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Abstract: The effects of calorie restriction without malnutrition seem to possess many beneficial effects in numerous dis-

ease states. Recently, studies related to calorie restriction mimetics that biochemically mimic the effects of calorie restric-

tion are also becoming increasingly popular. Both calorie restriction and calorie restriction mimetics trigger an adaptive 

response reminiscent of mild-stress or low-dose toxic response, which is frequently referred to as hormesis in the toxicol-

ogy literature. Although some benefits of calorie restriction and calorie restriction mimetics have been studied, the role of 

hormesis-related pathways in the eye has not been given a special attention. This review will present the current literature 

on calorie restriction and calorie restriction mimetics as related to most prominent eye diseases and provide insights on the 

therapeutic role of hormesis in eye diseases. 

INTRODUCTION 

 The health benefits of calorie restriction (CR) have been 
known to the scientists for decades. In the recent literature, 
CR or dietary restriction has been generally defined as con-
sumption of nutritious diet that is 40% less in calories com-
pared to ad libitum diet. In addition to providing protection 
against numerous deadly diseases such as cancer, neurologi-
cal disorder, and obesity, CR is the only reliable treatment 
that extends life span or causes healthy aging consistently in 
a multitude of organisms ranging from bacteria to monkeys 
[1-4]. The extent to which CR extends human life span, 
however, is still largely unknown. The most frequently 
touted effect of CR has been its influence on creating a mild 
stress in the organism and a typical up-regulation of adaptive 
mechanisms involving stress proteins accompanied by ele-
vated defense or survival molecules [5-7]. This response is 
similar to the expected hormetic response [8]. According to 
the theory of “hormesis,” toxins and pollutants generally 
show biphasic dose response, where a low dose of toxin trig-
gers a positive, adaptive stress response, which may help an 
organism sustain much higher levels of toxins which other-
wise cause harmful effects [7-12].  

 Although CR can benefit human health and extend lon-
gevity, its success depends on determined change in human 
behavior—willingness to mildly starve! Ironically, the cur-
rent calorie consumption trend in the United States is just the 
opposite, with weight gain and obesity expected to increase 
in the coming decades [13]. Realizing that it is difficult to 
influence public calorie consumption patterns, scientists 
have been contemplating alternative ways to accrue the 
benefits of CR without actually suggesting restriction of 
calorie intake. Such a strategy is made possible because a 
large number of plant-derived chemicals or phytochemicals 
can mimic the effect of CR. These phytochemicals are re-
ferred to as CR mimetics (CRMs) [14, 15]. CRMs at low  
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doses function like toxicants and trigger the adaptive re-
sponse in the organism [8-10, 12]. Fruits, nuts, vegetables 
and herbs together offer an estimated 4000 different kinds of 
flavonoids [16-18] that may have been evolved to fight dis-
eases and insect attack [14], but at proper dosage levels may 
be extremely beneficial to human health. The popularity of 
herbals can be attributed to the public belief that herbs are 
naturally safer than synthetic drugs [19]. Experts believe that 
one in three Americans uses herbal supplements, with the 
consumption level much greater among women [20, 21], 
patients undergoing surgery [22], and the elderly. Because 
herbals seem to embody both medical and marketing bene-
fits, scientists are excited about their prospects as suitable 
alternatives to the CR.  

 Both CR and CRMs affect a common pool of biochemi-
cal pathways that are implicated in organism’s survival and 
longevity. Specifically, the following two biochemical path-
ways and associated proteins have shown much promise in 
the last decade: (1) Sirtuin pathway [5, 6, 23-25], and (2) 
Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor 
erythroid 2-related factor 2 (Nrf2)/antioxidant response ele-
ment (ARE) pathway, simply referred to as the 
Keap1/Nrf2/ARE pathway [26]. While anti-aging sirtuin 
pathway is implicated in an organism’s longevity [25], ARE 
pathway is known to trigger the upregulation of cytoprotec-
tive genes essential for cell survival [26]. Emphasis in the 
eye literature addressing these specific pathways is limited 
and only currently emerging literature seems to provide 
some initial insights into the roles of these pathways in the 
eye. This review will focus on the benefits of CR and CRMs 
as related to the eye, particularly recognizing the potential 
hormetic pathways essential for survival and longevity.  

