W1, W2, W3, C1, C2, C3 and C4 are positive weight constants. The terms  represent
the costs associated with personal protection efforts, liver-stage therapy, treatment of infectious human and spraying of
insecticides respectively. The costs of controls have been chosen to be quadratic in accordance with the standard in the
literature [33].

Thus, the goal is to seek an optimal control quadruple  such that

(19)

where   Lebesgue  measurable   is  the  control  set.  The
Pontryagin’s Maximum Principle [32] converts system (3), with (18) and (19) into a problem of minimizing pointwise a
Hamiltonian H, with respect to  

(20)
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where λi, = 1, 2,...,7 are the adjoint variables. Using the existence result for the optimal control [34], the following
theorem is obtained.

Theorem 4: There exists an optimal control quadruple  that minimizes  over  subject to the
state system (3). Further, there exist adjoint variables λi, = 1, 2,...,7 satisfying

(21)

with transversality conditions

(22)

Further, the optimal controls  are given by

(23)

Proof: The existence of optimal control follows from Fleming and Rischel [34] due to convexity of the integrand of
the objective functional  in (18) with respect to ui i = 1,....,4, over a convex and closed control set , and system (3)
satisfies the Lipschitz property with respect to the state variables since the state solutions are bounded. The differential
equations (21) governing the adjoint variables λi i = 1, 2,....,7, are obtained by partial differentiation of the Hamiltonian

 in (20) with respect to the corresponding state variables, so that

with terminal conditions (22). The characterization of the optimal control given by (23) is derived by taking the
partial derivative of Hamiltonian (20) with respect to each of the control ui, and solving . This ends
the proof.
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2.4. Numerical Simulations

The optimality system of fourteen-dimensional ordinary differential equations consisting the state and the adjoint
equations (3) and (21) respectively is solved using an iterative method with Runge-Kutta fourth order scheme. The state
equations  are  solved  forward  in  time  with  an  initial  guess  for  the  controls  over  the  simulated  time.  Owing  to  the
transversality conditions (22), the adjoint equations are solved backward in time using the current iteration solutions of
the state equations. Then the controls are updated by using a convex combination of the previous controls and the value
from  the  characterization  (23).  This  process  continues  until  the  difference  between  the  values  of  unknowns  at  the
previous iteration and that of the present iteration is negligibly small [35].

The parameter values provided in Table 2 are used so that  = 3.94178 > 1. The simulations of the model are done
by using the initial conditions given by Sh (0) = 100, Eh (0) = 25, Ih (0) = 15, Vh (0) = 5, Sm (0) = 1000, Em (0) = 20 and Im

(0) = 30. For the purpose of illustrating the optimal level of treatment control combined with other efforts required to
minimize  number  of  infected  humans  and  total  mosquito  population  as  well  as  minimizing  the  associated  costs  of
controls, the weight constants values in the objective functional (18) are chosen so that W1 = 1, W2 = 1.5, C1 = 0.02, C2 =
0.2, C3 = 0.15, and C4 = 0.5
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Fig. (1). Simulations showing effects of personal protection  and chemo-prophylaxis  on malaria spread.

Table 2. Model parameter values.

Parameter Value Source
Λh 0.000215 [36]
Λm 0.071 [25]
µh 0.0000548 [36]
µm 0.066 [14]
αh 1/17 [14]
αm 1/18 [14]
b 0.12 [36]
βh 0.03 [8], [16]
βm 0.09 [14], [15]
γ 0.05 Assumed
r 0.04 [14]
τ 0.25 Assumed
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Fig. (2). Simulations of model (3) showing effects of chemo-prophylaxis   and treatment   on malaria spread.

3. RESULTS AND DISCUSSION

Fig. (1) illustrates the combined effects of the preventive control u1 and liver-stage treatment control u2 on malaria
transmission within human and mosquito populations.  It  is  observed that  the sizes of exposed human, exposed and
infectious mosquitoes with control diminish more rapidly than the case without control. The size of infectious human in
Fig. (1b) with control is constantly maintained at the initial condition. The control profiles in Fig. (1e) shows that the
optimal control  is at the upper bound for 198 days before dropping to the lower bound while the control  is at the
upper bound until time t = 120 days before reducing gradually to the lower bound at the final time.

As it can be seen in Fig. (2), combination of the treatment controls u2 and  causes a sharp decrease in the number
of infectious human. The reduction in the sizes of other classes is not as sharp as when compared with scenario in Fig.
(1).  The  optimal  controls  and  shown  in  Fig.  (2a)  are  at  the  upper  bound  till  about  125  days  and  105  days
respectively before dropping gradually until reaching the lower bound in the final time.

