
 The Open Information Systems Journal, 2007, 1, 1-18 1

 1874-1339/07 2007 Bentham Science Publishers Ltd.

Assisting Groupware Development with Model Checking – Case Studies
from Cooperative Work in the WWW

Constantinos Papadopoulos*

General Secretariat for Information Systems, Athens, Greece

Abstract: Efficient collaboration entails significant benefits for modern enterprises. Recent advances in Internet

technology allow physically dispersed groups to bypass the obstacles raised by geographical distances, so the

development of Internet based groupware may extend collaboration to a global scale. As groupware applications grow

larger and more diverse, however, it becomes difficult to anticipate their correctness. In this paper, we address this

difficulty within the context of group awareness, which we regard both as a communication issue and a user-interface one.

The main contribution of our research is the use of symbolic model checking for verifying group awareness in

collaborative work across the WWW. This involves the specification of two related protocols with temporal logic and the

development of a methodology for encoding temporal formulae into the language of a symbolic model checker, which

eliminates the need to draw state-transition diagrams. Taking then advantage of the model checker’s ability to produce

counterexamples, we discover drawbacks in these protocols and propose thereon a number of improvements, which aim to

transform the WWW into a reliable collaborative environment.

Keywords: Computer-Supported Cooperative Work, World Wide Web, Group awareness, Requirements specification, Groupware
verification, Temporal logic, Model checking.

1. INTRODUCTION

 The World Wide Web (WWW) has become the common

denominator for information exchange across the Internet

and within enterprises. As such, it has drawn the attention of

several research communities, including that of Computer

Supported Cooperative Work (CSCW). CSCW has been

defined as “the set of computing applications that allow

physically dispersed groups to engage in a common task by

providing an interface to a shared workspace” [23]. A

primary goal in the design of such applications is to enable

group members to maintain information on each other’s

presence and activities. This information is commonly

referred to as group awareness [21] and is intended to

facilitate the collaboration of spatially dispersed users. This

is particularly important for the WWW, which was

developed to support distributed workgroups in the first

place [6].

 Yet group awareness faces two challenges within that

context. The first is related to the inheritance of a key Web

property, which is the stateless nature of the HTTP protocol.

In fact, since no information is maintained between

successive HTTP requests, cooperative applications are often

unaware of what page a client is currently browsing (lack of

workspace awareness). The other challenge is that when an

application changes, its users remain unaware of that change

until they reload the application via another HTTP request

(poor activity awareness). Such requests contribute however

delays to the network and, as a result, applications involving

frequent interactions cannot support group awareness

adequately. Both these challenges indicate a need for better

synchronization, which is inherently time dependent.

*Address correspondence to this author at the General Secretariat for

Information Systems, Athens, Greece; E-mail: k.papadopoulos@gsis.gr

1.1. Web-Based CSCW

 Various research efforts have addressed the above
challenges through a number of prototypes, which
incorporate collaborative features into the current
infrastructure of the WWW. Exemplary among those
prototypes are Internet Foyer [4], the protocol of Palfreyman
and Rodden [44], GroupScape [27], MetaWeb [60],
Sideshow [12], MAUI [31] and F@[59]. All these prototypes,
however, provide solutions without guaranteed correctness.
In fact, they are supposed to support distributed users who
interact in different ways (i.e., synchronous/asynchronous),
so the possibility of delays and interface inconsistencies is
high. No one of these prototypes has been tested though
against this possibility. Besides, errors in distributed and
interactive computing are difficult to detect with traditional
testing methods, due to the large number of event inter-
leavings. Formal methods, instead, offer opportunities for
automatic verification and, in addition to detecting errors
they can also prove their absence in certain cases. Although
CSCW is not yet a popular domain for formal methods, the
few existing studies have yielded promising results.

1.2. Groupware Verification with Formal Methods

 CSCW is an area that combines methods of software
engineering, distributed computing, organization
management and humancomputer interaction, and it involves
thereof concepts which are defined vaguely. This entails that
groupware developers provide often solutions which are
difficult to understand and reason about. To counter this
situation, some researchers have attempted to formalize
CSCW and, based on this, to verify subsequently a number
of systems [2, 20, 24, 26, 34, 35, 36, 37, 39, 43, 45, 46, 50,
54, 55, 56, 57, 58]. Nevertheless the support of awareness
across the WWW has raised a number of issues, since
network delays may cause inconsistencies on the interface
and affect the usability of groupware applications [30].

2 The Open Information Systems Journal, 2007, Volume 1 Constantinos Papadopoulos

Although some of the above works have addressed
awareness from a user’s perspective, the adequate support of
awareness in Webbased collaboration is not ensured by any
method (either formal or empirical).

1.3. Contributions

 The research presented in this paper provides a
framework for verifying properties of group awareness and
improving certain aspects of groupware usability within the
context of the WWW. Specifically, after expressing several
requirements for awareness support that stem from actual
collaboration practice, we specify then the behavior of two
related protocols with temporal formulae and finitestate
models. Based then on a methodology that we invented
specifically for this purpose, we encode the temporal
formulae into the SMV model checker [42] in order to
simplify the encoding task and increase the efficiency of
verification. By checking afterwards the encodings against
the above requirements, we expose limitations in the two
protocols and propose a number of improvements. The
systematic refinement of these improvements later allows us
to enhance the usability of the protocols, manifesting thus
the soundness of our methodology. Another fact that
manifests this soundness is that the encodings produced with
our methodology are semantically equivalent with the
encodings of the finitestate models, since the latter do not
provide any additional information on the behavior of the
protocols.

 Other researchers contend that software systems can be
better described with infinitestate models and verified then
with abstraction techniques [7]. In this paper, instead, we
provide evidence that certain properties of CSCW systems
can be adequately described with temporal formulae without
using statetransition models, and verified then with
traditional methods of model checking. We must also point
out that, although SMV was developed for verifying
synchronous systems primarily, its use in the verification of
asynchronous systems like the above two protocols is also
quite feasible (in fact, SMV has been used previously in the
verification of other asynchronous systems [48, 50].

 Our approach is inherently iterative, as illustrated in Fig.
(1) below:

 The results of our research are significant for two
reasons. First, group awareness depends on timing
conditions that have profound implications for the usability

of relevant protocols. To meet these conditions we suggest
the infusion of correctness properties into the protocol
semantics, which ensure the provision of awareness
information in a consistent and timely fashion. Earlier work
by other researchers has also employed formal methods for
improving usability (e.g., the IVY project [36]), yet our own
research focuses specifically on groupware protocols and
demonstrates the efficiency of model checking for improving
their usability. As we show later, usability can be expressed
in some cases as a fairness requirement [25], indicating that
if an event is possible it will happen eventually. Most
important though, our encoding methodology makes model
checking more attractive to groupware developers, since it
saves them from the task of drawing statetransition models
that may be painstaking for large systems.

2. BACKGROUND IN MODEL CHECKING

 Model checking is an automatic verification technique,
which compares formal specifications of desired properties
against an abstract model of a system [18]. As concerns
groupware systems, their correctness depends heavily on
time, as the latter plays a critical role in cooperative work [3,
41]. For this reason, we have selected in this paper the
formalism of temporal logic [17] to express the properties of
the protocols that we wish to verify. This formalism is an
extension of predicate calculus that can support reasoning on
how the truth values of specifications change over time. Its
rules are defined in terms of states, which assign values to
system variables. Distinct states correspond to different
valuations of those variables. A transition from one state to
another occurs when the values(s) of one or more variable(s)
in the first state change(s). An infinite sequence of states
characterizing the execution of a process is called a path.

2.1. Temporal Logic as a Specification Language

 Over the last three decades, temporal logic has been used
to specify several kinds of reactive systems, whose role is to
maintain an ongoing interaction with their environment [40].
Hence the correctness of these systems depends on
synchronization properties and timing constraints.
Groupware systems are multiuser reactive systems, so their
specification must indicate the existence of alternative paths
of synchronization. Consequently a branchingtime logic [16]
is needed, which should comprise operators for the
expression of relative event ordering and the quantification
of events over paths. For the purpose of this paper we have

Fig. (1). Verification of groupware protocols with model checking.

���������	
�
�
�������
��	
��������

�����	���

������
��	

����
�
��
���	��
��	
����������
�����	���
���
�����

�����
�	����
����

�
�������
��	 	����	����
���	
����
!�������
�	
����"

�#�$����������
%&��'�	����
���
����
���
��
���
��
&����
��
�
�
���������	
�

������	�
��	���
#�
��
&�����
����� ��� ��������	
��
��
�����
�������
������

�������
����

��

���
����
������
��	

������
�����

Assisting Groupware Development with Model Checking The Open Information Systems Journal, 2007, Volume 1 3

chosen computation tree logic (CTL) [17], which is built of
atomic propositions, logical connectives, and temporal
operators. A formal definition of CTL is given in Section
A.1 of the Appendix.

2.2. Model Checking Temporal Formulae

 Within only a few years from its establishment, model

checking turned out to be the prevailing method for verifying

temporal formulae. When using this method, the system
under consideration is modeled as a graph comprising a

finite number of states, which are labeled by atomic

propositions and connected by transitions. Graphs like this
are known as Kripke structures and they are defined in this

paper in Section A.2 of the Appendix. Model checking

algorithms systematically verify whether a system satisfies a
formula by searching every combination of paths in a Kripke

structure and checking the formula’s truth along the way.

The total number of paths to be searched (and hence the
complexity of these algorithms) depends on the number of

free variables in the system’s model. A particular advantage

of model checking is that, when a system does not satisfy a
given formula, it accompanies the negative answer with a

counterexample falsifying that formula. Model checking

algorithms are broadly classified into explicit and symbolic
ones. The former operate on states and represent transition

relations as adjacency lists. Because the number of states

often becomes exponential in the number of parameters in
the model, explicit algorithms suffer the state explosion

problem. Symbolic algorithms, instead, operate directly on

symbolic representations of state sets (i.e. representations
based on Boolean formulae) and avoid thus the explicit

enumeration of each state. A more detailed description of

these algorithms is given in Section A.3 of the Appendix (as
well as in [10] and [42]).