DISEASE AND ANATOMY OF THE EYE 

 In epidemiological and nutritional supplement studies, 
traditionally known antioxidants (vitamins A, C, E) and ca-
rotenoids (lycopene, lutein, zeaxanthin) appear to have 
yielded a varying, but inconsistent degree of effectiveness in 
minimizing the damage caused by age-related eye diseases 
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such as cataract, age-related macular degeneration, and glau-
coma [27-29]. A broad range of herbal compounds has also 
been found beneficial to delaying age-related eye diseases 
[27-29].  

 The human eye, frequently referred to as the window to 
the mind, suffers from many diseases that may ultimately 
cause blindness. According to 2000 US Census, nearly 1 
million Americans older than 40 years of age were blind, 
with an additional 2.4 million suffering from low vision [30]. 
The leading causes of blindness and low vision included age-
related macular degeneration (ARMD), cataract, glaucoma, 
diabetic retinopathy, and other diseases [30]. Inflammation 
in the eye including uveitis causes about 10% of blindness in 
the United States. The blindness in the US is projected to 
increase 70% by 2020, largely due to the aging population 
[30]. Because most debilitating eye pathologies are age-
related, the treatments that modulate aging pathology or age-
related biochemical pathways are expected to contribute sig-
nificantly for developing suitable treatments for age-related 
diseases.  

 The diseases and pertinent treatments of the eye can be 
better understood by knowing the basic anatomy of the eye, 
so a brief description of the human eye anatomy will be pre-
sented below. The anterior portion of the eye constitutes cor-
nea, anterior chamber, iris, and the anterior ciliary muscle. 
The eye lens divides the anterior chamber from the posterior 
segment, which includes the posterior ciliary body, vitreous 
fluid, retina that surrounds the vitreous fluid, choroid, and 
the outer sclera. The iris, ciliary body and choroid together 
form the middle pigmented layer of the eye called the uvea. 
The cross-section of different layers of the eye from retina 
through sclera show complex layers of cells that perform 
specialized functions. The retina is a thin layer of transparent 
nerve tissue with at least five distinct types of nerve cells: 
the outermost photoreceptor cells (rods and cones), horizon-
tal cells, bipolar cells, amacrine cells, and ganglion cells. The 
photoreceptor cells receive the light and transmit it to the 
other nerve layers all the way down to the ganglion cell 
layer. The retinal ganglion cells forming the optic nerve 
transmit the light signals to the brain. Immediately adjacent 
to the outer photoreceptor segment is a single layer of cells 
called retinal pigment epithelial cells (RPE), which among 
other things perform crucial phagocytosis function to recycle 
the debris that was created by the dead photoreceptor cells. 
The nourishment and oxygen supply to the retina is provided 
by the choroid, which in turn has four layers: the inner 
Bruch’s membrane, choriocapillaris with small capillary 
vessels, a layer with medium-sized blood vessels (Sattler’s 
layer), and the outermost layer with large vessels (Haller’s 
layer). The outer most protective layer of the eye is called 
sclera.  

CALORIE RESTRICTION 

 CR studies elsewhere in the body have re-emerged with a 
renewed interest in the recent years, especially in research 
related to cancer, obesity, and the brain. Eye research, how-
ever, appears to have fallen short in identifying the emerging 
beneficial molecular pathways of CR to sight-related dis-
eases. Only a limited literature is available on the beneficial 
effects of CR against cataract, ARMD, and glaucoma, and 
this evidence is discussed below. 

