
2 The Open Information Science Journal, 2009, 2, 2-9

 1874-947X/09 2009 Bentham Open

Open Access

Native Temporal Slicing Support for XML Databases

F. Mandreoli*, R. Martoglia and E. Ronchetti

DII - Università di Modena e Reggio Emilia, I-41100 Modena, Italy

Abstract: XML databases, providing structural querying support, are becoming more and more popular. As we know,

XML data may change over time and providing an efficient support to queries which also involve temporal aspects is still

an open issue. In this paper we present our native Temporal XML Query Processor, which exploits an ad-hoc temporal in-

dexing scheme relying on relational approaches and a technology supporting temporal slicing. As we show through an ex-

tensive experimental evaluation, our solution achieves good efficiency results, outperforming stratum-based solutions

when dealing with time-related application requirements while continuing to guarantee good performance in traditional

scenarios.

Key Words: XML, native temporal XML query processor, temporal index, holistic twig join.

1. INTRODUCTION

As data changes over time, the possibility to deal with
historical information is essential to many computer applica-
tions, such as accounting, banking, law, medical records and
customer relationship management. In the last years, re-
searchers have tried to provide answers to this need by pro-
posing models and languages for representing and querying
XML data not only structurally, but also temporally. Recent
works on this topic include [1-4].

The key to supporting most temporal queries in any lan-
guage is to time-slice the input data while retaining period
timestamping. A time-varying XML document records a
version history and temporal slicing makes the different
states of the document available to the application needs.
The paper [2] has the merit of having been the first to raise
the temporal slicing issue in the XML context, where time-
stamps are distributed throughout XML documents. The
proposed solution relies on a stratum approach whose advan-
tage is that they can exploit existing techniques in the under-
lying XML query engine, such as query optimization and
query evaluation. However, standard XML query engines are
not aware of the temporal semantics and thus it makes more
difficult to map temporal XML queries into efficient “va-
nilla” queries and to apply query optimization and indexing
techniques particularly suited for temporal XML documents.

In this paper we present our native solution to temporal
slicing [5] and we compare it in detail with the traditional
stratum approaches. Our idea is to propose the changes that a
“conventional” XML pattern matching engine would need to
be able to slice time-varying XML documents. In this way,
we can benefit from the XML pattern matching techniques
present in the literature, where the focus is on the structural
aspects which are intrinsic also in temporal XML data, and,
at the same time, we can freely extend them to become tem-
porally aware. In particular, we exploit a novel temporal
indexing scheme, which extends the inverted list technology

Address correspondence to this author at the DII - Università di Modena e
Reggio Emilia, I-41100 Modena, Italy;
E-mail: federica.mandreoli@unimore.it

proposed in [6] in order to allow the storing of time-varying
XML documents, and a flexible technology supporting tem-
poral slicing, consisting in alternative solutions relying on
the holistic twig join approach [7], which is one of the most
popular approaches for XML pattern matching. The pro-
posed solutions act at the different levels of the holistic twig
join architectures and include the introduction of novel algo-
rithms and the exploitation of different access methods. The
benefits of our native approach over the stratum one are
manifold: the native approach is able to access and retrieve
only the strictly necessary data and there is no need to re-
trieve whole XML documents and build space-consuming
structures such as DOM trees. Thus, main memory space
requirements, I/O and CPU costs can be significantly lim-
ited.

Fig. (1). Reference example.

This paper is organized as follows: we begin by analyz-
ing the temporal slicing problem, comparing the stratum and
native approaches in Section 2. In Section 3 we describe our
native proposal’s indexing scheme and technology more in

B

F

G

(a) - A time varying XML document

article

C

D

section section

article

[1991, 1994]

[1970, 2003] [2004, now]

[2004, now]

contents

Alaw

U
[1996, now]

[1970, 1990]
article

E
[1995, 1998]

U
[2001, 2003]

contents

article

[1994, now]

(b) - An example of time-slicing

contents

article

B

E

+

contents

article

B

G

[1996, 1998]
U

[2001, 2003]

[2004, now]

Native Temporal Slicing Support for XML Databasess The Open Information Science Journal, 2009, Volume 2 3

detail. Finally, Section 4 presents a range of experimental
results and Section 6 concludes the paper.

2. TEMPORAL SLICING: STRATUM VS. NATIVE
APPROACH

Let us start by clarifying the concepts of temporal query-
ing on multiversion XML documents and, in particular, of
temporal slicing. A time-varying XML document records a
version history, which consists of the information in each
version, along with timestamps indicating the lifetime of that
version [1]. Fig. (1-a) shows the tree representation of a
time-varying XML document, which will serve as our refer-
ence example, taken from a legislative repository of norms.
Data nodes are identified by capital letters. For simplicity’s
sake, timestamps are defined on a single time dimension and
the granularity is the year. Temporal slicing is essentially the
snapshot of the time-varying XML document(s) at a given
time point but, in its broader meaning, it consists in comput-
ing simultaneously the portion of each state of time-varying
XML document(s) which is contained in a given temporal
window and which matches with a given XML query twig
pattern. The resulting slice consists of nodes that: (i) satisfy
the query nodes predicates; (ii) are structurally consistent
(i.e. parent-child and ancestor-descendant relationship are
satisfied); (iii) are temporally consistent (i.e. the intersection
of their lifetime is non-empty and contained in the temporal
window). Fig. (1-b) shows the output of the temporal slicing
example of our reference time-varying XML document for
the period [1994,now].

