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Abstract: XML databases, providing structural querying support, are becoming more and more popular. As we know, 

XML data may change over time and providing an efficient support to queries which also involve temporal aspects is still 

an open issue. In this paper we present our native Temporal XML Query Processor, which exploits an ad-hoc temporal in-

dexing scheme relying on relational approaches and a technology supporting temporal slicing. As we show through an ex-

tensive experimental evaluation, our solution achieves good efficiency results, outperforming stratum-based solutions 

when dealing with time-related application requirements while continuing to guarantee good performance in traditional 

scenarios. 
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1. INTRODUCTION 

As data changes over time, the possibility to deal with 
historical information is essential to many computer applica-
tions, such as accounting, banking, law, medical records and 
customer relationship management. In the last years, re-
searchers have tried to provide answers to this need by pro-
posing models and languages for representing and querying 
XML data not only structurally, but also temporally. Recent 
works on this topic include [1-4]. 

The key to supporting most temporal queries in any lan-
guage is to time-slice the input data while retaining period 
timestamping. A time-varying XML document records a 
version history and temporal slicing makes the different 
states of the document available to the application needs. 
The paper [2] has the merit of having been the first to raise 
the temporal slicing issue in the XML context, where time-
stamps are distributed throughout XML documents. The 
proposed solution relies on a stratum approach whose advan-
tage is that they can exploit existing techniques in the under-
lying XML query engine, such as query optimization and 
query evaluation. However, standard XML query engines are 
not aware of the temporal semantics and thus it makes more 
difficult to map temporal XML queries into efficient “va-
nilla” queries and to apply query optimization and indexing 
techniques particularly suited for temporal XML documents.  

In this paper we present our native solution to temporal 
slicing [5] and we compare it in detail with the traditional 
stratum approaches. Our idea is to propose the changes that a 
“conventional” XML pattern matching engine would need to 
be able to slice time-varying XML documents. In this way, 
we can benefit from the XML pattern matching techniques 
present in the literature, where the focus is on the structural 
aspects which are intrinsic also in temporal XML data, and, 
at the same time, we can freely extend them to become tem-
porally aware. In particular, we exploit a novel temporal 
indexing scheme, which extends the inverted list technology 
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proposed in [6] in order to allow the storing of time-varying 
XML documents, and a flexible technology supporting tem-
poral slicing, consisting in alternative solutions relying on 
the holistic twig join approach [7], which is one of the most 
popular approaches for XML pattern matching. The pro-
posed solutions act at the different levels of the holistic twig 
join architectures and include the introduction of novel algo-
rithms and the exploitation of different access methods. The 
benefits of our native approach over the stratum one are 
manifold: the native approach is able to access and retrieve 
only the strictly necessary data and there is no need to re-
trieve whole XML documents and build space-consuming 
structures such as DOM trees. Thus, main memory space 
requirements, I/O and CPU costs can be significantly lim-
ited. 

 

 

 

 

 

 

 

 

 

 
 

Fig. (1). Reference example. 

This paper is organized as follows: we begin by analyz-
ing the temporal slicing problem, comparing the stratum and 
native approaches in Section 2. In Section 3 we describe our 
native proposal’s indexing scheme and technology more in 
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detail. Finally, Section 4 presents a range of experimental 
results and Section 6 concludes the paper. 

2. TEMPORAL SLICING: STRATUM VS. NATIVE 
APPROACH 

Let us start by clarifying the concepts of temporal query-
ing on multiversion XML documents and, in particular, of 
temporal slicing. A time-varying XML document records a 
version history, which consists of the information in each 
version, along with timestamps indicating the lifetime of that 
version [1]. Fig. (1-a) shows the tree representation of a 
time-varying XML document, which will serve as our refer-
ence example, taken from a legislative repository of norms. 
Data nodes are identified by capital letters. For simplicity’s 
sake, timestamps are defined on a single time dimension and 
the granularity is the year. Temporal slicing is essentially the 
snapshot of the time-varying XML document(s) at a given 
time point but, in its broader meaning, it consists in comput-
ing simultaneously the portion of each state of time-varying 
XML document(s) which is contained in a given temporal 
window and which matches with a given XML query twig 
pattern. The resulting slice consists of nodes that: (i) satisfy 
the query nodes predicates; (ii) are structurally consistent 
(i.e. parent-child and ancestor-descendant relationship are 
satisfied); (iii) are temporally consistent (i.e. the intersection 
of their lifetime is non-empty and contained in the temporal 
window). Fig. (1-b) shows the output of the temporal slicing 
example of our reference time-varying XML document for 
the period [1994,now]. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. (2). “Stratum” versus “Native” architectures. 
 