Benefits of CR in Cataract 

 Several animal studies have shown the beneficial effects 
of CR diet against cataract, the development of clouding in 
the crystalline lens of the eye leading to a progressive in-
crease in the lens opacity associated with the loss of trans-
parency [31, 32]. Calorie restriction (at 60-79% of ad libi-
tum, AL, intake) in Emory mice, delayed the onset, forma-
tion, progression, and accumulation of cataract, besides ex-
tending the median life span of the animals by 40% [33-36]. 
Interestingly, the delayed accumulation of cataract did not 
correlate with the level of antioxidant enzymes [37]. In 
B6D2F1 mice (C57BL/6 x DBA/2), CR diet attenuated the 
decline of proliferative capacity of lens epithelial cells (LE) 
in older mice [38], and in old, CR mice LE cells were more 
resistant to H2O2-induced cell damage than LE cells in old, 
AL mice [39]. Of the two rat strains (Brown Norway & 
Fischer 344), and three mouse strains (C57BL/6, (C57BL/6 x 
DBA/2)F1, (C57BL/6 x C3H)F1), CR diet extended life span 
in all strains, and delayed the first appearance and subse-
quent severity of cataract in four dark-eyed strains, but not in 
albino, Fischer 344 rats [40]. Further, in Brown Norway rats, 
CR diet attenuated age-related shortening of telomeres in LE 
cells [41]; retarded age-related degeneration of lens by re-
ducing oxidative stress in the lens [42]; and, prevented age-
related decline in glycolytic enzymes, molecular chaperones, 
and B-crystallin, a lens protein [43]. In Wistar rats, 50% 
food restriction and 75% protein restriction lowered -and -
crystallin aggregation and the chaperone activity of -
crystallin was improved by 50% vitamin restriction [44]. 
These studies clearly suggest that CR diet enhances an ani-
mal’s longevity irrespective of the pigmentation, and protec-
tion against cataract occurs only in pigmented animals, but 
not in albinos. This anomaly in albino rodents may be related 
to their greater susceptibility to light-induced damage than 
the normal brown rodents. 

Benefits of CR in Age-Related Macular Degeneration 

 ARMD is the leading cause of blindness in white Ameri-
cans and it accounts for 54% of all blindness [30]. In 
ARMD, the increased degeneration of macula, a 5.5 mm area 
around fovea, occurs with aging and more severely after 60 
years of age. One of the hallmarks of ARMD includes the 
extracellular deposition of misfolded and aggregated pro-
teins, drusen bodies, beneath RPE and Bruch’s membrane. 
Although age is the strongest risk factor for ARMD, several 
other systemic risk factors have also been identified: hyper-
tension, smoking, and family history [45]. The degeneration 
and death of photoreceptor cells in the macula leads to the 
loss of central vision, then a progressive loss of peripheral 
vision. In most severe case, the in-growth of blood vessels 
from choroid rupture the Bruch’s membrane and move into 
the sub-RPE and sub-retinal space leading to choroidal 
neovascularization [45]. Surprisingly, compared to CR stud-
ies in cataract, CR-related studies in ARMD are less conclu-
sive. Given the fact that CR effects possess sirtuin as well as 
Keap1/Nrf2/ARE pathways and the prominent involvement 
of these pathways in the ARMD, the lack of CR-related stud-
ies as related to ARMD is astonishing. In Wistar rats, CR 
diet decreased the accumulation of lipofuscin in RPE cells 
[46]. Lipofuscin is an aggregate of complex material that 
accumulates within the lysosomes of RPE cells as a result of 
phagocytosis of degraded photoreceptor cells [47, 48]. The 
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age-related accumulation of lipofuscin may occur at an ac-
celerated rate and cause RPE dysfunction and rapid aging of 
retina [47, 48]. In monkeys fed 70% CR diet, no differences 
in drusen were detected between CR and AL groups, but the 
authors suggest that the sample size in this study was too 
small to conclude definitively [49]. In albino Fischer 344 
rats, the deleterious effect of bright light was more pro-
nounced in rats fed CR than in AL diet [50]. However, in 
Brown Norway rats, CR diet exhibited a neuroprotective 
effects in the aging retina [2], reduced age-related photore-
ceptor cell death, and the reduced decline of thiols, glu-
tathione, ascorbic acid, and taurine in the retina [51]. Al-
though not specifically substantiated by these limited num-
ber of available studies, CR appears to possess a neuropro-
tective effect in retina and a potential activation of protective 
Keap1/Nrf2/ARE pathway in ARMD. 