Fig. (2). “Stratum” versus “Native” architectures.

Supporting temporal slicing is the key to supporting most
temporal querying applications. In the last years, different
proposals have been made for querying the temporal aspect
of XML data by means of temporal slicing. In [2], the
authors suggest a stratum-based implementation to exploit
the availability of XQuery engines. Indeed, stratum architec-
tures are quite popular, however they not always deliver the
desired level of performance. For instance, even if in [2]

different optimizations of the initial time-slicing approach
are proposed, the solution results in long XQuery programs
also for simple temporal queries and postprocessing phases
in order to coalesce the query results. Let us now analyze the
features of a stratum architecture, comparing it with a native
one.

As shown in Fig. (2-a), a traditional stratum architecture
relies on two different components: A standard XML engine
offering XML document management facilities and handling
structural constraints, and a software stratum that is built on
top of the former to handle the temporal aspects. The ex-
perimental results of an implementation of the stratum ap-
proach show a postprocessing behavior that is linear with the
number of the documents involved in the results [3,8].
Moreover, a standard XML engine is not aware of the tem-
poral semantics and thus it makes more difficult to apply
query optimization and indexing techniques particularly
suited for temporal XML documents.

Instead, a native approach, such as the one we present in
this paper, relies on a novel architecture (shown in Fig. 2-b).
It is composed of a Temporal XML Query Processor de-
signed on purpose, which is able to manage the XML data
repository and to provide all the structural and temporal
query facilities in a single component. Differently from the
stratum approach, where temporal constraints are processed
separately, all the structural and temporal constraints are
simultaneously handled by the Temporal XML Query Proc-
essor. Such a component stores the XML norms not as entire
documents but by converting them into a collection of ad-
hoc temporal tuples, representing each of its multi-version
parts. The benefits of the native approach over the stratum
one are manifold: By querying ad-hoc and temporally-
enhanced structures (which have a finer granularity than en-
tire documents), the native approach is able to access and
retrieve only the strictly necessary data. Then, only the parts
which are required and which satisfy the temporal con-
straints are used for the reconstruction of the retrieved
documents and there is no need to retrieve whole XML
documents and build space-consuming structures such as
DOM trees. Native solutions have been also proposed in [9],
which introduces techniques for storing and querying multi-
version XML documents, and in [4], where the authors pro-
pose an approach for evaluating TXPath queries integrating
the temporal dimension into a path indexing scheme. How-
ever, these approaches show large overheads when “conven-
tional” queries involving structural constraints and spanning
over multiple versions are submitted to the system, since
query processing requires the full navigation of the docu-
ment collection structure and the execution of binary joins
between them. Further, the main memory representation of
the indices is very large (more than 10 times the size of the
original documents in [4]. In the following section, we pre-
sent in detail our native solution, which fully supports tem-
poral slicing and tries to overcome these shortcomings, pro-
viding good querying performance both in temporal and tra-
ditional scenarios.

3. PROVIDING A NATIVE SUPPORT FOR TEMPO-
RAL SLICING

Existing work on “conventional” XML query processing
(see, for example, [6] shows that capturing the XML docu-

(b) - Novel “Native” architecture

XML
Repository

DBMS

Stratum

Query
Constraints

XML
Repository

Temporal
+

Structural
Query constraints

XML Docs

Ad-hoc
tuples

XML Docs

Structural

Temporal

Temporal XML
Query Processor

XML Engine

(a) - Standard “Stratum” architecture

4 The Open Information Science Journal, 2009, Volume 2 Mandreoli et al.

ment structure using traditional indices is a good solution.
Being timestamps distributed throughout the structure of
XML documents, we decided to start from one of the most
popular approaches for XML query processing whose effi-
ciency in solving structural constraints is proved. In particu-
lar, our solution for temporal slicing support consists in an
extension to the indexing scheme described in [6] such that
time-varying XML databases can be implemented, and in
alternative changes to the holistic twig join technology [7] in
order to efficiently support the time-slice operator in differ-
ent scenarios.

3.1. The Temporal Indexing Scheme

The indexing scheme described in [6] is an extension of
the classic inverted index data structure in information re-
trieval which maps elements and strings to inverted lists. The
position of an element occurrence is represented in each in-
verted list as a tuple (DocId, LeftPos:RightPos, LevelNum)
where (a) DocId is the identifier of the document, (b) Left-
Pos and RightPos are the positions of the start and end of the
element, respectively, and (c) LevelNum is the depth of the
node in the document. In this context, structural relationships
between tree nodes can be easily determined [6].