2.3. Managing State Explosion with Symbolic Algorithms

 To make symbolic model checking practical, a method

was needed to efficiently manipulate Boolean formulae like
the above. A suitable method for this purpose is binary

decision diagrams (BDDs) [9], which are like binary

decision trees except that identical subtrees are merged and
form directed acyclic graphs. BDDs can be further reduced

to include each state variable at most once, by eliminating all

redundant vertices whose edges point to the same vertex.
Such diagrams hold essentially compressed forms of the

truth tables of Boolean formulae, and thus symbolic

algorithms explore several states at once instead of visiting
one state at a time. Hence they can handle many orders of

magnitude larger state spaces than explicit algorithms [10].

 The first model checking tool that utilized symbolic

algorithms was SMV, whose basic features are overviewed

in Section A.4 of the Appendix. This tool extracts a BDD-
based model from a system’s encoding, which is given in a

concurrent language. Programs in this language are

annotated with CTL specifications, whose validity in the
BDD model is checked by the symbolic algorithms of the

tool. Whenever a model does not satisfy a specification,

SMV produces a counterexample. Although BDDs incur
theoretically a space complexity exponential in the length of

Boolean formulae, their efficiency in capturing the execution

patterns of reactive systems enables symbolic algorithms to

exhibit time complexity that is linear in the number of states

plus the length of the formulae being checked [9]. To verify

large systems, however, symbolic algorithms require careful
ordering of the input variables so as to avoid state explosion.

 A complementary technique to BDD-based model
checking is based on propositional satisfiability (SAT) and
searches for counterexamples of an upper-bounded length
[8]. More specifically, the transition relation of a system is
unfolded k times, allowing thus any counterexample of up to
k states to be found with a SAT solver. In the case that a
bound on the length of counter-examples is not known, this
method cannot verify a property but it can only produce
counterexamples. Hence SAT-based model checking is
referred to in the literature as an “incomplete verification
technique” [47]. Whenever such a bound is known, however,
model checking can be reduced to a satisfiability problem
and bypass BDDs. In general, this method scales better with
large systems than traditional symbolic model checking in
terms of efficiency (i.e., execution time). More recently,
Chechik et al. [15] introduced multi-valued symbolic model
checking for formulae denoting uncertainty and
inconsistency. This technique provides additional truth
values to 0 and 1 but has the same complexity as CTL model
checking.

 Contrary to these works, in this paper we rely on the
traditional algorithms of SMV to verify awareness protocols
for the WWW. Like several other model checkers, SMV
evaluates system variables in a next state relative to their
values in the current state. Hence to verify a system with
SMV, it is necessary to model it first with a state-transition
diagram or an equivalent language. Regarding groupware
systems though, this kind of modeling may be awkward and
inefficient due to the large number of possible states. So in
this paper we propose a methodology that encodes CTL
operators directly into SMV, thus eliminating the need to
draw state-transition diagrams and increasing also the
efficiency of verification. Before describing this
methodology, we set below the context in which it will be
applied.

3. MODEL CHECKING GROUP AWARENESS IN
THE WWW

 Group awareness has received attention from the CSCW
community for over a decade now, yet the term is not
defined uniquely because it spans a broad range of issues.
There exist in fact several types of awareness, whose
definitions are not mutually exclusive. For the purpose of
this paper we have adopted the definition of Dourish and
Bellotti [21], which implies that cooperative work can be
coordinated by providing feedback on the work context. In
other words, group awareness can be realized as information
on user activities and presence, which are represented in this
paper by concurrent events. By utilizing formal methods, we
intend to investigate how the coordination of these events
can enhance group awareness in Web-based CSCW.

 We consider for this purpose the protocol of Palfreyman
and Rodden and the awareness-support protocol of
MetaWeb, and we examine in them several properties with
the aid of model checking. Although there exist quite a few
protocols for awareness support in the WWW (as we
mentioned in Section 1.1), the above two protocols are

4 The Open Information Systems Journal, 2007, Volume 1 Constantinos Papadopoulos

representative of the main approaches within this context,
namely passive (query-based) and active (notification-based)
awareness. The two protocols are described first informally
and then in terms of state-transition models and CTL
formulae, which are used afterwards to guide the encoding
into SMV. The aim of the model checking experiments that
follow the encoding is to infer whether the events that
indicate user activities are presented to the attention of group
members (i) anyway [21], (ii) without significant delay [29],
(iii) in the right order [13, 60], as well as whether (iv) the
presented events are always the intended ones [52].

 The first represents a fairness requirement, while the

second requirement accrues from the fact that the relevance

of awareness information depends heavily on time; in fact, if
this information is provided belatedly, it may loose its value

(in cooperative editing, for example, two co-authors may

mistakenly erase a paragraph if they do not inform each
other of their actions). The last two requirements, finally,

refer to interface consistency (as indicated by Sun et al. [52])

that we deal with in Section 6.

3.1. The Protocol of Palfreyman and Rodden

3.1.1. Informal Description

 This protocol runs atop TCP/IP and supports awareness

with a parallel communication facility, whereby
collaborators can capture each other’s presence and actions.

Specifically, each Web site executing this protocol runs two

servers, i.e., a regular HTTP server and a server providing
awareness information. This information denotes the

presence of clients and is recorded in HTML pages. So for

example clients can be located with standard CGI programs
[27] at a Web site, and be called then either through static

links in HTML pages or through HTML Forms. Each Web

client has an associated ‘awareness client’, whose role is to
sign onto the server holding the awareness information

whenever the Web client requests some document from the

HTTP server. Sign-on messages have a parameter specifying
the exact URL of the awareness server and they are preceded

by the total message length to assist error detection.

 Upon receiving a sign-on message, the awareness server

adds the client’s details to a list of clients who are accessing

this URL at the same time. Moving to a new document is
only possible if the Web client has instructed first the

associated awareness client to sign off from the awareness

server. By maintaining the various sign-on and sign-off

messages, the awareness server enables clients to obtain

information on each other’s presence and actions, such as

how many of them (and who) are accessing a specific URL,
how many pages are accessed concurrently at a particular

point in time, etc. This information can be obtained by

sending query messages defined especially for this purpose.

 The above description defines four types of interaction,
which are shown in Fig. (2a):

 In the following sections, such interactions are specified
by state-transition models and CTL formulae.

3.1.2. Specification by a State-Transition Model

 The model we have chosen to specify the protocols’
behavior in is a special kind of a finitestate automaton. In
general, finitestate automata are powerful means for
representing concurrency [22]. To illustrate their use in the
specification of Palfreyman and Rodden’s protocol, we
consider a simple property that we express first in CTL:

�((client = idle) (client = signs-on)) (1)

 The above formula means that an idle client will
eventually sign on to an awareness server. The concatenation
of the universal quantifier ‘ ’ and the henceforth operator
‘�’ in the beginning of the formula denotes that the formula
will always be True from now on, while the concatenation of
the universal quantifier and the eventually operator ‘ ’ after
the implication sign denotes that the proposition on the right
will hold eventually at some time in the future. The
transition implied by the above formula (i.e., that the client
will move from the idle to the signs-on state) is depicted in
the automaton of Fig. (3) by an arrow connecting the
corresponding states (i.e., circles).

 Because the client is idle initially, the corresponding state
is marked in Fig. (3) with an arrow without origin. The client
may remain in that state for some time, so there is another
arrow originating from it and ending back to itself. This state
is also a ‘final’ one (which is denoted by a double circle).
Clients and servers are represented by distinct automata,
which are composed to represent the interactions implied
from the protocol’s description. Although in Fig. (2) we have
drawn two clients, in Fig. (3) there is only one automaton
representing client behaviour, which is composed with the
server’s automaton via four dotted arrows.

 In general, there is a direct correspondence between
temporal formulae and finite-state automata [38, 61], but the
correspondence between formula (1) and the aforementioned

Fig. (2). Possible interactions in the two protocols.

��
�����
���������

��������
&��������

���	���	
��
&��������

���	�����������
&�������� ��	
��

��	
���
�
��
��
��
�

	�
���������	
�

�����
�����	
����

����������	
�

��	
���

��	
��

Assisting Groupware Development with Model Checking The Open Information Systems Journal, 2007, Volume 1 5

transition in Fig. (3) is not such. In fact, following [38],
formula (1) should correspond to the automaton of Fig. (4)
below, in which there is an arrow from the signs-on state to
itself labeled with the null symbol ‘ ’. In Fig. (3) we have
omitted this arrow and the null symbol for brevity, and we
assume that the transitions are asynchronous. Some
transitions which are obviously synchronous though (like the
transition from the gets-query to the sends-results state) have
been drawn with bold arrows.

Fig. (4). Finite-state automaton indicating an action that will

happen eventually.

 Besides the above property, there are also some
properties in Palfreyman and Rodden’s protocol which
denote dependencies among events and cannot be
represented graphically by a single transition. Formula (2)
below, for example, denotes the property that a client cannot
submit two queries in sequence without having received in
between the results of the first query:

�((client = sends-query) ([¬ (client = sends-
query) U (client = gets-results)])) (2)

 In the automaton of Fig. (3) this property is represented
by four transitions, which connect the states client-sends-
query, server-gets-query, server-sends-results, client-gets-
results, and client-sends-query. The direct encoding of the
protocol properties with the methodology we referred to
earlier is meant to avoid the task of drawing several
transitions for properties like this. This methodology incurs
by no means loss of semantic information since, as we
mentioned earlier, temporal formulae can be converted into
finite-state automata, so the direct encoding of the former
into SMV is equivalent to the encoding based on their

corresponding automata. The semantic equivalence of our
methodology with automata-based encodings is further
discussed in Section 4.2, where we argue for its soundness
using specific examples.

Below we complete the formal description of Palfreyman
and Rodden’s protocol, by specifying in CTL some other
properties

1
 that we deem essential.

3.1.3. Protocol Specification in CTL

�((client = signs-on) (client = signs-off)) (3)

 The above formula means that if a client has signed on to
a URL, after some time s/he will eventually sign off. The
property expressed by this formula is represented graphically
in Fig. (3) by two transitions between the signs-on and the
idle states and between the idle and the signs-off states,
respectively. We have not drawn a loop transition from the
signs-on state to itself, because this would contradict the
requirement that a client may not sign onto a new URL if
s/he has not signed off from the previous one. This is in fact
a safety requirement [40] that can be expressed in CTL by
the following formula (which extends formula (3)):

�((client = signs-on) ([¬ (client = signs-on) U
(client = signs-off)])) (4)

 Similarly to formula (3), the formula below denotes the
intention of a client to sign off from the current URL in order
to move to another one:

�((client = signs-off) (client = signs-on)) (5)

 This property is represented in Fig. (3) by two transitions,
which connect the signs-off, the idle, and the signs-on states.
The transition that connects the first two of these states
denotes also that a client may leave a session after signing
off from the awareness server.