Benefits of CR in Glaucoma 

 Increased intraocular pressure, caused by defects in the 
ocular drainage system, is the main risk factor for glaucoma 
[52-54]. Increased intraocular pressure can lead to the optic 
nerve damage and a subsequent loss of vision and blindness. 
In addition, age, diabetes, and genetic factors strongly influ-
ence the occurrence of glaucoma [55]. The most common 
form of glaucoma is a slowly developing, chronic form of 
primary open-angle glaucoma (POAG). In an animal study 
on POAG, when albino Fischer rats, albino Wistar rats, and 
Brown Norway rats were fed three days a week in a CR 
regimen, CR protected against the loss of retinal ganglion 
cells (RGCs) in both young and old animals and in both al-
bino and pigmented rats [56]. CR diet also attenuated the 
loss of age-related RGCs in both albino BALB/cBy mice and 
albino Fischer rats [57], and resisted age-related morpho-
logical alterations in aqueous collecting channel in terms of 
the loss of lumen area of channel and loss of anterior-
posterior width [58]. Further, in albino Fischer 344 rats, CR 
diet attenuated age-related as well as ischemia-induced RGC 
loss [59]. These studies strongly suggest CR has protective 
effects against the loss of RGCs irrespective of the pigment 
color of the animal. Because RGCs express SIRT1 and 
SIRT1 activation provides protection against optic neuritis 
primarily by protecting RGCs [60], it is possible that CR-
induced upregulation of SIRT1 in RGCs can also provide 
protection against glaucoma.  

CALORIE RESTRICTION MIMETICS 

 CR effects have been experimentally tested on a limited 
number of eye diseases such as, cataract, ARMD, and glau-
coma, as discussed in the previous sections. Interestingly, 
CRMs seem to have been tested on a broader group of eye 
diseases including both age-related eye diseases and eye dis-
eases that affect all ages. Although potentially many phyto-
chemicals may qualify to serve as CRMs, resveratrol, sul-
foraphane, and curcumin appear to have been tested most 
commonly in the eye literature, so we will discuss these 
three herbals along with other compelling CRMs as related 
to the eye disease. 

Benefits of Resveratrol in Eye Diseases 

 There is mounting evidence in the literature suggesting 
the beneficial effects of resveratrol consumption and red 
wine drinking. Despite the fat-rich diets consumed by the 

French, an epidemiological finding, popularly known as 
“The French Paradox” has associated regular red wine con-
sumption with a low incidence of cardiovascular disease 
[61]. A low incidence of vision loss among the elderly has 
also been linked to red wine drinking [27, 62]. Red wine and 
its biological source—the purple grape (Vitis vinifera), espe-
cially its skin and seeds—contain many polyphenols, such as 
flavonoids (quercetin, catechins, gallocatechin, procyanidin, 
prodelphidins), and resveratrol, a phytoalexin that is natu-
rally synthesized in response to fungal attack [63-65]. In 
addition to its anti-aging properties, resveratrol is known to 
play a neuroprotective role in Huntington’s disease [66], 
axotomy [67], Alzheimer’s disease [68], brain ischemia [69], 
stroke [70] and epilepsy [71] by protecting brain cells from 
death. Recent studies also directly link the beneficial effects 
of resveratrol and SIRT1 activators with prevention of vision 
loss [27, 62, 72, 73] and activation of SIRT1 in the eye or 
eye cells [60, 74].  