As temporal XML documents are XML documents con-
taining time-varying data, they can be indexed using the in-
terval-based scheme described above and thus by indexing
timestamps as “standard” tuples. On the other hand, time-
stamped nodes have a specific semantics which should be
exploited when documents are accessed and, in particular,
when the time-slice operation is applied. Our proposal adds
time to the interval-based indexing scheme by substituting
the inverted indices in [6] with temporal inverted indices. In
each temporal inverted index, besides the position of an ele-
ment occurrence in the time-varying XML database, the tu-
ple (DocId, LeftPos:RightPos, LevelNum—TempPer) con-
tains an implicit temporal attribute, TempPer. It consists of a
sequence of From:To temporal attributes, one for each in-
volved temporal dimension, and represents a period. Thus,
our temporal inverted indices are in 1NF and each timestam-
ped node, whose lifetime is a temporal element containing a
number of periods, is encoded through as many tuples hav-
ing the same projection on the non-temporal attributes (Do-
cId, LeftPos: RightPos, LevelNum) but with different Temp-
Per values, each representing a period.

Each time-varying XML document to be inserted in the
database undergoes a pre-processing phase where (i) the life-
time of each node is derived from the timestamps associated
with it, (ii) in case, the resulting lifetime is extended to the
whole timeline of each temporal dimension on which it has
not been defined. Fig. (3) illustrates the structure of the four
indices for the reference example. Notice that the snapshot
node A, whose label is law, is extended to the temporal di-
mension by setting the pertinence of the corresponding tuple
to [1970,now].

3.2. A Technology for the Time-Slice Operator

The basic four level architecture of the holistic twig join

approach is depicted in Fig. (4). The approach maintains in

main-memory a chain of linked stacks to compactly repre-

sent partial results to root-to-leaf query paths, which are then

composed to obtain matches for the twig pattern (level SOL

in Figure). In particular, given a path involving the nodes

q
1
,…,q

n
, the algorithm presented in [7] works on the in-

verted indices I
q

1

,…,I
q

n

 (level L0 in Figure) and builds solu-

tions from the stacks S
q

1

,…,S
q

n

 (level L2 in Figure).

Fig. (4). The basic holistic twig join architecture.

During the computation, thanks to a deletion policy, the
set of stacks contains data nodes which are guaranteed to lie
on a root-to-leaf path in the XML database and thus repre-
sents in linear space a compact encoding of partial and total
answers to the query twig pattern. The skeleton of the holis-
tic twig join (HTJ from now on) algorithm is the following:

At each iteration the algorithm identifies the next node to
be processed. To this end, for each query node q, at level L1
there is the node in the inverted index I

q
 with the smaller

LeftPos value and not yet processed. Among those, the algo-
rithm chooses the node with the smaller value, let it be qn .
Then, it removes partial answers form the stacks that cannot
be extended to total answers and push the node qn into the
stack qS . Whenever a node associated with a leaf node of
the query path is pushed on a stack, the set of stacks contains
an encoding of total answers and the algorithm outputs these
answers.

The time-slice operator can be implemented by applying
minimal changes to the holistic twig join architecture. The
time-varying XML database is recorded in the temporal in-
verted indices, which substitute the “conventional” inverted
index at the lower level of the architecture. Thus the holistic
twig join algorithms continue to work, as they are responsi-
ble for the structural consistency of the slices and provide the
best management of the stacks from this point of view. Tem-

Fig. (3). The temporal inverted indices for the reference example.

contents (1, 2:13, 2 | 1991:1994), (1, 2:13, 2 | 1996:now)

law (1, 1:14, 1 | 1970:now)

section (1, 3:8, 3 | 1970:2003), (1, 9:12, 3 | 2004:now)

article (1, 4:5, 4 | 1970:1990), (1, 6:7, 4 | 1995:1998),
(1, 6:7, 4 | 2001:2003), (1, 10:11, 4 | 2004:now)

Level
L0

...Level
L2

ID
...

{ptr}
...

ID
...

{ptr}
...

ID
...

{ptr}
...

...

Level
L1 ...

Level
SOL ...(Solutions)

qx

(Stacks)
qxS

(Buffers)
qxB

(Inv. Indices)
qxI

1 2 n

Native Temporal Slicing Support for XML Databasess The Open Information Science Journal, 2009, Volume 2 5

poral consistency, instead, must be checked on each answer
output of the overall process. The performances of this first
solution are less than optimal, since join algorithms can pro-
duce a lot of answers which are structurally consistent but
which are eventually discarded as they are not temporally
consistent. This situation implies useless computations due
to an uncontrolled growth of the the number of tuples put on
the stacks. To the light of these facts, a smart management of
the temporal consistency aspects is needed.