Fig. (3) illustrates the combined effect of preventive and therapeutic controls on the dynamical spread of malaria. It
can be observed that the numbers of exposed and infectious human and mosquito diminish more rapidly with controls
than when there is no control. Fig. (3e) reveals that preventive control  should be sustained maximally for 165 days
before reducing to zero in final time. The optimal controls  and  in Fig. (3e) are at the upper bound for about 98 and
105 days respectively before decreasing to the lower bound in final time.
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Fig. (3). Simulations of model (3) showing effects of personal protection    chemo-prophylaxis   and treatment    on malaria
spread.

Fig. (4) shows the impact of the three controls ,  and  in reducing malaria in the population. As shown in Fig.
(4e), the treatment controls  and  should be sustained maximally until 120 and 110 days respectively while  is at
the upper bound for 198 days before dropping to zero in final time.
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Fig. (4). Simulations of model (3) showing effects of chemo-prophylaxis  treatment  and indoor residual spray  on malaria
spread.

In Fig. (5), the control profiles illustrating the combination of other optimal controls without blood-stage control u3

are displayed. The behavior of the sizes of human and mosquito populations is similar to that in Fig. (1). However, it
can be seen in Fig. (5a) that the control  is at the upper bound for about 138 days and the control  is at the upper
bound for 198 days before dropping to the lower bound at the final time.
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Fig. (5). Control profiles showing combination of personal protection   chemo-prophylaxis   and indoor residual spray  

Further, in Fig. (5b), the control  is at the upper bound for 119 days and the control  is at the upper bound for
about 117 days while the control  should be sustained maximally until about 198 days before reducing to the lower
bound.

Fig. (6d) reveals that control u1 is at the upper bound for 100 days, control  is at the upper bound for 90 days and
control u3 is at the upper bound for 100 days while control u4 should be sustained maximally for about 198 days before
dropping to the lower bound at the final time. Fig. (7a) depicts the global asymptotic behaviour of the infectious human
at the disease-free equilibrium (5) using the parameter values in Table 2 except that µh = 0.05, βm = 0.01, τ = 0.95 such
that   =  2.73496 x  10-4  <  1  where  the  disease  dies  out  regardless  of  large  initial  values  of  the  infectious  human
population. On the other hand, Fig. (7b) shows the global asymptotic behaviour of the infectious human at the endemic
equilibrium (9) using the same parameter values in Table 2 for which  > 1 where the disease persists regardless of
the initial sizes of the infectious human population.
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Fig. (6). Simulations of model (3) illustrating effects of all the four controls on malaria spread.
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Fig. (7). Global asymptotic dynamics of the disease-free and endemic equilibrium points.

CONCLUSION

The malaria transmission dynamics in the presence of human travelers who are protected against malaria has been
analyzed both theoretically and quantitatively. The work is distributed in two parts; autonomous and non-autonomous
systems of ordinary differential equations.

The global asymptotic properties of the autonomous version with respect to the disease-free and endemic equilibria
are established. The disease-free equilibrium is shown to be globally asymptotically stable when  < 1 and a uniquely
determined endemic equilibrium of the autonomous system is shown to be globally asymptotically stable when  > 1.
This  shows  that  the  global  dynamics  of  the  autonomous  model  is  completely  determined  by  the  epidemiological

a. 

 

b. 

ℛ0

ℛ0

0 50 100 150 200
0

20

40

60

80

100

120

140

Time(days)

In
fe

ct
io

us
 H

um
an

0 50 100 150 200
0

5

10

15

20

25

30

35

40

45

Time(days)

In
fe

ct
io

us
 H

um
an



184   The Open Infectious Diseases Journal, 2018, Volume 10 Olaniyi et al.

threshold  which measures the spread potential of malaria in the community.

In other words, our results ascertain that effective control or elimination in the community depends largely on the
basic reproduction number and therefore, efforts that seek the reduction of this basic reproduction number should be
encouraged in order to achieve a malaria-free population.

On the other hand, optimal control analysis is performed on the non-autonomous system which incorporates four
time-dependent controls, namely liver and blood stage therapies as well as mosquito-reduction strategy using insecticide
spray and personal protection effort  using insecticide treated bed nets.  The analysis made possible by Pontryagin’s
Maximum Principle coupled with numerical simulations reveal that the combination of the four control strategies may
be adopted in curtailing the spread of malaria among the human and mosquito interacting populations.

Hence, individuals traveling into a malaria-endemic region for a short period of time are enjoined to be vigilant by
taking into account the combination of the aforementioned control measures with a view to preventing further spread of
the disease beyond the malaria endemic region.

It is worth mentioning that the present model is formulated under the assumption that treated individuals travel out
of the community without getting re-infected due to strict adherence to control measures. However, further studies may
consider re-infection of treated individuals as a result of imperfect treatment or human’s failure to adhere strictly to the
control measures.
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