1The protocol has been implemented in C++ and its source code was until recently

available from the Web site of Lancaster University (Computing Department). The
specification of the protocol’s properties is based on that code as well as on the in-

formal description above.

Fig. (3). Finitestate automaton representing Palfreyman and Rodden’s protocol.

����	

��	��
����#

����	

�������

����	

��
�
�����
�

����	

���	�����

����	

���	���	

������
��
�
���	����

������
��
�
���	����

������
��
�
����#

������
�������

������
��	��
�����
�

����	

��
����

(���	���) ����	

���	�
�	

(���	���)*

6 The Open Information Systems Journal, 2007, Volume 1 Constantinos Papadopoulos

�((server = gets-query) (server = sends-results))
 (6)

i.e., upon getting a query from a client, the server releases
the results immediately.

�((client = gets-results) ((client = signs-on)
(client = signs-off) (client = idle)

(client = gets-results) (client = sends-query)) (7)

 The above formula denotes that, upon receiving the
results of a query, a client may leap to any other state
afterwards. In fact, in Fig. (3) this property is denoted by
direct transitions from the gets-results state to every other
state of the client’s automaton. The loop transition from that
state to itself denotes that a client may keep receiving results
for a short while (due to network latency).

�((client = signs-on) ((client = idle) (client =
sends-query)) (8)

 Upon signing on to a URL, a client may remain idle or
submit a query. Yet s/he may not get the results of a previous
query, since this must happen before s/he signs on to a URL.

�((client = signs-on) (server = gets-sign-on)) (9)

 In the above formula, the concatenation of the universal
quantifier and the eventually operator denotes that the server
may not get immediately the sign-on message, due to
network latency. The same holds for the four formulae
below:

�((client = signs-off) (server = gets-sign-off)) (10)

�((client = sends-query) (server = gets-query)) (11)

�((server = sends-results) (client = gets- results))
 (12)

�((client = idle) ((client = idle) (client = sends-
query) (client = gets-results)

(client = signs-on) (client = signs-off))) (13)

 Formula (13) generalizes formula (1) and the property it
denotes is represented in Fig. (3) by the various transitions
that connect the idle state with all other states in the client’s
automaton.

 Formula (14), in turn, denotes what a server may do after
the receipt of a sign-on message from a client:

�((server = gets-sign-on) (((server = gets-sign-off)
 (server = gets-sign-on)

(server = gets-query))) (server = idle) (14)

 Formula (15), on the other hand, denotes the actions of
the server upon receiving a sign-off message:

�((server = gets-sign-off) (((server = gets-sign-off)
 (server = gets-sign-on)))

(server = idle) (15)

 Formula (16), finally, denotes the possible actions of a
server when it is in the idle state:

�((server = idle) ((server = idle) (server = gets-
query)

(server = gets-sign-on) (server = gets-signs-off))) (16)

 The above formally expressed properties form a
representative picture of Palfreyman and Rodden’s protocol,
and they are encoded later into SMV based on the
methodology we have in-vented. Below we describe the
awareness-support protocol of MetaWeb, which is also
encoded with this methodology later.

3.2. Awareness Support in MetaWeb

3.2.1. Informal Description

 The primary concern behind the development of
MetaWeb was the insufficiency of other groupware systems
at that time to provide synchronous session coupling to Web
pages. Another concern was platform and browser
independence, while the need for supporting diverse
groupware applications across the WWW was also taken into
account.

 MetaWeb couples Web pages to collaborative sessions
via access lists, on which it registers client interests and
maintains active sessions. Interest registration is done once
for each client when s/he joins a session. Clients and servers
exchange events which are triggered whenever a client
moves to a new page, modifies it, or joins a new session on
the same page. These events are defined as Java objects,
including among their attributes a sequence number for
message ordering and concurrency control. Event
notification is always done explicitly and it depends on
whether a client has registered an interest in all the events of
a session or in specific ones only. In both cases, upon an
event’s occurrence the server is informed accordingly and
notifies then that event to all the clients who have registered
a relevant interest. The various interactions between the
components of this protocol are depicted in the producer-
consumer model of Fig. (2b). Moreover, they can be
represented by a finite-state model, as in Fig. (5) below:

Fig. (5). Finitestate automaton for the Awareness-support
Protocol of MetaWeb.

 There are again two distinct automata in this figure (i.e.,
one for clients and one for servers), which are composed via
three dotted arrows. The actual encoding of MetaWeb was
derived from CTL formulae though (as was the encoding of
Palfreyman and Rodden’s protocol). Some of these formulae
are presented later in this paper in order to assist the
interpretation of the model checking results.

����	

������
���	

����	

�������

����	

�����
���
�	
����

������
��

����
�	
����

������
�������

������
��

����
���	

����	

��������
	�
�����
��	

������
	�
�����
���	

Assisting Groupware Development with Model Checking The Open Information Systems Journal, 2007, Volume 1 7

4. A NEW ENCODING METHODOLOGY FOR SMV

 Having outlined so far the functionality of the two
protocols with temporal properties and finitestate models, we
present in the current section a novel methodology for
transforming CTL formulae into SMV code, which will
assist us subsequently in the compact representation of the
protocols’ behavior in this model checker and the
verification of key properties of awareness support. Our
methodology comprises seven rules that are empirical but, as
we show later, they reduce substantially the encoding effort
and simplify verification. Regarding the novelty of the
methodology, it is discussed in Section 4.2 below.

4.1. Encoding Rules

 Rule I. Implications followed by the universal quantifier
and the next operator are encoded as deterministic next-state
assignments. For example, the formula �(p(v1)

q(v2)) is encoded as

 next(v2) :=

 case

 p(v1) : q(v2);

 1 : <current-value>;
 esac;

 In this example, p(v1) represents a proposition involving
the system variable v1 (e.g., p(v1) (v1 = gets-message)).
Similarly, q(v2) represents another proposition involving the
system variable v2.

 Rule II. Implications followed by the concatenation ‘ ’
are encoded as non-deterministic assignments that include
the proposition in the right part of the formula (referred to
henceforth as ‘implied proposition’) and some other value,
which must have been declared as a symbolic-type variable
in the VAR section of the encoding. For example, the
formula �(p(v1) q(v2)) is encoded as

 next(v2) :=

 case

 p(v1) : {q(v2), other};

 1 : <current-value>;

 esac;

 Rule III. Concerning variables that represent system
entities not acting on their own (like the server variable in
Palfreyman and Rodden’s protocol), their default next-state
value is the same as the current.

 Rule IV. Implications denoting eventuality through the
concatenation ‘ ’ are encoded as non-deterministic
assignments, which include the implied proposition of the
formula, the in-transit state (which must be declared in the
VAR section), as well as a counter variable whose type is an
integer subrange. For example, the formula �(p(v1)

q(v2)) is encoded as

 next(v2) :=

 case

 (counter = 0) & p(v1) : in-transit;

 (v2 = in-transit) & (counter < MAX) :
 {q(v2), in-transit};

 (v2 = in-transit) & (counter = MAX):
 q(v2);

 1 : <current-value>;

 esac;

 Obviously, the integer subrange of counter is 0 . . .
MAX. The selection of a subrange for counter is necessary,
because we do not know when the proposition q(v2) starts to
hold so we assume a certain time interval (i.e., (0, MAX])
within which this can happen. Otherwise, the non-
deterministic assignments might force SMV to enter a time-
consuming loop and cause thereby state explosion.

To complete the encoding of the above formula we must
perform next-state evaluations for the counter variable too,
since the value of this variable changes in each transition and
q(v2) depends directly on that change. We encode counter as
follows:

 init(counter) := 0;

 next(counter) :=

 case

 (v2 = in-transit) : counter + 1;

 1 : counter;

 esac;

 If in the module that contains the encoding of �(p(v1)
q(v2)) there is also another encoded formula, in which

p(v1) is implied by another proposition, the next-state values
of counter must be computed as follows:

 next(counter) :=

 case

 p(v1) : counter0 + 1;

 (v2 = in-transit) : counter + 1;

 1 : counter0;

 esac;

where counter0 is the value of the counter resulted from the
evaluation of the other formula. The next-state evaluation of
v2 must be rewritten in that case as follows:

 next(v2) :=

 case

 (counter = counter0) & p(v1) : in-transit1;
 (v2 = in-transit1) & (counter < MAX +

 counter0) : {q(v2), in-transit1};

 (v2 = in-transit1) & (counter = MAX +
 counter0) : q(v2);

 1 : <current-value>;

 esac;

 The above rule can be used to encode also the formula
�(p(v1) q(v2)), but in the first command of the next-

state assignment we must add an other value (i.e., write
(counter = 0) & p(v1) : {in-transit, other};)

 Rule V. Formulae containing the until operator after an
implication sign can be encoded in several ways.

8 The Open Information Systems Journal, 2007, Volume 1 Constantinos Papadopoulos

Specifically, the formula �(p(v1) [q(v2) U r(v2)]) is
encoded by the assignment

 next(v2) :=

 case

 p(v1)& (counter1 = 0) :q(v2);

 q(v2) & (counter1 < MAX1) : {q(v2), r(v2)};

 q(v2) & (counter1 = MAX1) : r(v2);

 1 : <current-value>;

 esac;

 Here we also assume a time interval within which r(v3)
may start holding (and thus invalidate q(v2)), so counter1

must be evaluated the same way as counter. Depending on
the meaning of the above formula in a real domain, the value
of MAX1 may be set higher or lower than the value of MAX
in the previous rule.