Supporting temporal slicing is the key to supporting most 
temporal querying applications. In the last years, different 
proposals have been made for querying the temporal aspect 
of XML data by means of temporal slicing. In [2], the 
authors suggest a stratum-based implementation to exploit 
the availability of XQuery engines. Indeed, stratum architec-
tures are quite popular, however they not always deliver the 
desired level of performance. For instance, even if in [2] 

different optimizations of the initial time-slicing approach 
are proposed, the solution results in long XQuery programs 
also for simple temporal queries and postprocessing phases 
in order to coalesce the query results. Let us now analyze the 
features of a stratum architecture, comparing it with a native 
one. 

As shown in Fig. (2-a), a traditional stratum architecture 
relies on two different components: A standard XML engine 
offering XML document management facilities and handling 
structural constraints, and a software stratum that is built on 
top of the former to handle the temporal aspects. The ex-
perimental results of an implementation of the stratum ap-
proach show a postprocessing behavior that is linear with the 
number of the documents involved in the results [3,8]. 
Moreover, a standard XML engine is not aware of the tem-
poral semantics and thus it makes more difficult to apply 
query optimization and indexing techniques particularly 
suited for temporal XML documents.  

Instead, a native approach, such as the one we present in 
this paper, relies on a novel architecture (shown in Fig. 2-b). 
It is composed of a Temporal XML Query Processor de-
signed on purpose, which is able to manage the XML data 
repository and to provide all the structural and temporal 
query facilities in a single component. Differently from the 
stratum approach, where temporal constraints are processed 
separately, all the structural and temporal constraints are 
simultaneously handled by the Temporal XML Query Proc-
essor. Such a component stores the XML norms not as entire 
documents but by converting them into a collection of ad-
hoc temporal tuples, representing each of its multi-version 
parts. The benefits of the native approach over the stratum 
one are manifold: By querying ad-hoc and temporally-
enhanced structures (which have a finer granularity than en-
tire documents), the native approach is able to access and 
retrieve only the strictly necessary data. Then, only the parts 
which are required and which satisfy the temporal con-
straints are used for the reconstruction of the retrieved 
documents and there is no need to retrieve whole XML 
documents and build space-consuming structures such as 
DOM trees. Native solutions have been also proposed in [9], 
which introduces techniques for storing and querying multi-
version XML documents, and in [4], where the authors pro-
pose an approach for evaluating TXPath queries integrating 
the temporal dimension into a path indexing scheme. How-
ever, these approaches show large overheads when “conven-
tional” queries involving structural constraints and spanning 
over multiple versions are submitted to the system, since 
query processing requires the full navigation of the docu-
ment collection structure and the execution of binary joins 
between them. Further, the main memory representation of 
the indices is very large (more than 10 times the size of the 
original documents in [4]. In the following section, we pre-
sent in detail our native solution, which fully supports tem-
poral slicing and tries to overcome these shortcomings, pro-
viding good querying performance both in temporal and tra-
ditional scenarios. 

3. PROVIDING A NATIVE SUPPORT FOR TEMPO-
RAL SLICING 

Existing work on “conventional” XML query processing 
(see, for example, [6] shows that capturing the XML docu-
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ment structure using traditional indices is a good solution. 
Being timestamps distributed throughout the structure of 
XML documents, we decided to start from one of the most 
popular approaches for XML query processing whose effi-
ciency in solving structural constraints is proved. In particu-
lar, our solution for temporal slicing support consists in an 
extension to the indexing scheme described in [6] such that 
time-varying XML databases can be implemented, and in 
alternative changes to the holistic twig join technology [7] in 
order to efficiently support the time-slice operator in differ-
ent scenarios. 