3.3. Managing Temporal Consistency

Temporal consistency considers two aspects: The inter-
section of the involved tuples’ lifetimes must be non-empty
(non-empty intersection constraint) and it must be contained
in the temporal window (containment constraint). We de-
vised alternative solutions which rely on these two different
aspects of temporal consistency and act at the different levels
of the architecture with the aim of limiting the number of
temporally useless nodes the algorithms put in the stacks.

Not all temporal tuples which enter level L1 will at the
end belong to the set of slices. In particular, some of them
will be discarded due to the non-empty intersection con-
straint. The following Lemma characterizes this aspect.
Without lose of generality, it only considers paths, as the
twig matching algorithm relies on the path matching one.

Proposition 1. Let (D,L:R,N|T) be a tuple belonging to

the temporal inverted index I
q
, I

q
1

,…,I
q

k

 the inverted indices

of the ancestors of q and TP
q

i

=
LeftPos<L

(I
q

i

)|TempPer, for

i [1,k], the union of the temporal pertinences of all the tu-

ples in I
q

i

 having LeftPos smaller than L. Then (D,L:R,N|T)

will belong to no slice if the intersection of its temporal per-

tinence with TP
q

1

,…,TP
q

k

 is empty, i.e.

T TP
q

1

… TP
q

k

= .

Notice that, at each step of the process, the tuples having
LeftPos smaller than L can be in the stacks, in the buffers or
still have to be read from the inverted indices. However,
looking for such tuples in the three levels of the architecture
would be quite computationally expensive. Thus, we proceed
in two ways: We exploit an enhanced buffer loading algo-
rithm (Load algorithm in the following) which allows us to
look only at the stack level and we associate a temporal per-
tinence to each stack (temporal stack), thus avoiding to ac-
cess the temporal pertinence of the tuples contained in the
stacks. Such a temporal pertinence must therefore be updated
at each push and pop operation. At each step of the process,
for efficiency purposes both in the update and in the intersec-
tion phase, such a temporal pertinence is the smaller multi-
dimensional period Pq containing the union of the temporal
pertinence of the tuples in the stack S

q
.

The intuition behind the Load algorithm [5] is to avoid

loading the temporal tuples encoding a node in the perti-

nence buffer B
q
 if the inverted indices associated with the

parents of q contain tuples with LeftPos smaller than that of

n
q
 and not yet processed. In this way, a tuple (D,L:R,N|T) in

B
q
 will belong to no slice if the intersection of its temporal

pertinence T with the multidimensional period

P
q

1
q

k

=P
q

1

… P
q

k

 intersecting the periods of the stacks of

the ancestors q
1
,…,q

k
 of q is empty. For instance, at the first

iteration of the HTJ algorithm applied to the reference exam-

ple, step 1 and step 3 produce the situation depicted in Fig.

(5). Notice that when the tuple (1,4:5,4|1970:1990) encoding

node D (label article) enters level L1 all the tuples with Left-

Pos smaller than 4 are already at level L2 and, thanks to the

above consideration, we can state that it will belong to no

slice.

We can exploit the non-empty intersection constraint to
prevent the insertion of useless nodes into the stacks by act-
ing at level L1 or L2 of the architecture. At level L2 we act
at step 3 of the HTJ algorithm by simply avoiding pushing
into the stack Sq each temporal tuple (D,L:R,N|T) encoding
the next node to be processed. At level L1, instead, we avoid
loading in any buffer Bq each temporal tuple encoding nq
which will belong to no slice. In this case, the only loaded
tuples will be those having the minimum LeftPos greater
than the one of the last processed node and whose TempPer
intersects the period of the ancestor stacks. To this purpose,
our solution uses time-key indices combining the LeftPos
attribute with the attributes Fromj:Toj of TempPer represent-
ing one temporal dimension in order to improve the perform-
ances of range-interval selection queries on the inverted in-
dices. In order to be able to use simple B+-trees, which clus-
ter data primarily on a single attribute, we performed an at-
tribute concatenation and we built B+-trees that cluster first
on the LeftPos attribute, then on the end time Toj and finally
on the start time Fromj of the interval. Further, in the ex-
perimental evaluation section we also compare this kind of
access method with one based on the Multiversion B-tree
(MVBT) [10]. As to the containment constraint, the follow-
ing proposition holds:

Proposition 2. Let (D,L:R,N|T) be a tuple belonging to
the temporal inverted index Iq. Then (D,L:R,N|T) will belong
to no slice if the intersection of its temporal pertinence with
the temporal window t-window is empty.

It allows us to act at level L1 and L2, where the approach
is the same as the non-empty intersection constraint; it is
sufficient to use the temporal window t-window, and thus
Prop. 2, for selecting the relevant tuples.

Fig. (5). Levels L1 and L2 during the first iteration.