Concerning in turn the formula �(p(v1) [¬ q(v2) U
r(v2)]), it is encoded similarly except that we must assume
one or more values of v2 that imply the negation of q(v2). For
example, we can declare in the beginning of the encoding

 VAR

 v2 : { y1, y2, y3, y4, y5 };

(where v2 = y1 implies the satisfaction of q(v2), { v2 = yi , 2 i
4 } imply its negation, and v2 = y5 implies the satisfaction

of r(v2)) and then encode the above formula as follows:

 next(v2) :=

 case

 p(v1) & (counter2 = 0) : { y2, y3, y4};

 (v2 = y2 | v2 = y3 | v2 = y4) & (counter2

 < MAX2) : { y2, y3, y4, y5};

 (v2 = y2 | v2 = y3 | v2 = y4) & (counter2 =

 MAX2) : y5;

 1 : <current-value>;

 esac;

Combining the above with Rule IV, we can encode the
formula �(p(v1) ([¬q(v2)U r(v2)])) as follows:

 next(v2) :=

 case

 p(v1) & (counter3 = 0) : in-transit2;

 (v2 = in-transit2) & (counter3 < MAX3) &

 (counter4 =0) : {in-transit2,y2,y3,y4};

 (v2 = in-transit2) & (counter3 = MAX3) &

 (counter4 = 0) : {y2, y3, y4};

 (v2 = y2 | v2 = y3 | v2 = y4) & (counter4

 < MAX4) : { y2, y3, y4, y5};

 (v2 = y2 | v2 = y3 | v2 = y4) & (counter4 =
 MAX4) : y5;

 1 : <current-value>;

 esac;

 Note that in the above encoding the variable counter4 can
only increase its value if counter3 has reached its upper limit.
Hence counter4 is encoded as

 init(counter4) := 0;

 next(counter4) :=

 case

 (v2 = y2 | v2 = y3 | v2 = y4) & (counter3 =
 MAX3) : counter4 + 1;

 1 : counter4 ;

 esac;

Concerning finally the formula �(p(v1) [q(v2) U
r(v2)]), it is encoded as follows:

 next(v2) :=

 case

 p(v1)& (counter5 = 0) :{q(v2), other};

 q(v2) & (counter5 < MAX5) : {q(v2), r(v2)};

 q(v2) & (counter5 = MAX5) : r(v2);

 1 : <current-value>;

 esac;

 Rule VI. Formulae containing the releases operator after
an implication sign are encoded similarly, since this operator
is the dual of until (i.e., [q(v2) U r(v2)] [r(v2) R q(v2)]).

 Rule VII. A CTL formula with two implication signs
(like p (q r) for example) is encoded as follows:

 If the second implication sign is followed by the
concatenation ‘ ’, i.e., �(p(v1) (q(v2) r(v3)))

(where v1, v2, and v3 represent system variables and v1 v2),
then the formula is encoded as a deterministic next-state
assignment:

next(v3) := p(v1) & q(v2) : r(v3);

 The above assignment follows the tautology p (q r)
 (p q) r of propositional logic.

 Instead, if the second implication sign is followed by the
concatenation ‘ ’, (e.g., �(p(v1) (q(v2) r(v3)))),
then the corresponding assignment will indicate a non-
deterministic choice, which must be associated with a
counter variable as before:

 next(v3) :=

 case

 p(v1) & q(v2) & (counter6 = 0) : in-transit3;

 (v3 = in-transit3) & (counter6 < MAX6) :

 {r(v3), in-transit3};

 (v3 = in-transit3) & (counter6 = MAX6) :

 r(v3);
 1 : <current-value>;

 esac;

 Finally, in the case where v1 and v2 correspond to the
same system variable, they must be encoded in SMV by two
distinct variables.

4.2. Discussion of the Methodology

 The main innovation introduced by the above
methodology is the use of counter variables, which are
meant to control the recursive execution of some assignment

Assisting Groupware Development with Model Checking The Open Information Systems Journal, 2007, Volume 1 9

statements. In fact, the recursive execution of non-
deterministic assignments (like the encoding of the ‘ ’
pair) contributes to state explosion and can make model
checking impractical, despite the remarkable efficiency of
SMV. By confining the counter variables within a narrow
subrange we impose a restriction on this execution, so the
latter is guaranteed to terminate within a finite number of
steps (this is also the prespective of SAT-based symbolic
model checking that we mentioned in Section 2.3, which is
sometimes referred to in the literature as bounded model
checking [19]). In the encoding of the two protocols, for
example, we have assumed an integer subrange between 1
and 1000, which means that the granularity of transitions
ranges between 1 msec and 1 sec.

 In fact, as the awareness messages that are exchanged
among group participants are small in size, the total
transmission time is dominated by network latency.
According to [53], the latency on the Internet rarely exceeds
1 sec, so awareness messages are normally delivered within
that slot. By assigning therefore the subrange 1 . . 1000 to
control variables we implicitly assume that at most 1000
transitions can take place in the state space (each one
corresponding to 1 msec) whenever two entities exchange
messages. This way we restrict the size of that space and
reduce the possibility of state explosion. Although bounded
model checking is also meant to increase efficiency, there
are two fundamental differences between it and our encoding
methodology, i.e., (1

st
) bounded model checking does not

restrict the size of state space (as our methodology does) and
(2

nd
) our methodology does not only assist in error detection

(as it is usually the case with bounded model checking), but
it can also prove the absence of errors in groupware
protocols by taking advantage of the aforementioned bound
on Internet latency. Hence our methodology is unique.

 Although SMV is inefficient in manipulating integers,
the subrange of 1 to 1000 is so narrow that it cannot cause a
state explosion. In other cases, however, this subrange may
not be appropriate (e.g., in cooperative transaction
processing or virtual environments); to avoid a state
explosion in those cases, one may convert integer variables
into bit strings, as suggested by Chan et al. [14, p.510].

 The methodology is also complete in the sense that all
the temporal operators (and their possible combinations with
path quantifiers) are encoded, each one with a different rule.
Regarding in turn the soundness of the methodology, it
depends on whether the encoding rules can represent the
behavior of a system as adequately as ordinary encoding
methods that rely on state-transition models. As we
mentioned earlier, all temporal operators and their
combinations with path quantifiers can be easily converted
into finite-state automata, so their respective encodings into
SMV must be the same. The only case where our
methodology differs significantly from automata-based
encodings is when multiple transitions of an automaton are
represented in our methodology by a single formula, which
does not contain some of the states accessed by those
transitions. The property denoted by formula (2), for
example, corresponds in Fig. (3) to four transitions, while
two of the states accessed by those transitions (i.e., gets-
query and sends-results) do not appear in formula (2) (either

explicitly or implicitly). Hence the respective encodings will
be different.

 We have also pointed out earlier that the encoding effort
is reduced if we encode formula (2) directly into SMV. In

fact, it is preferable to write a single CTL formula in one line

than drawing four distinct states and connecting them with
arrows. The SMV code corresponding to that formula is 15

lines totally (see Section A.5 of the Appendix), i.e., 5 lines

for the formula itself and 5 for each counter variable,
whereas the code corresponding to the four transitions of

Fig. (3) is larger since three of them are asynchronous (and

thus they cannot be encoded with a single assignment that
requires 4 lines of code). Yet in the protocol specification we

have also included CTL formulae for the properties denoted

by these transitions, so the overall gain in terms of effort is
moderated. On the other hand though, we must note that we

obtain additional semantic information from the encoding of

temporal formulae into SMV. For example, if we attempt to
verify a property that contradicts formula (2), the encoding

of the latter will assist the model checker to produce

counterexamples at a faster pace than the encoding of the
four transitions of Fig. (3).

 In summary, we can say that the benefits of our encoding

methodology can be fully exploited if developers specify
adequately a system in CTL, so as to capture every aspect of

its behavior. This holds nevertheless for transition-based

encodings as well, since a state-transition model that has not
captured adequately the behavior of a system is useless to

model checking.

5. THE METHODOLOGY IN USE

5.1. Encoding the Protocol of Palfreyman and Rodden

 This protocol was illustrated in Fig. (2a) by a fairly

abstract model, which conveyed the philosophy that

awareness support should be regarded as a centralized
communication process. Based on this model, we specified

in Section 3.1.2 a number of properties.

 In the current section, we show how these properties
guided the protocol’s encoding into SMV based on the
methodology we presented above. A complete encoding
example is presented in Section A.5 of the Appendix, where
we have assumed for simplicity only one client. In the model
checking experiments, however, we included several client
submodules (i.e., processes) that were allowed to run
concurrently. The correctness properties examined in these
experiments are described below.

5.1.1. Encoding Correctness Properties

Besides assignment statements, the encoding of Palfreyman
and Rodden’s protocol includes also one SPEC statement.
This specification represents the encoding of a property
which does not emerge directly from the protocol’s
description, but it is important because it entails the satis-
faction of the first two requirements in the beginning of
Section 3. Specifically, this property concerns whether it is
possible for a client to remain unaware of other clients’
activities (in other words, we are interested in finding
whether a client may request information on ongoing or past
activities and not receive it). We express this property with
the following CTL formula:

10 The Open Information Systems Journal, 2007, Volume 1 Constantinos Papadopoulos

(client = sends-query �(server-does-not-return-
requested-results))

(client = sends-query �(¬ server-returns-requested-
results))

 The proposition server-returns-requested-results can be
True if and only if

(i) the server always replies to client requests and

(ii) any information requested by the clients is always
available.

 Since client activities are temporally delimited by sign-on
and sign-off messages, the availability of awareness
information can be denoted by the proposition a-signed-on-
client-has-not-signed-off-yet. Hence the CTL formula above
is equivalent to

(client = sends-query �¬(server = sends-results

a-signed-on-client-has-not-signed-off-yet)) (client =
sends-query

�(¬ (server = sends-results) (¬ a-signed-on-client-has-
not-signed-off-yet)))

(client = sends-query (�¬ (server = sends-results)

(�¬ a-signed-on-client-has-not-signed-off-yet)))

(client = sends-query �¬ (server = sends-results))

(client = sends-query �¬ a-signed-on-client-has-not-
signed-off-yet)

 The first implication in the above disjunction is False, as
implied by formulae (11) and (6) in Section 3.1.3. Thus the
validity of the disjunction depends on the second
implication, i.e.,

(client = sends-query �¬ a-signed-on-client-has-not-
signed-off-yet)

((client = sends-query) � all-signed-on-clients-have-
signed-off)

 Still CTL cannot express predicates like this, because it
does not contain past-time operators. The meaning of the
above formula can be expressed however by the equivalent
one

((client = signs-on) [¬ (client = sends-query) U
(client = signs-off)])
 (17)

 Formula (17) denotes that while a client is accessing
various URLs, another client does not send queries so s/he
remains unaware of the first client’s activities. This formula
expresses accurately the intended meaning, but before
encoding it we inverted that meaning. The rationale behind
this was that we wanted to derive counterexamples so as to
identify specific cases of faulty behavior. Had we encoded
the original formula as it was, the model checker would con-
firm that a client can remain unaware of the activities of
other clients without specifying though how this can happen.