3.1. The Temporal Indexing Scheme 

The indexing scheme described in [6] is an extension of 
the classic inverted index data structure in information re-
trieval which maps elements and strings to inverted lists. The 
position of an element occurrence is represented in each in-
verted list as a tuple (DocId, LeftPos:RightPos, LevelNum) 
where (a) DocId is the identifier of the document, (b) Left-
Pos and RightPos are the positions of the start and end of the 
element, respectively, and (c) LevelNum is the depth of the 
node in the document. In this context, structural relationships 
between tree nodes can be easily determined [6]. 

As temporal XML documents are XML documents con-
taining time-varying data, they can be indexed using the in-
terval-based scheme described above and thus by indexing 
timestamps as “standard” tuples. On the other hand, time-
stamped nodes have a specific semantics which should be 
exploited when documents are accessed and, in particular, 
when the time-slice operation is applied. Our proposal adds 
time to the interval-based indexing scheme by substituting 
the inverted indices in [6] with temporal inverted indices. In 
each temporal inverted index, besides the position of an ele-
ment occurrence in the time-varying XML database, the tu-
ple (DocId, LeftPos:RightPos, LevelNum—TempPer) con-
tains an implicit temporal attribute, TempPer. It consists of a 
sequence of From:To temporal attributes, one for each in-
volved temporal dimension, and represents a period. Thus, 
our temporal inverted indices are in 1NF and each timestam-
ped node, whose lifetime is a temporal element containing a 
number of periods, is encoded through as many tuples hav-
ing the same projection on the non-temporal attributes (Do-
cId, LeftPos: RightPos, LevelNum) but with different Temp-
Per values, each representing a period.  

Each time-varying XML document to be inserted in the 
database undergoes a pre-processing phase where (i) the life-
time of each node is derived from the timestamps associated 
with it, (ii) in case, the resulting lifetime is extended to the 
whole timeline of each temporal dimension on which it has 
not been defined. Fig. (3) illustrates the structure of the four 
indices for the reference example. Notice that the snapshot 
node A, whose label is law, is extended to the temporal di-
mension by setting the pertinence of the corresponding tuple 
to [1970,now]. 

3.2. A Technology for the Time-Slice Operator 

The basic four level architecture of the holistic twig join 

approach is depicted in Fig. (4). The approach maintains in 

main-memory a chain of linked stacks to compactly repre-

sent partial results to root-to-leaf query paths, which are then 

composed to obtain matches for the twig pattern (level SOL 

in Figure). In particular, given a path involving the nodes 
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Fig. (4). The basic holistic twig join architecture. 

During the computation, thanks to a deletion policy, the 
set of stacks contains data nodes which are guaranteed to lie 
on a root-to-leaf path in the XML database and thus repre-
sents in linear space a compact encoding of partial and total 
answers to the query twig pattern. The skeleton of the holis-
tic twig join (HTJ from now on) algorithm is the following: 

 

 

 

 

At each iteration the algorithm identifies the next node to 
be processed. To this end, for each query node q, at level L1 
there is the node in the inverted index I

q
 with the smaller 

LeftPos value and not yet processed. Among those, the algo-
rithm chooses the node with the smaller value, let it be qn . 
Then, it removes partial answers form the stacks that cannot 
be extended to total answers and push the node qn  into the 
stack qS . Whenever a node associated with a leaf node of 
the query path is pushed on a stack, the set of stacks contains 
an encoding of total answers and the algorithm outputs these 
answers. 