Level
L2

contents

Level
L1

(1, 2:13, 2 | 1991:1994)
 STEP 3

article

[1991, now] []

(1, 2:13, 2 | 1996:now)

mincontents = 2 minarticle = 2

 STEP 1

(1, 2:13, 2 | 1991:1994)
(1, 2:13, 2 | 1996:now)

6 The Open Information Science Journal, 2009, Volume 2 Mandreoli et al.

3.4. Combining Solutions

The non-empty intersection constraint and the contain-
ment constraint are orthogonal thus, in principle, the solu-
tions presented in the above subsections can be freely com-
bined in order to decrease the number of useless tuples we
put in the stacks. Each combination gives rise to a different
scenario denoted as “X/Y”, where “X” and “Y” are the em-
ployed solutions for the non-empty intersection constraint
and for the containment constraint, respectively (e.g. sce-
nario L1/L2 employs solution L1 for the non-empty intersec-
tion constraint and solution L2 for the containment con-
straint). In scenario L1/L1 the management of the two con-
straints can be easily combined by querying the indices with
the intersection of the temporal pertinence of the ancestors
(Proposition 1) and the required temporal window. All other
combinations are straightforwardly achievable, but not nec-
essarily advisable. In particular, when L1 is involved for any
of the two constraints the L1 indices have to be built and
queried: Therefore, it is best to combine the management of
the two constraints as in L1/L1 discussed above. Finally,
notice that the baseline scenario is the SOL/SOL one, involv-
ing none of the solutions discussed in this paper.

4. EXPERIMENTAL EVALUATION

In this section we present the results of an actual imple-
mentation of our native XML query processor supporting
temporal slicing, comparing it with the stratum implementa-
tion presented in [3] and showing its behavior in different
execution scenarios.

The document collection follows the structure of the
documents used in [3], where three temporal dimensions are
involved, and have been generated by a configurable XML
generator. On average, each document contains 30-40 nodes,
a depth level of 10, 10-15 of these nodes are timestamped
nodes, each one in 2-3 versions composed by the union of 1-
2 distinct periods.

Experiments were conducted on a reference collection,
consisting of 5000 documents (120 MB) generated following
a uniform distribution and characterized by not much scat-
tered nodes, and on several variations of it. We tested the
performance of the time-slice operator with different twig
and t-window parameters. Due to the lack of space, in this
paper we will deepen the performance analysis by consider-
ing the same path, involving three nodes, and different tem-
poral windows as our focus is not on the structural aspects.

4.1. Efficiency Evaluation

We evaluated the performances of the time-slice operator
in terms of execution time and number of tuples that are put
in the buffers and in the stacks for each feasible computation
scenario.

4.1.1. Evaluation of the Default Setting

We started by testing the time-slice operator with a de-
fault setting (denoted as TS1 in the following). Its temporal
window has a selectivity of 20%, i.e. 20% of the tuples
stored in the temporal inverted indexes involved by the twig
pattern intersect the temporal window. The returned solu-
tions are 5584.

Table 1 shows the performance of each scenario when
executing TS1. In particular, from the left: The execution
time, the percentage of potential solutions at level SOL that
are not temporally consistent and, in the last two columns,
the percentage of tuples that are put in the buffers and in the
stacks w.r.t. the total number of tuples involved in the
evaluation.

The best result is given by the computation scenario
L1/L1: Its execution time is more than 6 times faster than the
execution time of the baseline scenario SOL/SOL. Such a
result clearly shows that combining solutions at a low level
of the architecture, such as L1, avoids I/O costs for reading
unnecessary tuples and their further elaboration cost at the
upper levels. The decrease of read tuples from 100% of
SOL/SOL to just 7.99% of L1/L1 and the decrease of tempo-
rally inconsistent solutions from 96.51% of SOL/SOL to
23.1% of L1/L1 represent a remarkable result in terms of
efficiency. TS1 represents a typical querying setting where
the containment constraint is much more selective than the
non-empty intersection constraint. This consideration in-
duces us to analyse the obtained performances by partition-
ing the scenarios in three groups, */L1, */L2 and */SOL, on
the basis of the adopted containment constraint solution. The
scenarios within each group show similar execution time and
percentages of tuples [5] for an in-depth analysis). Moreover,
within each group it should be noticed that rising the non-
empty intersection constraint solution from level L1 to level
SOL produces more and more deterioration in the overall
performances.

4.1.2. Native vs Stratum Comparison

After having measured the behavior of the native imple-
mentation in the default setting, we wanted to compare its
performance to the one obtainable through a standard stra-
tum approach. In order to do that, we performed additional
tests using an available implementation of a temporal-aware
stratum-based engine.