 Another property we were also interested in was whether
information delivery on one’s activities can be delayed for
some reason. This indeed can happen in two cases:

(i) When the delivery of sign-on and sign-off messages
or the server’s response to client queries are not
instantaneous.

(ii) When a client is informed on another client’s activity
much later than the occurrence of that activity.

 The first case is possible, in fact, as is implied by
formulae (9), (10), and (11) in Section 3.1.3. Since its
negation would contradict these formulae, we did not
incorporate any relevant statement in the SPEC section of
the encoding. Concerning case (ii), it can be specified with
the following formula:

((client = signs-on) (¬ (client = gets-results)))

 In fact, the commencement of a client’s activity is
signified by a sign-on message, which can be captured by
other clients through the submission of relevant queries. The
fastest way that this can be done is when the server replies to
a client’s query immediately after the receipt of a sign-on
message from another client. As we mentioned earlier,
however, the reply of the server cannot reach immediately
the interested client, so this property was not incorporated in
the encoding.

 Concerning finally the requirements about interface
consistency, we did not address them because interface
consistency is only possible with active notifications, which
are not allowed by Palfreyman and Rodden’s protocol. As
we show in Section 5.3, these requirements are not fully
satisfied by MetaWeb either.

5.2. Encoding the Awareness-support Protocol of
MetaWeb

 The abstract model of group awareness in MetaWeb (Fig.
(2b)) comprises two clients and one server. The first client
acts as a producer of events and the second as a consumer.
Similarly to the encoding of Palfreyman and Rodden’s
protocol, in the encoding of MetaWeb the clients and the
server were represented by distinct variables. At the end of
this encoding there were three specifications, which were
derived similarly to the specification in Palfreyman and
Rodden’s protocol. For example, in order to check whether a
client can remain unaware of other clients’ activities or a
client’s activity can be notified belatedly, we proceeded as
follows:

 Since awareness is supported by active notifications, the
first case is only possible when a client’s event is never
notified to other clients who have registered a relevant
interest. This can be expressed as

(client = causes-event �(¬ (client = receives-
notification))) (18)

Concerning in turn delayed notification, it may happen if
a client’s event is not captured immediately by the server or
is not notified immediately to other interested clients. These
possibilities can be expressed by the following formulae:

(client = causes-event (¬ (server = captures-
event))) (19)

(client = causes-event (¬ (client = receives-
notification))) (20)

 As before, we negated the meaning of the above
formulae before encoding them into SMV. Concerning
finally the requirements about interface consistency, they are
examined within a broader framework in Section 6.2.

Assisting Groupware Development with Model Checking The Open Information Systems Journal, 2007, Volume 1 11

5.3. Model Checking Results

 Our model checking experiments were performed with
the 2.5.0 version of SMV on a Pentium III machine, which
had 512 MBytes of RAM and was running Linux. The size
of the state space of Palfreyman and Rodden’s protocol was
1.1 X 10

38
, while that of the state space of MetaWeb was 4.3

X 10
37

. Three of the SPEC statements in the encodings of
these protocols were checked within seconds or minutes, but
some counterexamples took over an hour. Bearing in mind
though the results of similar experiments in the literature
(e.g., [14], [48], etc), the above results indicate a good
performance.

 Based on this methodology we wrote and run two
scenarios for each protocol, one involving five clients and
another involving ten. So each scenario included a main
module and five or ten submodule instances that were
allowed to run simultaneously. We assumed one server
variable in each scenario, but the client variable of each
submodule was named differently, e.g., client1, client2, etc.
We also assigned different values to these variables, e.g., the
various in-transit values for client1 were named differently
from the corresponding values for client2, and so on.
Throughout the experiments we assumed that each client
could act both as a producer and consumer of awareness
information, which is usually the case in cooperative work.
Due to the existence of non-deterministic assignments in the
encodings, SMV produced several counterexamples on
which we comment below. The presentation of these
counterexamples is concise, since only the values of the
client and the server make sense, while the values of the
counter variables are not of immediate interest.

5.3.1. Model Checking Results for the Protocol of

Palfreyman and Rodden

 SMV invalidated the SPEC statement in the protocol’s
encoding. This entails that the requirements for fairness and
interactive responsiveness expressed in the beginning of
Section 3 are sometimes not satisfied by this protocol. The
counterexamples generated by the model checker were
presented as several steps in sequence. One of these
counterexamples is shown below:

 specification AG(client2 = signs-on > E [. . . is false

as demonstrated by the following execution sequence

state 1.1 : client1 = idle

 client2 = idle

 server = idle

state 1.2 : [executing process p1]

 client2 = signs-on

state 1.3 : client2 = not-signs-on

state 1.4 : client2 = signs-off

 server = gets-sign-on

state 1.5 : [executing process p2]

 client1 = sends-query

 client2 = in-tr32

 server = idle

state 1.6 : client1 = in-tr41

 server = gets-sign-off

state 1.7 : [executing process p1]

 server = idle

state 1.8 : server = gets-query

 As we mentioned earlier, the encoding of the second
scenario included ten instances of a sub-module comprising
the client and its associated counter variables, as well as their
next-state evaluations. Variables p1 and p2 in the above
counterexample represent two such instances. This
counterexample demonstrates that if a client queries the
awareness server while another client is signing off, the
query will not produce any results on the activities of the
second client. SMV generated several other
counterexamples, in one of which client2 was shown to
query the awareness server before client1 had signed on but
not submitting any other queries afterwards.

5.3.2. Model Checking Results for MetaWeb

 MetaWeb’s model checking examined the negations of
the three CTL formulae in Section 5.2. SMV generated
several counterexamples, demonstrating thus the protocol’s
inability to guarantee fairness and preserve interface
consistency. The lack of fairness, in particular, was
demonstrated by the following counterexample which
includes (among others) an in-transit value that had been
declared in the encoding:

 specification AG(client1 = causes-event > AF client2 =
receives-notification) is false

 as demonstrated by the following execution sequence

state 1.1 : (. . . initializing system variables . . .)

state 1.2 : client1 = causes-event

state 1.3 : client1 = in-tr11

state 1.4 : [executing process p1]

 client1 = idle

 server = captures-event

state 1.5 : [executing process p2]

 client2 = registers-interest

 server = idle

 This counterexample shows that MetaWeb cannot
provide awareness information on past activities (i.e., if a
client registers her/his interest in a certain event after the
occurrence of that event, s/he will never receive a relevant
notification). When we run the scenario with ten clients,
SMV produced several variations of the above
counterexample, including for example the generation of
multiple events simultaneously with the registration of
multiple client interests (owing to the fact that we had
allowed the interleaved execution of submodules). This
counterexample falsified also the third specification, while
the second specification was falsified because it is
impossible to achieve immediate information delivery (as
denoted by the next operator) in an asynchronous
environment like the WWW.

12 The Open Information Systems Journal, 2007, Volume 1 Constantinos Papadopoulos

6. DISCUSSION

6.1. General Comments

 Palfreyman and Rodden’s protocol provides a good
degree of presence awareness but does not provide sufficient
activity awareness in some cases. As demonstrated by the
counterexample in Section 5.3.1, if a client signs onto a URL
while another client is performing some action and then the
first client signs off from that URL before the second client
completes his action, the second client will remain unaware
of that action.

 MetaWeb avoids the above problem thanks to the active
notification of events upon their occurrence. Yet awareness
support may still be insufficient, due to network latency and
the time needed to establish HTTP links. So while an event
is along the way to a client, the latter may be doing several
actions which, upon the event’s arrival, will need to be
undone [1]. If these actions have triggered real-world
activities in the meantime though, their undo will not have
the desired effects.

 Besides the sensitivity to network latency, model
checking demonstrated that MetaWeb prohibits clients to
receive feedback on past activities. However this feedback is
required quite often, so several CSCW systems tend to
record interaction histories for this purpose (e.g., the
framework presented in [5]). The above insufficiency of
MetaWeb owes to the fact that its awareness-support
protocol disposes events if no client has registered an interest
in them. The protocol of Palfreyman and Rodden also falls
short in this aspect, since it cannot convey information on a
client’s activities once this client has signed off from a URL.

6.2. Proposed Improvements

6.2.1. Notifying Past Activities

 One way to satisfy the requirement for past-activity
awareness is to allow some form of event buffering. That is,
once a client’s event is passed to the server, the latter should
either notify it immediately to other clients or save it in a
buffer for later dispatching (i.e., upon recording a relevant
interest).

Event buffering can be specified with the following
formulae:

�((server = captures-event) (server = saves-event))
 (21)

�((server = saves-event) ((server = captures-interest)
(server = notifies-event))) (22)

 So in general, the active notification of events (as it is
done by MetaWeb) and their temporary buffering (as it is
suggested above) are necessary features for awareness
support in the WWW. Yet active notification can only
guarantee interface consistency under the assumption of
immediate message delivery. In the WWW, however, this
assumption may not be realistic due to the latency over the
Internet.

6.2.2. Model Checking Interface Consistency

 We considered a MetaWeb scenario involving more than
two clients, who were generating events asynchronously. To
distinguish among those events, we changed the definition of

the client variable by incorporating multiple instances of its
values. The requirement for event notification in the right
order was expressed then as

�(client1 = causes-event1 (client1 = causes-event2

([¬(client2 = receives-notification2) U (client2 =
receives-notification1)]))) (23)

 When we tested this formula with SMV we received a
number of counterexamples, which denoted that, due to
network latency, the server may notify a recent event earlier
than an old one. In cooperative applications, however, the
belated arrival of an event may prompt clients to undo
several actions. Problems like this can be avoided by
associating each event with a timestamp denoting the exact
time of its generation. Timestamps are more effective than
the sequence numbers assigned to events by MetaWeb, since
two events of the same client may have the same sequence
number (if they belong to different messages) but may be
notified to another client simultaneously, due to variations in
network latency.

 In turn, if the actions taken upon the arrival of out-of-
order notifications have triggered other events in the
meantime, complete chaos will prevail. This chaos can be
detected by timestamps but may be difficult to resolve.
Hence the active notification of events cannot guarantee by
itself interface consistency.