The time-slice operator can be implemented by applying 
minimal changes to the holistic twig join architecture. The 
time-varying XML database is recorded in the temporal in-
verted indices, which substitute the “conventional” inverted 
index at the lower level of the architecture. Thus the holistic 
twig join algorithms continue to work, as they are responsi-
ble for the structural consistency of the slices and provide the 
best management of the stacks from this point of view. Tem-

 
 
 
 
 
 
 

Fig. (3). The temporal inverted indices for the reference example. 
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poral consistency, instead, must be checked on each answer 
output of the overall process. The performances of this first 
solution are less than optimal, since join algorithms can pro-
duce a lot of answers which are structurally consistent but 
which are eventually discarded as they are not temporally 
consistent. This situation implies useless computations due 
to an uncontrolled growth of the the number of tuples put on 
the stacks. To the light of these facts, a smart management of 
the temporal consistency aspects is needed. 

3.3. Managing Temporal Consistency 

Temporal consistency considers two aspects: The inter-
section of the involved tuples’ lifetimes must be non-empty 
(non-empty intersection constraint) and it must be contained 
in the temporal window (containment constraint). We de-
vised alternative solutions which rely on these two different 
aspects of temporal consistency and act at the different levels 
of the architecture with the aim of limiting the number of 
temporally useless nodes the algorithms put in the stacks. 

Not all temporal tuples which enter level L1 will at the 
end belong to the set of slices. In particular, some of them 
will be discarded due to the non-empty intersection con-
straint. The following Lemma characterizes this aspect. 
Without lose of generality, it only considers paths, as the 
twig matching algorithm relies on the path matching one.  

Proposition 1. Let (D,L:R,N|T) be a tuple belonging to 

the temporal inverted index I
q
, I
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Notice that, at each step of the process, the tuples having 
LeftPos smaller than L can be in the stacks, in the buffers or 
still have to be read from the inverted indices. However, 
looking for such tuples in the three levels of the architecture 
would be quite computationally expensive. Thus, we proceed 
in two ways: We exploit an enhanced buffer loading algo-
rithm (Load algorithm in the following) which allows us to 
look only at the stack level and we associate a temporal per-
tinence to each stack (temporal stack), thus avoiding to ac-
cess the temporal pertinence of the tuples contained in the 
stacks. Such a temporal pertinence must therefore be updated 
at each push and pop operation. At each step of the process, 
for efficiency purposes both in the update and in the intersec-
tion phase, such a temporal pertinence is the smaller multi-
dimensional period Pq containing the union of the temporal 
pertinence of the tuples in the stack S

q
. 

The intuition behind the Load algorithm [5] is to avoid 

loading the temporal tuples encoding a node in the perti-

nence buffer B
q
 if the inverted indices associated with the 

parents of q contain tuples with LeftPos smaller than that of 

n
q
 and not yet processed. In this way, a tuple (D,L:R,N|T) in 

B
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 of q is empty. For instance, at the first 

iteration of the HTJ algorithm applied to the reference exam-

ple, step 1 and step 3 produce the situation depicted in Fig. 

(5). Notice that when the tuple (1,4:5,4|1970:1990) encoding 

node D (label article) enters level L1 all the tuples with Left-

Pos smaller than 4 are already at level L2 and, thanks to the 

above consideration, we can state that it will belong to no 

slice. 

We can exploit the non-empty intersection constraint to 
prevent the insertion of useless nodes into the stacks by act-
ing at level L1 or L2 of the architecture. At level L2 we act 
at step 3 of the HTJ algorithm by simply avoiding pushing 
into the stack Sq each temporal tuple (D,L:R,N|T) encoding 
the next node to be processed. At level L1, instead, we avoid 
loading in any buffer Bq each temporal tuple encoding nq 
which will belong to no slice. In this case, the only loaded 
tuples will be those having the minimum LeftPos greater 
than the one of the last processed node and whose TempPer 
intersects the period of the ancestor stacks. To this purpose, 
our solution uses time-key indices combining the LeftPos 
attribute with the attributes Fromj:Toj of TempPer represent-
ing one temporal dimension in order to improve the perform-
ances of range-interval selection queries on the inverted in-
dices. In order to be able to use simple B+-trees, which clus-
ter data primarily on a single attribute, we performed an at-
tribute concatenation and we built B+-trees that cluster first 
on the LeftPos attribute, then on the end time Toj and finally 
on the start time Fromj of the interval. Further, in the ex-
perimental evaluation section we also compare this kind of 
access method with one based on the Multiversion B-tree 
(MVBT) [10]. As to the containment constraint, the follow-
ing proposition holds:  

Proposition 2. Let (D,L:R,N|T) be a tuple belonging to 
the temporal inverted index Iq. Then (D,L:R,N|T) will belong 
to no slice if the intersection of its temporal pertinence with 
the temporal window t-window is empty.  