In general, as we saw in the past sections, stratum ap-
proaches require two distinct phases in order to provide the

Table 1. Evaluation of Computation Scenarios with TS1

Tuples (%) Evaluation

Scenarios:

Execution

Time (ms)

Non-Consistent

Solutions (%)
Buffer Stack

L1/L1 1890 23.10 % 7.99 % 7.76 %

L2/L1 1953 23.10 % 9.23 % 7.76 %

SOL/L1 2000 39.13 % 9.43 % 9.17 %

L1/L2 2625 23.10 % 17.95 % 7.76 %

L2/L2 2797 23.10 % 23.37 % 7.76 %

SOL/L2 2835 39.13 % 23.80 % 9.17 %

L1/SOL 12125 95.74 % 88.92 % 88.85 %

L2/SOL 12334 95.74 % 99.33 % 88.85 %

SOL/SOL 12688 96.51 % 100.00 % 100.00 %

Native Temporal Slicing Support for XML Databasess The Open Information Science Journal, 2009, Volume 2 7

final results since they handle structural and temporal con-
straints in separate components. In the first phase, all the
whole documents satisfying the structural constraints are
retrieved, then from the DOM representation the portions of
each of these documents that do not verify the temporal con-
straints are pruned out in a post-processing phase.

From the tests we performed, we saw that our stratum
processor was able to perform the first phase of the default
setting in nearly 20 seconds, which is more than 7 times the
time required by our novel XML query processor. Further,
and this is typical of most stratum implementations, the
postprocessing phase was linear with the number of the
documents retrieved; in our case, it processed nearly 10
documents per second.

Summing up, stratum approaches have many shortcom-
ings w.r.t. native ones. In particular:

• stratum-level constraints have to be evaluated in a
second moment, so that, even if a granularity finer than the
whole document is adopted, a large quantity of additional
information has to be retrieved anyway for their evaluation;

• for the same reason, the Stratum is not able to opti-
mize query execution with an access plan filtering the data
always on the most selective constraints first;

• the structure of a document is analyzed twice: a first
time in the XML engine when the structural constraint is
resolved and a second time in the Stratum to correctly evalu-
ate the other constraints.

On the other hand, the Native system is able to deliver a
fast and reliable performance in all cases, since it practically
avoids the retrieval of useless document parts and is not as
demanding as the Stratum in terms of main memory space.
Notice that this property is also very promising towards fu-
ture extensions to cope with concurrent multi-user query
processing, since memory requirements are not crucial for
performance.

From these and further tests we performed, we can state
that a native implementation such as ours generally outper-
forms stratum performance in most temporal settings. Fur-
ther, the native implementation required less than 5% of
main memory of the DOM-based approach, typically used in
stratum implementations.

4.1.3. Changing the Selectivity of the Temporal Window

We are now interested in showing how our XML query
processor responds to the execution of temporal slicing with
different selectivity levels; to this purpose we considered a
second time-slice (TS2) having a selectivity of 31% (lower
than TS1) and returning 12873 solutions. Fig. (6) shows the
percentage of read tuples of TS2 compared with our refer-
ence time-slice setting (TS1). Notice that the trend of growth
of the percentage of read tuples along the different scenarios
is similar (the trends in execution time show similar behav-
iours). Further, in the SOL/SOL scenario both queries have
the same number of tuples and execution time in the buffers
because no selectivity is applied at the lower levels.
4.1.4. Comparison with MVBT and purely structural tech-
niques.

In Fig. (7) we compare the execution time for scenario
L1/L1 when the access method is the B+-tree w.r.t. the
MVBT. Notice that when MVBT indices are used to access
data the execution time is generally higher than the B+-tree
solution. This might be due to the implementation we used
which is a beta-version included in the XXL package [11].
The last comparison involves the holistic twig join algo-
rithms applied on the original indexing scheme proposed in
[6] where temporal attributes are added to the index structure
but are considered as common attributes. Notice that in this
indexing scheme tuples must have different LeftPos and
RightPos values and thus each temporal XML document
must be converted into an XML document where each time-
stamped node gives rise to a number of distinct nodes equal
to the number of distinct periods. The results are shown on
the right of Fig. (7) where it is clear that the execution time
of the purely structural approach (STRUCT) is generally
higher than our baseline scenario and thus also than the other
scenarios (13 times slower than the best scenario). This
demonstrates that the introduction of our temporal indexing
scheme alone brings significant benefits on temporal slicing
performance. We refer the interested reader also to Section 5
where we provide additional discussion of state of the art
techniques w.r.t. ours.

Fig. (7). MVBT and structural approach performances.

4.1.5. Evaluation on Differently Distributed Collections

We also considered the performance of our XML query
processor on another collection (C-S) of the same size of the

Fig. (6). Perc. of Non-Consistent Solutions.