6.2.3. Refining the Protocol Specification to allow for
Interface Consistency

 In an attempt to ensure interface consistency, we
investigated first the implications of out-of-order
notifications in situations like the above. To this end, we
refined MetaWeb’s encoding by allowing clients to create
events and register interests in an interleaving fashion,
whereas in the original encoding we had assumed distinct
roles for each client. We also added several assignment
statements in order to represent causal dependencies between
events. For example, using multiple instances of the client
variable, we encoded the formulae

�((client2 = receives-notification2) (client2 =
causes-event2)) (24)

and

�((client2 = receives-notification2) ([¬(client1 =
causes-event3)

U (client2 = causes-event2)])) (25)

which denote that the notification of an event forces the
recipient to create another event, without which the first
client cannot continue his work. In a cooperative design
session, for example, a designer may mark an artifact for
deletion and wait then for the approval of the other designers
in the group. If the latter are not informed immediately of the
former’s intention, the deletion will be postponed to the
detriment of the design activity.

 The counterexamples generated by SMV to the negation
of formula (25) were so many, that it would not be possible
to capture them with manual methods. These
counterexamples indicated situations where

(i) the clients were receiving notifications out of order,
which in turn were “freezing” other clients for
extended time periods or

Assisting Groupware Development with Model Checking The Open Information Systems Journal, 2007, Volume 1 13

(ii) the clients were involved in livelocks by exchanging
events irrespective of the causal dependencies
between them.

 These situations denote lack of scheduling, which owes
to the inability of clients to estimate temporally the arrival of
notifications. Because user activities are rarely scheduled
[51], however, an alternative to the requirement for orderly
notifications would be to provide users with feedback on the
activity history of their team, so as to allow them to adjust
their own activities to the activities of the team. This is a
critical usability issue, since users can only arrange their
activities from the information presented in their GUI. In the
above design session, for example, designers might avoid
livelocks if they knew that their colleagues have taken some
actions in the meantime (according to Francez [25], the
avoidance of livelock indicates weak fairness, since actions
are offered continuously a chance until the moment they are
enacted following the notification of earlier actions in their
causal order). Similarly, designers might not get stuck if they
knew that the activities of their colleagues had been notified
in the wrong order. This can be expressed in general terms as

�((client = receives-notification) (client-gets-
feedback (client-causes-another-event)))

 The above formula denotes that after the notification of
an event, clients keep interacting with each other on the basis
of the feedback they have got until then. Since clients
exchange awareness information through the awareness
server, only that server can provide the above feedback, i.e.,

�((server = notifies-event) (server-provides-
feedback-on-past-activities))

 Feedback on past activities can be either an indication
that some enacted events are going to be notified or an
enumeration of those events. In the above design example,
an indication might not make enough sense to designers.
Enumeration instead might prompt them to suspend their
actions until they get the notification and see what the events
are about. Enumeration can be realized by counting how
many events have been notified and how many are still along
the way to the recipients. The server needs only to maintain a
counter and increment it upon the release of each event, so as
to inform clients of how many events they should still await.
To avoid confusion with the counter variables of the
encoding, we call this counter enum:

�((server = notifies-event (server = increments-
enum server = notifies-enum)) (26)

�((server = notifies-enum) (client2 = receives-
enum)) (27)

 Yet we need also to decrement that counter upon the
delivery of each event, otherwise the clients would await
events which would have arrived already. Hence the above
two formulae must be complemented by a third one, i.e.,

�((client2 = receives-notification) (enum-is-
decremented))

 One way to realize the above would be by allowing the
server to know whether notified events have actually reached
a client so as to decrement the enum counter. This however
requires synchronization among the clients and the server,
which is impossible in the WWW. An alternative way would

be to let the client decrement itself the counter upon the
arrival of each event, i.e.,

�((client2 = receives-notification) (client2 =
decrements-enum)) (28)

 Below we examine the suitability of this alternative.

6.2.4. Model Checking Usability

 We model checked whether event enumeration can
improve the usability of awareness-support protocols, i.e.,
whether it can satisfy the fourth requirement of Section 3
(hence the word ‘intended’ in that requirement was
interpreted as ‘a client should know exactly how many events
s/he should await’). Before doing this, we added the new
values increments-enum and notifies-enum to the definition
of the server variable, as well as the values receives-enum
and decrements-enum to the definition of the client variable
(the value decrements-enum was added to the definition of
the server the first time). These values were incorporated
then into two assignments of the server (in order to encode
formulae (26) and (27)) and into another two assignments of
the client (to encode formulae (27) and (28)). We also
encoded the counter of events as follows:

 VAR

 enum : 0 . . 50;

 ASSIGN

 init(enum) := 0;

 next(enum) :=

 case

 (enum < 50) & (server = increments-enum):
 enum + 1;

 (enum = 50) & (server = increments-enum):
 50;

 (enum > 0) & (client2 = decrements-enum)
 enum – 1;

 1 : 0;

 esac;

 Moreover, we allowed both clients to cause events and
register interests in an interleaving fashion (as in Section
6.2.3), while we complicated further the dependencies
between events with the following formula:

�((client = receives-notification) [¬(client = causes-
event) U (enum = 0)]) (29)

 This formula imposes a strict order on client activities in
order to satisfy the aforementioned usability requirement.
When we checked again the negation of formula (25) we
received no indications of livelock, while the cases of
delayed notification were also fewer. This implies that by
incorporating the properties denoted by formulae (26)-(28)
we can indeed improve usability, at least as concerns the
scenarios represented in the encoding. We must point out
nevertheless that the above solution should always be
accompanied by timestamps, since the latter play a critical
role in some cases (in cooperative design, for example, it
would be useful to know the temporal order of notified
events so as to appreciate the current state of design).

14 The Open Information Systems Journal, 2007, Volume 1 Constantinos Papadopoulos

7. CONCLUSIONS AND FUTURE RESEARCH

 Groupware systems can bring substantial benefits in the
workplace, but when their development is driven by
imprecise assumptions about time, they do not allow users to
collaborate effectively. The aim of this paper is to enable
groupware developers to revisit such assumptions in the
early phases of development with the aid of model checking.

 Specifically, this paper has examined the problem of
group awareness within the context of the WWW. Because
the WWW poses challenges that are not addressed
adequately by current awareness protocols, we used formal
methods to describe desired properties of these protocols and
verify their correctness. Thanks to the SMV model checker
we identified several scenarios of faulty behavior in two
protocols that reflect the current state of practice in
awareness support and we suggested subsequently a number
of improvements. These improvements concern event
buffering, event timestamping and event enumeration, and
they emerged from specific counterexamples of the model
checker. To the best of our knowledge, the above
improvements are not incorporated currently in any protocol
for awareness support.

 Central to our work has been a methodology for encoding
CTL formulae into the language of SMV. This methodology
increases the efficiency of model checking and reduces the
encoding effort sometimes, while it can be applied easily by
developers since it saves them from the task of drawing
state-transition models. We must note though that explicit
model checkers, like EMC [17] and SPIN [33], perform
better than SMV in the verification of software, because the
space complexity of explicit model checking is proportional
not to the number of possible states but to the number of
reachable ones, which are usually fewer in software systems.
EMC encodes however each state explicitly, thus making
model checking laborious. SPIN, in turn, can only verify
linear-time formulae, so it is unsuitable for the verification of
groupware which allows several paths of synchronization at
run time. Instead, the specification of groupware properties
with CTL and their efficient verification thanks to the use of
SMV and our encoding methodology justify our overall
approach, and make evident that it fits better to groupware
development than other approaches based on explicit model
checkers.

 Our own approach can also serve as a starting point for
evaluating groupware usability with model checking. To this
end, we aim to develop a generic framework for detecting
usability constraints in CSCW. For example, because our
approach can only verify properties known in advance but
not properties that evolve dynamically, we aim to extend it
towards on-the-fly verification [32] so as to enable the
detection of usability constraints while collaboration is still
in progress. Other approaches which also utilize model
checking for evaluating usability (e.g., [36]) are very broad
in scope and do not consider the semantics of cooperative
work. Finally, we wish to establish a mathematical
foundation for our encoding methodology, whereby we
would be able to prove formally its equivalence with
automata-based encodings.

REFERENCES

[1] G. Abowd and A. Dix. “Giving Undo Attention.” Inter. Comp., vol.

4, pp. 317-342, June 1992.
[2] T. Ahmed and A.R. Tripathi. “Static Verification of Security

Requirements in Role-Based CSCW Systems”, In Proc. 8th
SACMAT, 2003, pp. 196-203. New York: ACM Press.

[3] D.I. Ballard and D.R. Seibold. “Time orientation and temporal
variation across work groups: Implications for group and

organizational communication.” Western J. Commun., vol. 64, pp.
218-242, 2000.

[4] S. Benford, C. Brown, G. Reynard and C. Greenhalgh. “Shared
Spaces: Transportation, Artificiality and Spatiality,” In Proc. 6th

CSCW, 1996, pp. 77-86. New York: ACM Press.
[5] T. Berlage and A. Genau. “A Framework for Shared Applications

with a Replicated Architecture,” In Proc. 6th UIST, 1993, pp. 249-
257. New York: ACM Press.

[6] T. Berners-Lee, R. Cailliau, A. Luotonen, H.F. Nielsen and A.
Secret. “The World Wide Web.” Commun. ACM, vol. 37, pp. 87-

94, Aug 1994.
[7] R. Bharadwaj and C.L. Heitmeyer. “Model checking complete

requirements specifications using Abstraction.” Automated
Software Engineering, vol. 6, pp. 37-68, Jan. 1999.

[8] A. Biere, A. Cimatti, E.M. Clarke, M. Fujita and Y. Zhu.
“Symbolic model checking using SAT procedures instead of

BDDs,” In Proc. 36th DAC, 1999, pp. 317-320. New York: ACM
Press.

[9] R.E. Bryant. “Symbolic Boolean manipulation with ordered binary
decision diagrams.” ACM Computing Surveys, vol. 24, pp. 293-

318, Sept 1992.
[10] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill and L.J.

Hwang. “Symbolic Model Checking: 1020 States and Beyond.”
Information Computation, vol. 98, pp. 142-170, June 1992.

[11] Cadence. “SMV.” Internet: www-cad.eecs.berkeley.edu/~
kenmcmil/smv/ [May 22, 2007].

[12] J.J. Cadiz, G. Venolla, G. Jancke and A. Gupta. “Designing and
Deploying an Information Awareness Interface,” In Proc. 9th

CSCW, 2002, pp. 314-323. New York: ACM Press.
[13] M. Cataldo, P.A. Wagstrom, J.D. Herbsleb and K.M. Carley.

“Identification of Coordination Requirements: Implications for the
Design of Collaboration and Awareness Tools,” In Proc. 11th

CSCW, 2006, pp. 353-362. New York: ACM Press.
[14] W. Chan, R.J. Anderson, P. Beame, S. Burns, F. Modugno, D.