It allows us to act at level L1 and L2, where the approach 
is the same as the non-empty intersection constraint; it is 
sufficient to use the temporal window t-window, and thus 
Prop. 2, for selecting the relevant tuples. 

 
 
 
 
 
 
 
 
 
 
 

Fig. (5). Levels L1 and L2 during the first iteration. 
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3.4.  Combining Solutions 

The non-empty intersection constraint and the contain-
ment constraint are orthogonal thus, in principle, the solu-
tions presented in the above subsections can be freely com-
bined in order to decrease the number of useless tuples we 
put in the stacks. Each combination gives rise to a different 
scenario denoted as “X/Y”, where “X” and “Y” are the em-
ployed solutions for the non-empty intersection constraint 
and for the containment constraint, respectively (e.g. sce-
nario L1/L2 employs solution L1 for the non-empty intersec-
tion constraint and solution L2 for the containment con-
straint). In scenario L1/L1 the management of the two con-
straints can be easily combined by querying the indices with 
the intersection of the temporal pertinence of the ancestors 
(Proposition 1) and the required temporal window. All other 
combinations are straightforwardly achievable, but not nec-
essarily advisable. In particular, when L1 is involved for any 
of the two constraints the L1 indices have to be built and 
queried: Therefore, it is best to combine the management of 
the two constraints as in L1/L1 discussed above. Finally, 
notice that the baseline scenario is the SOL/SOL one, involv-
ing none of the solutions discussed in this paper. 

4. EXPERIMENTAL EVALUATION 

In this section we present the results of an actual imple-
mentation of our native XML query processor supporting 
temporal slicing, comparing it with the stratum implementa-
tion presented in [3] and showing its behavior in different 
execution scenarios. 

The document collection follows the structure of the 
documents used in [3], where three temporal dimensions are 
involved, and have been generated by a configurable XML 
generator. On average, each document contains 30-40 nodes, 
a depth level of 10, 10-15 of these nodes are timestamped 
nodes, each one in 2-3 versions composed by the union of 1-
2 distinct periods. 

Experiments were conducted on a reference collection, 
consisting of 5000 documents (120 MB) generated following 
a uniform distribution and characterized by not much scat-
tered nodes, and on several variations of it. We tested the 
performance of the time-slice operator with different twig 
and t-window parameters. Due to the lack of space, in this 
paper we will deepen the performance analysis by consider-
ing the same path, involving three nodes, and different tem-
poral windows as our focus is not on the structural aspects. 

4.1. Efficiency Evaluation 

We evaluated the performances of the time-slice operator 
in terms of execution time and number of tuples that are put 
in the buffers and in the stacks for each feasible computation 
scenario. 

4.1.1. Evaluation of the Default Setting 

We started by testing the time-slice operator with a de-
fault setting (denoted as TS1 in the following). Its temporal 
window has a selectivity of 20%, i.e. 20% of the tuples 
stored in the temporal inverted indexes involved by the twig 
pattern intersect the temporal window. The returned solu-
tions are 5584.  

Table 1 shows the performance of each scenario when 
executing TS1. In particular, from the left: The execution 
time, the percentage of potential solutions at level SOL that 
are not temporally consistent and, in the last two columns, 
the percentage of tuples that are put in the buffers and in the 
stacks w.r.t. the total number of tuples involved in the 
evaluation. 