L1/L1 L2/L1 L1/L2 SOL/L2 SOL/SOL
TS1 7,99 9,23 17,95 23,80 100,00
TS2 15,58 17,68 25,15 32,07 100,00

0
10
20
30
40
50
60
70
80
90
100

%
 o

f T
up

le
s

in
 th

e
B

uf
fe

rs

L1/L1
B+TREE

L1/L1
MVBT SOL/SOL STRUCT

TS1 1290 2655 12688 17750
TS2 2812 5709 12691 17859

0
2000
4000
6000
8000
10000
12000
14000
16000
18000
20000

Ex
ec

ut
io

n
Ti

m
e

(m
s)

8 The Open Information Science Journal, 2009, Volume 2 Mandreoli et al.

reference one (C-R), but that is characterized by temporally
scattered nodes. Figs. (8 and 9) show the execution time and
the number of temporally inconsistent potential solutions of
TS1 and TS2 on both collections. The execution time of sce-
narios L1/L1 and SOL/L1, depicted in Fig. (8), shows that it
is almost unchanged for collection C-R, whereas the differ-
ence is more remarkable for both temporal slicing settings
for collection C-S. Notice also that the percentage of tempo-
rally inconsistent potential solutions when no solution is ap-
plied under level SOL is limited in the C-R case but explodes
in the C-S case (see for instance SOL/L1 in Fig. 9). The non-
empty intersection constraint is mainly influenced by the
temporal sparsity of the nodes in the collection: The more
the nodes are temporally scattered the more the number of
temporally inconsistent potential solutions increases. There-
fore, when temporal slicing is applied to this kind of collec-
tions the best way to process it is to adopt a solution exploit-
ing the non-empty intersection constraint at the lowest level,
i.e. L1.

Fig. (8). Comparison between the two collections C-R and C-S:
Execution time.

Fig. (9). Comparison between the two collections C-R and C-
S:Percentage of Non-Consistent Solutions

4.1.6. Scalability

Fig. (10) (notice the logarithmic scales) reports the per-
formance of our XML query processor in executing TS1 for
the reference collection C-R and for two collections having
the same characteristics but different sizes: 10000 and 20000
documents. The execution time grew linearly in every sce-
nario, with a proportion of approximately 0.75 w.r.t. the
number of documents for our best scenario L1/L1. Such tests
have also been performed on the other temporal slicing set-
tings where we measured a similar trend, thus showing the
good scalability of the processor in every type of query con-
text.

5. DISCUSSION

In the last years, there has been a growing interest in rep-
resenting and querying the temporal aspect of XML data.
Recent papers on this topic include those of [1-4], where the
history of changes XML data undergo is represented into a
single document from which versions can be extracted when
needed. In [1], the authors study the problem of consistently
deriving a scheme for managing the temporal counterpart of
non-temporal XML documents, starting from the definition
of their schema. The paper [2] presents a temporal XML
query language, XQuery, with which the authors add tem-
poral support to XQuery by extending its syntax and seman-
tics to three kinds of temporal queries: Current, sequenced,
and representational. Similarly, the TXPath query language
described in [4] extends XPath for supporting temporal que-
ries. Finally, the main objective of the work presented in [3]
has been the development of a computer system for the tem-
poral management of multiversion norms represented as
XML documents and made available on the Web.

Closer to our definition of time-slice operator, [2] need to
time-slice documents in a given period and to evaluate a
query in each time slice of the documents. The authors sug-
gest an implementation based on a stratum approach to ex-
ploit the availability of XQuery implementations. Even if
they propose different optimizations of the initial time-
slicing approach, this solution results in long XQuery pro-
grams also for simple temporal queries and postprocessing
phases in order to coalesce the query results. Moreover, an
XQuery engine is not aware of the temporal semantics and
thus it makes more difficult to apply query optimization and
indexing techniques particularly suited for temporal XML
documents. Native solutions are, instead, proposed in [4,9].
The paper [9] introduces techniques for storing and querying
multiversion XML documents. Each time one or more up-
dates occur on a multiversion XML document, the proposed
versioning scheme creates a new physical version of the
document where it stores the differences w.r.t. the previous
version. This leads to large overheads when “conventional”
queries involving structural constraints and spanning over
multiple versions are submitted to the system. In [4] the
authors propose an approach for evaluating TXPath queries
which integrates the temporal dimension into a path indexing
scheme by taking into account the available continuous paths
from the root to the elements, i.e. paths that are valid con-

Fig. (10). Scalability results for TS1.

L1/L1 SOL/L1 SOL/SOL L1/L1 SOL/L1 SOL/SOL
C-R 1890 2000 12688 2812 2859 12691
C-S 906 1383 9766 1250 1797 9875

0

2000

4000

6000

8000

10000

12000

14000

Ex
ec

ut
io

n
Ti

m
e

(m
s)

TS1 TS2

L1/L1 SOL/L1 SOL/SOL L1/L1 SOL/L1 SOL/SOL
C-R 23,10 39,13 96,51 29,96 43,23 91,95
C-S 32,5 95,01 99,98 63,17 98,22 99,88

0
10
20
30
40
50
60
70
80
90
100

%
 N

on
-C

on
si

st
en

t S
ol

ut
io

ns

TS1 TS2

4.1.6 Scalability.

5000 Docs 10000 Docs 20000 Docs
L1/L1 1890 3531 5654
L2/L2 2797 5329 9844
SOL/SOL 12688 22893 45750

1000

10000

100000

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Native Temporal Slicing Support for XML Databasess The Open Information Science Journal, 2009, Volume 2 9

tinuously during a certain time interval. While twig querying
is not directly handled in this approach, path query perform-
ance is enhanced w.r.t. standard path indexing, even though
the main memory representation of their indices is more than
10 times the size of the original documents. Moreover, query
processing can still be quite heavy for large documents, as it
requires the full navigation of the document collection struc-
ture, in order to access the required element tables, and the
execution of a binary join between them at each level of the
query path.