 Resveratrol prevented sodium selenite-induced oxidative 
stress and cataract formation in an experimental cataract 
model in SD rats [73]. Acting as an antioxidant, resveratrol 
not only reduced the oxidative stress of the retinal pigment 
epithelium (RPE) cells, but also attenuated hyperprolifera-
tion of human RPE cells used as an in vitro model for 
ARMD [75]. In aging pigment epithelial cells, resveratrol 
quenched singlet oxygen and reduced A2E epoxidation, re-
ducing the incidence of DNA damage and cell death [72]. 
Further, in human RPE cells, the expression of SIRT1 at-
tenuated FOXO3 recruitment to the complement factor H 
(CFH) regulatory region and reversed the H2O2-induced re-
pression of CFH gene expression [76]. In optic neuritis and 
multiple sclerosis patients, axonal damage causes vision loss 
and neuronal dysfunction. Although the inflammation was 
not suppressed, modified resveratrol formulations (SRT647 
and SRT501) prevented RGC loss and protected mice from 
neuronal damage in experimental autoimmune encephalo-
myelitis (EAE), an animal model for optic neuritis and mul-
tiple sclerosis [60]. In a 34-yr old man suffering from optic 
neuritis, administration of red wine (0.3 dl) improved the 
visual acuity within 30 minutes of drinking wine, and pro-
vided temporary improvement in peripheral blood flow and 
visual function [77]. Among other symptoms, diabetic reti-
nopathy is characterized by impaired ocular circulation and 
angiogenesis. In porcine retinal arterioles, an in vitro model 
for diabetic retinopathy, resveratrol (1-50 μM) induced the 
endothelium-dependent dilation or relaxation of arterioles, 
and this dilation was mediated by the released nitric oxide 
(NO) via NO synthase (NOS) activation by the extracellular 
signal-regulated (ERK) pathway, and the subsequent activa-
tion of soluble guanylyl cyclase [78]. In a pressure-induced 
cultured retinal ganglion cells (RGC-5), an in vitro model for 
glaucoma, resveratrol (20-40 μM) provided protection 
against increased oxidative stress and 4-hydroxy-2-nonenal 
(HNE) adducts and in C57LB/6 mice, the increased intraocu-
lar pressure (10-60 Hg) dose-dependently increased the for-
mation of HNE and the expression of protective protein 
heme oxygenase-1 (HO-1) in the mice retina [79]. The trabe-
cular meshwork (TM) cells control the outflow of aqueous 
humor and thus intraocular pressure in glaucoma. In pig TM 
cells exposed to oxidative stress (40% oxygen), resveratrol 
(25 μM) treatment effectively prevented increased produc-
tion of intracellular reactive oxygen species (iROS) and in-
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flammatory markers (interleukin (IL)1a, IL6, IL8; and endo-
thelial leukocyte adhesion molecule 1, ELAM-1), and re-
duced the expression of the senescence markers sa-b-gal, 
lipofuscin, and the accumulation of carbonylated proteins 
[80]. In addition, resveratrol has exhibited anti-angiogenic 
effects in the eye. In C57B16/J mice implanted with vascular 
endothelial growth factor (VEGF) and fibroblast growth fac-
tor 2 (FGF-2), resveratrol inhibited corneal neovasculariza-
tion [81], and in mice injected with tumor cells that cause 
uveal melanoma, resveratrol (0.5-20 μM) inhibited both tu-
mor size and volume through induction of mitochondria-
mediated and caspases-3 & -9 mediated apoptosis the tumor 
cells [82]. Furthermore, resveratrol (50-100 μM) suppressed 
the cell proliferation and increased mitochondria-mediated 
apoptosis in Y79 retinoblastoma cells [83]. In our recent 
study with E1A.NR3 retinal cells, Bax was upregulated in 
response to the antibody treatment, but resveratrol-induced 
SIRT1 activated Ku70 expression in the cytoplasm and this 
Ku70 appear to have suppressed the movement of Bax from 
cytoplasm to mitochondria and prevented antibody-induced 
apoptosis [74]. These studies clearly suggest broad therapeu-
tic roles of resveratrol in the eye. Resveratrol seem to pos-
sess anti-oxidant, anti-apoptotic, anti-inflammatory, anti-
angiogenic, and an ability to induce both anti-aging sirtuin 
and Keap1/Nrf2/ARE pathways.  