The best result is given by the computation scenario 
L1/L1: Its execution time is more than 6 times faster than the 
execution time of the baseline scenario SOL/SOL. Such a 
result clearly shows that combining solutions at a low level 
of the architecture, such as L1, avoids I/O costs for reading 
unnecessary tuples and their further elaboration cost at the 
upper levels. The decrease of read tuples from 100% of 
SOL/SOL to just 7.99% of L1/L1 and the decrease of tempo-
rally inconsistent solutions from 96.51% of SOL/SOL to 
23.1% of L1/L1 represent a remarkable result in terms of 
efficiency. TS1 represents a typical querying setting where 
the containment constraint is much more selective than the 
non-empty intersection constraint. This consideration in-
duces us to analyse the obtained performances by partition-
ing the scenarios in three groups, */L1, */L2 and */SOL, on 
the basis of the adopted containment constraint solution. The 
scenarios within each group show similar execution time and 
percentages of tuples [5] for an in-depth analysis). Moreover, 
within each group it should be noticed that rising the non-
empty intersection constraint solution from level L1 to level 
SOL produces more and more deterioration in the overall 
performances. 

4.1.2. Native vs Stratum Comparison 

After having measured the behavior of the native imple-
mentation in the default setting, we wanted to compare its 
performance to the one obtainable through a standard stra-
tum approach. In order to do that, we performed additional 
tests using an available implementation of a temporal-aware 
stratum-based engine. 

In general, as we saw in the past sections, stratum ap-
proaches require two distinct phases in order to provide the 

Table 1. Evaluation of Computation Scenarios with TS1 

Tuples (%) Evaluation 

Scenarios: 

Execution 

Time (ms) 

Non-Consistent 

Solutions (%) 
Buffer Stack 

L1/L1 1890 23.10 % 7.99 % 7.76 % 

L2/L1 1953 23.10 % 9.23 % 7.76 % 

SOL/L1 2000 39.13 % 9.43 % 9.17 % 

L1/L2 2625 23.10 % 17.95 % 7.76 % 

L2/L2 2797 23.10 % 23.37 % 7.76 % 

SOL/L2 2835 39.13 % 23.80 % 9.17 % 

L1/SOL 12125 95.74 % 88.92 % 88.85 % 

L2/SOL 12334 95.74 % 99.33 % 88.85 % 

SOL/SOL 12688 96.51 % 100.00 % 100.00 % 
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final results since they handle structural and temporal con-
straints in separate components. In the first phase, all the 
whole documents satisfying the structural constraints are 
retrieved, then from the DOM representation the portions of 
each of these documents that do not verify the temporal con-
straints are pruned out in a post-processing phase. 

From the tests we performed, we saw that our stratum 
processor was able to perform the first phase of the default 
setting in nearly 20 seconds, which is more than 7 times the 
time required by our novel XML query processor. Further, 
and this is typical of most stratum implementations, the 
postprocessing phase was linear with the number of the 
documents retrieved; in our case, it processed nearly 10 
documents per second. 

Summing up, stratum approaches have many shortcom-
ings w.r.t. native ones. In particular:  

• stratum-level constraints have to be evaluated in a 
second moment, so that, even if a granularity finer than the 
whole document is adopted, a large quantity of additional 
information has to be retrieved anyway for their evaluation;  

• for the same reason, the Stratum is not able to opti-
mize query execution with an access plan filtering the data 
always on the most selective constraints first;  

• the structure of a document is analyzed twice: a first 
time in the XML engine when the structural constraint is 
resolved and a second time in the Stratum to correctly evalu-
ate the other constraints.  

On the other hand, the Native system is able to deliver a 
fast and reliable performance in all cases, since it practically 
avoids the retrieval of useless document parts and is not as 
demanding as the Stratum in terms of main memory space. 
Notice that this property is also very promising towards fu-
ture extensions to cope with concurrent multi-user query 
processing, since memory requirements are not crucial for 
performance.  

From these and further tests we performed, we can state 
that a native implementation such as ours generally outper-
forms stratum performance in most temporal settings. Fur-
ther, the native implementation required less than 5% of 
main memory of the DOM-based approach, typically used in 
stratum implementations. 