Notkin and J.D. Reese. “Model Checking Large Software
Specifications.” IEEE Trans. Software Eng., vol. 24, pp. 498-520,

July 1998.
[15] M. Chechik, B. Devereux, S. Easterbrook and A. Gurfinkel.

“Multi-Valued Symbolic Model-Checking.” ACM Transactions on
Software Engineering and Methodology, vol. 12, pp. 371-408, Oct

2003.
[16] E.M. Clarke and E.A. Emerson. “Design and synthesis of

synchronization skeletons using branching-time temporal logic,” In
Proc. IBM Workshop on Logic of Programs, 1981, LNCS 131, pp.

52-71. Berlin: Springer.
[17] E.M. Clarke, E.A. Emerson and A.P. Sistla. “Automatic

Verification of Finite State Concurrent Systems using Temporal
Logic Specifications.” ACM Transactions on Programming

Languages and Systems, vol. 8, pp. 244-263, April 1986.
[18] E.M. Clarke, O. Grumberg and D.A. Peled. Model Checking.

Cambridge, MA: MIT Press, 1999.
[19] E. Clarke, D. Kroening, J. Ouaknine and O. Strichman.

“Computational challenges in bounded model checking.” Int. J.
Software Tools for Technol. Transfer, vol. 7, pp. 174-183, April

2005.
[20] A. Dix. “LADA – A logic for the analysis of distributed actions,”

In Proc. 1st Eurographics, 1994, pp. 317-332. New York:
Springer.

[21] P. Dourish and V. Bellotti. “Awareness and Coordination in Shared
Workspaces,” In Proc. 4th CSCW, 1992, pp. 107-114. New York:

ACM Press.
[22] D. Drusinsky and D. Harel. “On the Power of Bounded

Concurrency I - Finite Automata.” J. ACM, vol. 41, pp. 517-539,
May 1994.

[23] C.A. Ellis, S.J. Gibbs and G.L. Rein. “Groupware: Some Issues and
Experiences.” Commun. ACM, vol. 34, pp. 39-58, Jan 1991.

Assisting Groupware Development with Model Checking The Open Information Systems Journal, 2007, Volume 1 15

[24] C.A. Ellis. “Team Automata for Groupware Systems,” In Proc.

GROUP ’97, 1997, pp. 415-424. New York: ACM Press.
[25] N. Francez. Fairness. New York: Springer, 1986.

[26] P. Godefroid, J.D. Herbsleb, L.J. Jagadeesan and D. Li. “Ensuring
Privacy in Presence Awareness Systems: An Automated

Verification Approach,” In Proc. 8th CSCW, 2000, pp. 59-68. New
York: ACM Press.

[27] T.C.N. Graham. “GroupScape: Integrating Synchronous
Groupware and the World Wide Web,” In Proc. INTERACT ’97,

1997, pp. 547-554. London: Chapman and Hall.
[28] S. Gundavaram. CGI Programming on the World Wide Web.

Sebastopol, CA: O’Reilly, 1996.
[29] C. Gutwin. “The Effects of Network Delays on Group Work in

Real-Time Groupware,” In Proc. 7th ECSCW, 2001, pp. 299-318.
Dordrecht, The Netherlands: Kluwer.

[30] C. Gutwin and S. Greenberg. “Effects of Awareness Support on
Groupware Usability,” In Proc. CHI ’98, 1998, pp. 511-518. New

York: ACM Press.
[31] J. Hill and C. Gutwin. “Awareness support in a groupware design

toolkit,” In Proc. GROUP ’03, 2003, pp. 258-267. New York:
ACM Press.

[32] G. Holzmann. “On-the-fly model checking.” ACM Computing
Surveys, vol. 28, Dec 1996.

[33] G.J. Holzmann. “The Model Checker SPIN.” IEEE Trans. Software
Eng., vol. 23, pp. 279-295, May 1997.

[34] A. Imine, P. Molli, G. Oster and M. Rusinowitch. “Proving
correctness of transformation functions in real-time groupware,” In

Proc. 8th ECSCW, 2003, pp. 277-294. Dordrecht, The Netherlands:
Kluwer.

[35] Imine, M. Rusinowitch, G. Oster and P. Molli. “Formal design and
verification of operational transformation algorithms for copies

convergence”, Theoretical Computer Science, vol. 351, Special
Issue on Algebraic Methodology and Software Technology, pp.

167-183, Feb 2006.
[36] CCTC. “IVY: a model-based usability analysis environment.”

Internet: http://www.di.uminho.pt/projects/ivy [July 9, 2007].
[37] Johnson. “A formal approach to the representation of CSCW

systems,” In Proc. HCI ’93, 1993, pp. 335-352. Cambridge, UK:
Cambridge University Press.

[38] O. Kupferman, M.Y. Vardi and P. Wolper. “An Automata-
Theoretic Approach to Branching-Time Model Checking.” J. ACM,

vol. 47, pp. 312-360, March 2000.
[39] Lushman and G.V. Cormack. “Proof of correctness of Ressel’s

adOPTed algorithm”, Inform. Proc. Lett., vol. 86, pp. 303-310,
June 2003.

[40] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems
- Safety. Berlin: Springer, 1995.

[41] J.E. McGrath. “Time matters in groups,” In Intellectual Teamwork:
Social and Technical Foundations of Cooperative Work (J.

Galegher, R.E. Kraut and C. Egido, Eds.), pp. 23-61. London:
Lawrence Erlbaum Associates, 1990.

[42] K.L. McMillan. Symbolic Model Checking. Norwell, MA: Kluwer,
1993.

[43] P. Palanque and R. Bastide. “Formal specification and verification
of CSCW using the Interactive Cooperative Object formalism,” In

Proc. HCI ’95, 1995, pp. 213-231. Cambridge, UK: Cambridge
University Press.

[44] K. Palfreyman and T. Rodden. “A protocol for user awareness on
the World Wide Web,” In Proc. 6th CSCW, 1996, pp. 130-139.

New York: ACM Press.

[45] Papadopoulos. “An Extended Temporal Logic for CSCW.” Comp.

J., vol. 45, pp. 453-472, Aug. 2002.
[46] C. Papadopoulos. “An Automata-based Approach to CSCW

Verification.” Int. J. Cooperative Information Systems, vol. 13, pp.
183-209, June 2004.

[47] M.R. Prasad, A. Biere and A. Gupta. “A survey of recent advances
in SAT-based formal verification.” Int. J. Software Tools Technol.

Transfer, vol. 7, pp. 174-183, April 2005.
[48] V. Schuppan and A. Biere. “Verifying the IEEE 1394 FireWire

Tree Identify Protocol with SMV.” Formal Aspects of Computing,
vol. 14, pp. 267-280, April 2003.

[49] Stotts and R. Furuta. “Interpreted collaboration protocols and their
use in groupware prototyping,” In Proc. 5th CSCW, 1994, pp. 121-

131. New York: ACM Press.
[50] D. Stotts and J. Navon. “Model Checking CobWeb Protocols for

Verification of HTML Frames Behavior,” In Proc. WWW ’02,
2002, pp. 182-190. New York: ACM Press.

[51] L. Suchman. Plans and Situated Actions. Cambridge, UK:
Cambridge University Press, 1987.

[52] C. Sun, X. Zia, Y. Zhang, Y. Yang and D. Chen. “Achieving
Convergence, Causality-Preservation and In-tention-Preservation in

Real-Time Cooperative Editing Systems.” ACM Transactions on
Comp.-Hum. Interact., vol. 5, pp. 63-108, March 1998.

[53] A.S. Tanenbaum. Computer Networks (4th Ed.) Upper Saddle
River, NJ: Prentice-Hall, 2003.

[54] M.H. ter Beek, C.A. Ellis, J. Kleijn and G. Rozenberg.
“Synchronizations in Team Automata for Groupware Systems.”

Comp. Support. Coop. Work, vol. 12, pp. 21-69, Feb 2003.
[55] M.H. ter Beek, M. Massink, D. Latella and S. Gnesi. “Model

Checking Groupware Protocols,” In Cooperative Systems Design –
Scenario-based Design of Collaborative Systems (F. Darses, R.

Dieng, C. Simone and M. Zacklad, Eds.), vol. 107 of Frontiers of
Artificial Intelligence and Applications, pp. 179-194. Amsterdam:

IOS Press.
[56] M.H. ter Beek, M. Massink, D. Latella, S. Gnesi, A. Forghieri and

M. Sebastianis. “A Case Study on the Automated Verification of
Groupware Protocols,” In Proc. ICSE’05, 2005, pp. 596-603. New

York: ACM Press.
[57] M.H. ter Beek, M. Massink, D. Latella, S. Gnesi, A. Forghieri and

M. Sebastianis. “Model Checking Publish/Subscribe Notification
for thinkteam,” In Proc. FMICS’04, 2005, pp. 275-294. ENTCS

133.
[58] M.H. ter Beek, M. Massink and D. Latella. “Towards Model

Checking Stochastic Aspects of the thinkteam User Interface,” In
Proc. DSVIS’05, 2006, LNCS 3941, pp. 39-50, Berlin: Springer.

[59] M.H. Tran, Y. Yang and G.K. Raikundalia. “F@: A Framework of
Group Awareness in Synchronous Distributed Groupware,” In

Proc. APWeb, 2006, LNCS 3841, pp. 461-473, Heidelberg,
Germany: Springer.

[60] J. Trevor, T. Koch and W. Wötzel. “MetaWeb: Bringing
Synchronous Groupware to the World Wide Web,” In Proc. 5th

ECSCW, 1997, pp. 65-80. Dordrecht, The Netherlands: Kluwer.
[61] P. Wolper. “Constructing Automata from Temporal Logic

Formulae: A Tutorial,” In Lectures on Formal Methods and
Performance Analysis (E. Brinksma, H. Hermanns and J.-P.

Katoen, Eds.), 2001, pp. 261-277. LNCS 2090, Berlin: Springer.
[62] B. Yang. SMV 2.4b. Internet: www.cs.cmu.edu/~bwolen/software/

smv/ [Nov. 23, 2006].