Similarly to the structural join approach [6] proposed for
XML query pattern matching, the temporal slicing problem
can be naturally decomposed into a set of temporal-structural
constraints. For instance solving time-slice(//contents//sec-
tion//article,[1994,now]) means to find all occurrences in a
temporal XML database of the basic ancestor-descendant
relationships (contents, section) and (section, article) which
are temporally consistent. In the literature, a great deal of
work has been devoted to the processing of temporal join
(see e.g. [12]) also using indices [13]. Given the temporal
indexing scheme proposed in this paper, we could have ex-
tended temporal join algorithms to the structural join prob-
lem or vice versa. However the main drawback of the struc-
tural join approach is that the sizes of the results of binary
structural joins can get very large, even when the input and
the final result sizes obtained by stitching together the basic
matches are much more manageable.

6. CONCLUSION

The native approach proposed in this paper extends one
of the most efficient approaches for XML query processing
and the underlying indexing scheme in order to support tem-
poral slicing and overcome most of the previously discussed
problems. Starting from the holistic twig join approach [7],
we proposed new flexible technologies consisting in alterna-
tive solutions and extensively experimented them in different
settings. The resulting Temporal XML Query Processor
overcomes many of the shortcomings of stratum implemen-

tations and its efficiency is quite encouraging and induces us
to continue in this direction.

REFERENCES

[1] F. Currim, S. Currim, C. Dyreson, and R. T. Snodgrass, “A tale of
two schemas: Creating a temporal schema from a snapshot schema

with XSchema”, in Proceeding of Extending Database Technol-
ogy, Heraklion, Greece, 2004, pp. 348-365.

[2] D. Gao, and R. T. Snodgrass, “Temporal slicing in the evaluation
of xml queries”, in Proceeding of Very Large Data Bases, Berlin,

Germany, 2003, pp. 632-643.
[3] F. Grandi, F. Mandreoli, and P. Tiberio, “Temporal modelling and

management of normative documents in XML format”, Data
Knowledge Engineering, vol. 54(3), pp. 327-354, September 2005.

[4] A. O. Mendelzon, F. Rizzolo, and A. A. Vaisman, “Indexing tem-
poral xml documents”, in Proceedings of Very Large Data Bases,

2004, pp. 216-227.
[5] F. Mandreoli, R. Martoglia, and E. Ronchetti, “Supporting Tempo-

ral Slicing in XML Databases”, in Proceedings of Extending Data-
base Technology, 2006, pp. 295-312.

[6] C. Zhang, J. F. Naughton, D. J. DeWitt, Q. Luo, and G. M.
Lohman, “On supporting containment queries in relational database

management systems”, in Proceeding of ACM SIGMOD, 2001, pp.
902-919.

[7] N. Bruno, N. Koudas, and D. Srivastava, “Holistic twig joins: op-
timal XML pattern matching”, in Proceedings of the ACM SIG-

MOD, 2002, pp. 310-321.
[8] F. Grandi, F. Mandreoli, R. Martoglia, and M. R. Scalas, “Efficient

management of multi-version xml documents for e-government ap-
plications”, in Proceedings of Web Information Systems and Tech-

nology, Miami, FL, 2005.
[9] S. Chien, V. J. Tsotras, and C. Zaniolo, “Efficient schemes for

managing multiversion XML documents”, Very Large Data Bases
Journal, vol. 11(4), pp. 902-919, 2002.

[10] B. Becker, S. Gschwind, T. Ohler, B. Seeger, and P. Widmayer,
“An asymptotically optimal multiversion b-tree”, Very Large Data

Bases J., vol. 5(4), pp. 264-275, December 1996.
[11] J. Van den Bercken, B. Blohsfeld, J. P. Dittrich, J. Krämer, T.

Schäfer, M. Schneider, and B. Seeger, “XXL - a library approach to
supporting efficient implementations of advanced database que-

ries”, in Proceedings of Very Large Data Bases, 2001, pp. 39-48.
[12] T. Bach Pedersen, C. S. Jensen, and C. E. Dyreson. “Extending

practical pre-aggregation in on-line analytical processing”, in Pro-
ceedings of Very Large Data Bases, 1999. pp. 663-674.

[13] D. Zhang, V. J. Tsotras, and B. Seeger, “Efficient temporal join
processing using indices”, in Proceedings of International Confer-

ence of Data Engineering, 2002, pp. 103-114.

Received: March 31, 2008 Revised: April 04, 2008 Accepted: April 28, 2008

© Mandreoli et al.; Licensee Bentham Open.
This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the
work is properly cited.