4.1.3.  Changing the Selectivity of the Temporal Window 

We are now interested in showing how our XML query 
processor responds to the execution of temporal slicing with 
different selectivity levels; to this purpose we considered a 
second time-slice (TS2) having a selectivity of 31% (lower 
than TS1) and returning 12873 solutions. Fig. (6) shows the 
percentage of read tuples of TS2 compared with our refer-
ence time-slice setting (TS1). Notice that the trend of growth 
of the percentage of read tuples along the different scenarios 
is similar (the trends in execution time show similar behav-
iours). Further, in the SOL/SOL scenario both queries have 
the same number of tuples and execution time in the buffers 
because no selectivity is applied at the lower levels. 
4.1.4. Comparison with MVBT and purely structural tech-
niques. 

In Fig. (7) we compare the execution time for scenario 
L1/L1 when the access method is the B+-tree w.r.t. the 
MVBT. Notice that when MVBT indices are used to access 
data the execution time is generally higher than the B+-tree 
solution. This might be due to the implementation we used 
which is a beta-version included in the XXL package [11]. 
The last comparison involves the holistic twig join algo-
rithms applied on the original indexing scheme proposed in 
[6] where temporal attributes are added to the index structure 
but are considered as common attributes. Notice that in this 
indexing scheme tuples must have different LeftPos and 
RightPos values and thus each temporal XML document 
must be converted into an XML document where each time-
stamped node gives rise to a number of distinct nodes equal 
to the number of distinct periods. The results are shown on 
the right of Fig. (7) where it is clear that the execution time 
of the purely structural approach (STRUCT) is generally 
higher than our baseline scenario and thus also than the other 
scenarios (13 times slower than the best scenario). This 
demonstrates that the introduction of our temporal indexing 
scheme alone brings significant benefits on temporal slicing 
performance. We refer the interested reader also to Section 5 
where we provide additional discussion of state of the art 
techniques w.r.t. ours. 

 

 

 

 

 

 

 

 

 

Fig. (7). MVBT and structural approach performances. 

4.1.5. Evaluation on Differently Distributed Collections 

We also considered the performance of our XML query 
processor on another collection (C-S) of the same size of the 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. (6). Perc. of Non-Consistent Solutions. 
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reference one (C-R), but that is characterized by temporally 
scattered nodes. Figs. (8 and 9) show the execution time and 
the number of temporally inconsistent potential solutions of 
TS1 and TS2 on both collections. The execution time of sce-
narios L1/L1 and SOL/L1, depicted in Fig. (8), shows that it 
is almost unchanged for collection C-R, whereas the differ-
ence is more remarkable for both temporal slicing settings 
for collection C-S. Notice also that the percentage of tempo-
rally inconsistent potential solutions when no solution is ap-
plied under level SOL is limited in the C-R case but explodes 
in the C-S case (see for instance SOL/L1 in Fig. 9). The non-
empty intersection constraint is mainly influenced by the 
temporal sparsity of the nodes in the collection: The more 
the nodes are temporally scattered the more the number of 
temporally inconsistent potential solutions increases. There-
fore, when temporal slicing is applied to this kind of collec-
tions the best way to process it is to adopt a solution exploit-
ing the non-empty intersection constraint at the lowest level, 
i.e. L1. 

 

 

 

 

 

 

Fig. (8). Comparison between the two collections C-R and C-S: 
Execution time. 
 

 
 
 
 
 
 
 
 
 
 

 
Fig. (9). Comparison between the two collections C-R and C-
S:Percentage of Non-Consistent Solutions 

4.1.6.  Scalability 

Fig. (10) (notice the logarithmic scales) reports the per-
formance of our XML query processor in executing TS1 for 
the reference collection C-R and for two collections having 
the same characteristics but different sizes: 10000 and 20000 
documents. The execution time grew linearly in every sce-
nario, with a proportion of approximately 0.75 w.r.t. the 
number of documents for our best scenario L1/L1. Such tests 
have also been performed on the other temporal slicing set-
tings where we measured a similar trend, thus showing the 
good scalability of the processor in every type of query con-
text. 