 The previous studies have shown that CR and CRMs 
upregulate yeast sirtuin protein, Sir2, a nicotinamide adenine 
dinucleotide (NAD)-dependent class III histone deacetylase. 
Besides influencing many other functions, yeast Sir2 extends 
the animal lifespan [25, 84, 85]. In nematodes and fruit flies, 
Sir2 also mediates the nutrient-sensing pathway of aging [66, 
86]. In rodents and human there are seven Sir2 homologues 
(SIRT1-7) that have been identified [87-90] and they express 
ubiquitously across different types of tissues [87, 88, 91]. 
The recent literature on mammalian SIRT1, the most studied 
sirtuin protein and generally implicated in longevity, sug-
gests that its expression is highly dependent on the nature of 
stimuli and the type of tissue [92]. SIRT1 is generally 
upregulated in diseases/stress states such as, cancer, inflam-
mation, neurodegeneration, DNA damage, oxidative stress, 
senescence, and CR, perhaps as a protective response [93-
101], but may be downregulated during aging [92]. Under 
normal conditions, transcription factor p53 binds to two spe-
cific promoter sites of SIRT1 gene and block SIRT1 tran-
scription, under mild stress, forkhead box O3a (FOXO3a) 
transcription factor associates with p53 and prevents its bind-
ing to the promoter site and activates the SIRT1 function 
such that it deacetylates E2F1, another transcription factor 
that binds to the SIRT1 promoter site and promotes SIRT1 
transcription [92].  

 There are two isomeric forms of resveratrol: biologically 
inactive cis-resveratrol and active trans-RES (3,5,4’-
trihydroxystilbene). Trans-resveratrol (or simply resveratrol) 
exhibits anti-aging effects by inducing SIRT1 protein in or-
ganisms ranging from yeasts to mammals [5, 6, 68, 102]. 
Although the beneficial effects of resveratrol to the eye are 
rapidly emerging in the literature, SIRT1 function in the eye 
has not been widely investigated. Because SIRT1-deficient 
mice have exhibited defects in the multiple layers of neu-
ronal retina [103], SIRT1 protein possesses crucial but yet to 
be defined functions in the eye. Interestingly, in SirT1

–/–
 ES, 

293T cells, SIRT1 did not affect p53-mediated apoptosis 

[104], and in Drosophila eye, overexpression of Sir2 pro-
motes caspase-dependent but p53-independent apoptosis that 
is mediated by the Jun kinase (JNK) and FOXO signaling 
pathways [105]. In rat undifferentiated E1A-NR3 retinal 
cells, resveratrol-induced SIRT1 expression increased the 
activation of Ku70 and reduced the production of Bax and 
prevented antibody induced retinal cell death [74]. A poly-
morphism in complement factor H (CFH) may increase the 
risk for ARMD [76]. In human ARPE-19 cells, the 
overexpression of SIRT1 attenuated FOXO3 recruitment to 
the CFH regulatory region and reversed the H2O2-induced 
repression of CFH gene expression [76]. In C33A retinoblas-
toma (Rb-null) cells, the overexpression of SIRT1 deacety-
lated and inactivated Rb protein, where as inactivation of 
SIRT1 by siRNA increased the accumulation of Rb protein 
[106]. These studies strongly suggest that SIRT1 protein is 
likely to affect many critical ocular functions that are yet to 
be substantiated.  