Received: June 15, 2007 Revised: July 09, 2007 Accepted: July 10, 2007

16 The Open Information Systems Journal, 2007, Volume 1 Constantinos Papadopoulos

APPENDIX

A.1. Computation Tree Logic

 Temporal operators appearing in CTL formulae must be preceded either by the universal (‘ ’) or the existential (‘ ’)
quantifier, which denote respectively that a property holds in every path out of a state or along some specific path(s) only.
Moreover, past-time operators are not allowed, so only the operators ‘ ’, ‘ ’, ‘�’, ‘U’ and ‘R’ may appear in CTL formulae.
The next operator ‘ ’ is used to denote that a property holds in the immediately following state, the eventually operator ‘ ’
that a property will hold at some future state, and the henceforth operator ‘�’ that a property will hold at every state hereafter.
The until operator ‘U’, in turn, is used between two propositions to denote that there will be a state where the second
proposition will start holding while the first one will have held at every state prior to that state. The releases operator ‘R’,
finally, is the dual of ‘U’ and is used between two propositions to denote that there will be a state where the first proposition
will start holding and the second one will become False.

 The possible combinations of temporal operators with path quantifiers can be defined in CTL as follows: f g ¬ (¬ f ¬

g), g [True U g], g [True U g], � f ¬ [True U ¬ f],

[f U g] [g R f] and � f ¬ [True U ¬ f].

 Last, the syntax of CTL formulae can be defined by the following rules:

[i] Every atomic proposition is a CTL formula.

[ii] If f and g are CTL formulae, then so are ¬ f, f g, f, [f U g] and [f U g].

A.2. Kripke structures

 A Kripke structure is a quadruple (S, S0, T, L) over a set of atomic propositions (i.e., Boolean variables). S is a finite set of
states, which are semantic concepts that do not appear explicitly in formulae. Each state is an assignment of values to system
variables. S0 in turn, is a subset of S containing initial states, while T is a transition relation between states (i.e., T S X S) such
that each state in S is accessible by at least one other state. L , finally, is a function that labels each state in S with the set of
propositions which are True in that state.

A.3. Symbolic Algorithms

 Each state of a Kripke structure is encoded in symbolic algorithms by an assignment of Boolean values to the set of state
variables, while transitions are expressed as Boolean formulae that manipulate variables from the originating and the final state.
For example, given the predicate p0(s) (s : s S 0), where S 0 denotes the set of initial states in a Kripke structure, and the
predicate pR(s, t) (s :s S t S (s, t) T ¬ (r :r S :(s, r) T (r, t) T)), where S and T denote respectively the set
of states and the transition relation of the Kripke structure (so pR is True if t is accessible by s with only one transition), then the
set of states in the Kripke structure that are accessible by the initial states with one transition can be expressed by the predicate
p1(s) (x : x S : p0(x) pR(x, s)). Similarly, the possibility of error in the behaviour of a system can be detected by
computing iteratively the predicates p1(s) , . . . , pk(s), where pk(s) (x : x S: pk-1(x) pR(x, s)), and intersecting at each step
the sets corresponding to these predicates by a set of undesirable states (i.e., states indicating faulty behaviour).

A.4. SMV Basics

 As we mentioned in the main text, SMV was the first model checker that incorporated symbolic algorithms. This checker
represents states and transitions via BDDs. Today there exist quite a few versions of SMV (e.g., [11], [62]), but the features
presented in this section are common to all versions.

 A finite-state system can be described in SMV with one or more modules, which represent concurrently executing processes
and are defined by the keyword MODULE followed by a string. These processes can be instantiated several times, take on
parameters, and reference variables declared in other modules (like the procedures and functions of structured programming
languages). The concurrent execution of SMV modules can be done either synchronously or in an interleaving fashion. In the
latter case, the keyword process must precede the declaration of module instances. Modules contain also variable declarations
denoted by the keyword VAR, which may refer to Boolean variables, enumerated symbolic types, variables within an integer
subrange, or arrays. Variables may also take values from sets or expressions involving logical connectives. For example, taking
advantage of SMV’s macro-definition facility (i.e., DEFINE declarations), one can define new symbols from Boolean
expressions but may not define new system variables.

 Modules are used to specify transition relations, which are written inside ASSIGN statements in the form of Boolean
expressions and/or parallel assignments. In both cases, the variables of each module are evaluated in a next state according to
their values in the current state. For example, the statement ASSIGN next(x) := !x sets the next-state value of the Boolean
variable x to the negation of its current value. Next-state values may be defined also through case statements nested within an
ASSIGN statement. The branches of case statements are examined in the order of their appearance and the first one that
evaluates to True is chosen for execution. The last branch ensures that no transition is made if none of the previous branches is
True. Before the definition of a next-state value, ASSIGN statements define the corresponding initial-state value. So, for any
variable y, init(y) refers to the value of y in the initial state of the Kripke structure. A significant advantage of SMV regarding
the specification of reactive systems is its ability to represent non-deterministic transitions. For example, when an ASSIGN

Assisting Groupware Development with Model Checking The Open Information Systems Journal, 2007, Volume 1 17

statement associates a variable with a set, the value of that variable is set randomly to a member of that set (e.g., ASSIGN
next(x) := {0, 1}). Another way to specify transition relations is through TRANS declarations, which include expressions
defining these relations as propositions. The essential difference between TRANS and ASSIGN statements is that the former
define transition relations declaratively, whereas the latter define them imperatively.

 Last, the formulae to be verified are written as SPEC statements, while fairness constraints are written as CTL formulae that
are preceded by the keyword FAIRNESS.

A.5. Encoding of Palfreyman and Rodden’s Protocol

 Based on the above, we wrote two scenarios for Palfreyman and Rodden’s protocol (as we have already mentioned), i.e.,
one involving five clients and another ten. Below we present an example scenario with only one client:

MODULE main

VAR

client: {idle, sends-query, not-send-query, gets-results, signs-on, not-sign-on, signs-off, in-tr1, in-tr2, in-tr3, in-tr4, in-
tr5};

server: {idle, gets-query, sends-results, gets-sign-on, gets-sign-off, in-tr6, in-tr7, in-tr8, in-tr9, in-tr10, in-tr11};

cntr1: 1 . . 1000;

;; the same for all the other counter variables

ASSIGN

init(client) := idle;

init(server) := idle;

init(cntr1) := 1;

;; the same for all the other counter variables

next(client) :=

 case

(client = gets-results) : {idle, gets-results, signs-on, signs-off, sends-query};

(client = signs-on) & (cntr1 = 1) : {idle, sends-query, in-tr1};

(client = idle) & (cntr2 = 1) : {idle, in-tr2};

(client = in-tr2) & (cntr2 < 1000) : {sends-query, signs-on, signs-off, gets-results, in-tr2};

(client = in-tr2) & (cntr2 = 1000) : {sends-query, signs-on, signs-off, gets-results};

(client = signs-off) & (cntr3 = 1) : in-tr3;

(client = in-tr3) & (cntr3 < 1000) : {in-tr3, signs-on};

(client = in-tr3) & (cntr3 = 1000) : signs-on;

(client = sends-query) & (cntr4 = 1) : in-tr4;

(client = in-tr4) & (cntr4 < 1000) & (cntr5 = 1) : {in-tr4, not-send-query};

(client = in-tr4) & (cntr4 = 1000) & (cntr5 = 1) : not-send-query;

(client = not-send-query) & (cntr5 < 1000) : {not-send-query, gets-results};

(client = not-send-query) & (cntr5 = 1000) : gets-results;

(client = in-tr1) & (cntr1 < 1000) & (cntr6 = 1) : {in-tr1, not-sign-on};

(client = in-tr1) & (cntr1 = 1000) & (cntr6 = 1) : not-sign-on;

(client = not-sign-on) & (cntr6 < 1000) : {not-sign-on, signs-off};

(client = not-sign-on) & (cntr6 = 1000) : signs-off;

(server = sends-query) & (cntr7 = 1) : in-tr5;

(server = in-tr5) & (cntr7 < 1000) : {in-tr5, gets-results};

(server = in-tr5) & (cntr7 =1000) : gets-results;

1 : idle;

18 The Open Information Systems Journal, 2007, Volume 1 Constantinos Papadopoulos

 esac;

 next(server) :=

 case

(server = gets-query) : sends-results;

(server = sends-results) : {gets-query, idle, gets-sign-on, gets-sign-off};

(server = gets-sign-on) & (cntr8 = 1) : {idle, in-tr6};

(server = in-tr6) & (cntr8 < 1) : {in-tr6, gets-query, gets-sign-on, gets-sign-off};

(server = in-tr6) & (cntr8 = 1000) : {gets-query, gets-sign-on, gets-sign-off};

(server = gets-sign-off) & (cntr9 = 1) : {idle, in-tr7};

(server = gets-sign-off) & (cntr9 < 1000) : {in-tr7, gets-sign-on, gets-sign-off};

(server = gets-sign-off) & (cntr9 = 1000) : {gets-sign-on, gets-sign-off};

(client = signs-on) & (cntr10 = 1) : in-tr8;

(server = in-tr8) & (cntr10 < 1000) : {in-tr8, gets-sign-on};

(server = in-tr8) & (cntr10 = 1000) : gets-sign-on;

(client = signs-off) & (cntr11 = 1) : in-tr9;

(server = in-tr9) & (cntr11 < 1000) : {in-tr9, gets-sign-off};

(server = in-tr9) & (cntr11 = 1000) : gets-sign-off;

(client = sends-query) & (cntr12 = 1) : in-tr10;

(server = in-tr10) & (cntr12 < 1000) : {in-tr10, gets-query};

(server = in-tr10) & (cntr12 = 1000) : gets-query;

(server = idle) & (cntr13 = 1) : in-tr11;

(server = in-tr11) & (cntr13 < 1000) : {in-tr11, idle, gets-query, gets-sign-on, gets-sign-off};

(server = in-tr11) & (cntr13 = 1000) : {idle, gets-query, gets-sign-on, gets-sign-off};

1 : idle;

 esac;

 next(cntr1) :=

 case

(client = in-tr1) : cntr1 + 1;

 1 : cntr1;

 esac;

 ;; the same for all the other counter variables except cntr5 and cntr6

 next(cntr5) :=

 case

(cntr4 = 1000) & (client = not-send-query) : cntr5 + 1;

 1 : cntr5;

 esac;

 next(cntr6) :=

 case

(cntr1 = 1000) & (client = not-sign-on) : cntr6 + 1;

 1 : cntr6;

 esac;

 . . .

SPEC AG((client = signs-on) > E[(client = sends-query) U (client = signs-off)])

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