5. DISCUSSION 

In the last years, there has been a growing interest in rep-
resenting and querying the temporal aspect of XML data. 
Recent papers on this topic include those of [1-4], where the 
history of changes XML data undergo is represented into a 
single document from which versions can be extracted when 
needed. In [1], the authors study the problem of consistently 
deriving a scheme for managing the temporal counterpart of 
non-temporal XML documents, starting from the definition 
of their schema. The paper [2] presents a temporal XML 
query language, XQuery, with which the authors add tem-
poral support to XQuery by extending its syntax and seman-
tics to three kinds of temporal queries: Current, sequenced, 
and representational. Similarly, the TXPath query language 
described in [4] extends XPath for supporting temporal que-
ries. Finally, the main objective of the work presented in [3] 
has been the development of a computer system for the tem-
poral management of multiversion norms represented as 
XML documents and made available on the Web. 

Closer to our definition of time-slice operator, [2] need to 
time-slice documents in a given period and to evaluate a 
query in each time slice of the documents. The authors sug-
gest an implementation based on a stratum approach to ex-
ploit the availability of XQuery implementations. Even if 
they propose different optimizations of the initial time-
slicing approach, this solution results in long XQuery pro-
grams also for simple temporal queries and postprocessing 
phases in order to coalesce the query results. Moreover, an 
XQuery engine is not aware of the temporal semantics and 
thus it makes more difficult to apply query optimization and 
indexing techniques particularly suited for temporal XML 
documents. Native solutions are, instead, proposed in [4,9]. 
The paper [9] introduces techniques for storing and querying 
multiversion XML documents. Each time one or more up-
dates occur on a multiversion XML document, the proposed 
versioning scheme creates a new physical version of the 
document where it stores the differences w.r.t. the previous 
version. This leads to large overheads when “conventional” 
queries involving structural constraints and spanning over 
multiple versions are submitted to the system. In [4] the 
authors propose an approach for evaluating TXPath queries 
which integrates the temporal dimension into a path indexing 
scheme by taking into account the available continuous paths 
from the root to the elements, i.e. paths that are valid con-

 

 

 

 

 

 

 

 

 

 
 
 

Fig. (10). Scalability results for TS1. 
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tinuously during a certain time interval. While twig querying 
is not directly handled in this approach, path query perform-
ance is enhanced w.r.t. standard path indexing, even though 
the main memory representation of their indices is more than 
10 times the size of the original documents. Moreover, query 
processing can still be quite heavy for large documents, as it 
requires the full navigation of the document collection struc-
ture, in order to access the required element tables, and the 
execution of a binary join between them at each level of the 
query path. 

Similarly to the structural join approach [6] proposed for 
XML query pattern matching, the temporal slicing problem 
can be naturally decomposed into a set of temporal-structural 
constraints. For instance solving time-slice(//contents//sec-
tion//article,[1994,now]) means to find all occurrences in a 
temporal XML database of the basic ancestor-descendant 
relationships (contents, section) and (section, article) which 
are temporally consistent. In the literature, a great deal of 
work has been devoted to the processing of temporal join 
(see e.g. [12]) also using indices [13]. Given the temporal 
indexing scheme proposed in this paper, we could have ex-
tended temporal join algorithms to the structural join prob-
lem or vice versa. However the main drawback of the struc-
tural join approach is that the sizes of the results of binary 
structural joins can get very large, even when the input and 
the final result sizes obtained by stitching together the basic 
matches are much more manageable. 

6. CONCLUSION 

The native approach proposed in this paper extends one 
of the most efficient approaches for XML query processing 
and the underlying indexing scheme in order to support tem-
poral slicing and overcome most of the previously discussed 
problems. Starting from the holistic twig join approach [7], 
we proposed new flexible technologies consisting in alterna-
tive solutions and extensively experimented them in different 
settings. The resulting Temporal XML Query Processor 
overcomes many of the shortcomings of stratum implemen-

tations and its efficiency is quite encouraging and induces us 
to continue in this direction. 
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