Benefits of Sulforaphane in Eye Disease 

 Many cruciferous vegetables such as, broccoli sprouts, 
cabbage, cauliflower, mustard, radish, and turnip contain a 
class of naturally occurring phytochemicals called isothiocy-
anates [107]. One such chemical is glucosinolate glucorap-
hanin, a precursor to sulforaphane [108, 109]. On fungal 
attack to the plant or injury by chewing, glucosinolate gluco-
raphanin is converted into active sulforaphane by an enzy-
matic activity involving myrosinase [107, 110]. Suforaphane 
is known to provide protection against many types of cancers 
predominantly by suppressing phase 1 enzymes such as cy-
tochrome P450 and activating phase 2 enzymes [110, 111]. 
Oxidants and electrophiles produced intrinsically or from 
extrinsic sources function as toxicants and accelerate not 
only the aging process but also cause numerous age-related 
pathologies. Phase 2 enzymes produced within the body de-
toxify these toxicants and protect the organism from injury. 
Examples of prominent phase 2 enzymes include glutathione 
transferases (GSTs), glutathione reductase (GSR), glu-
tathione peroxidase (GPX), UDP-glucuronosyltransferases 
(UGTs), and NAD(P)H:quinone oxidoreductase 1 (NQO1), 
thioredoxin reductase (TrxR), and heme oxygenase 1 (HO-1) 
[26]. These phase 2 genes are activated by Keap1/Nrf2/ARE 
pathway [26]. Under normal conditions, Keap1 binds to the 
transcription factor Nrf2, retains it in the cytoplasm and 
promotes its protesomal degradation. However, in the pres-
ence of stress-inducers, Keap1 becomes highly reactive and 
changes its conformation leading to the release of Nrf2. The 
free Nrf2 moves from cytoplasm to nucleus, where upon 
interacting with small Maf (sMaf) transcription factor binds 
to ARE and promote transcription of cytoprotective phase 2 
genes [110].  

 In human ARPE-19 cells, an in vitro model for ARMD, 
sulforaphane (0.62-5 μM) provided protection against the 
ROS toxicity induced by oxidative stressors (menadione, 
tert-butyl hydroperoxide, 4-hydroxynonenal, and peroxyni-
trite) by upregulating phase 2 proteins such as, glutathione 
(GSH) and quinone reductase (QR) [112]. Similarly, sul-
foraphane or a bis-2-hydroxybenzylideneacetone (2-HBA) 
pre-treatments provided protection against retinaldehyde 
photosensitized oxidation of ARPE cells and fibroblast cell 
lines from 13.5-day-old embryos of several double-knockout 
mice, by inducing NQO1 and GSH [113, 114]. In these cells, 
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the PI3K/Akt pathway played an important role in regulating 
Nrf2-dependent activation of ARE and protection against 
oxidants [115]. Not just sulforaphane, other phytochemicals 
such as, fisetin, quercetin, myricetin, eriodictyol, taxifolix, 
epicatechin, epigallocatechin-3-gallate, and zinc metal in-
duced the expression of Nrf2, GSH, NQO1, HO-1, gluta-
mate-cysteine lygase (GCL) [116-118]. In male BALB/c 
mice, both oral and i.p. administered sulforaphane (0.1 -0.5 
mg) induced thioredoxin (Trx) in mice retina and protected 
the retina against light-induced damage and in human K-
1034 RPE cells, sulforahane induced the binding of Nrf2, 
small Maf, and c-Jun to the ARE of the Trx gene [119]. Fur-
ther, similarly in bright-cyclic-light-reared albino Sprague-
Dawley rats, sulforaphane treatment increased upregulation 
of the retinal levels of Trx, thioredoxin reductase (TrxR), 
and proteins modified by 4-hydroxynonenal (4-HNE), in 
addition to increased nuclear translocation of Nrf2 and the 
DNA binding activity of Nrf2, small Maf, and cJun to the 
ARE [120]. In the same study, in 661W photoreceptor cells, 
pretreatment with a sub-lethal dose of 4-HNE protected cells 
against H2O2-induced cell damage, by upregulating cellular 
Trx, TrxR, and HO-1 levels in addition to DNA binding ac-
tivity of Nrf2, small Maf, and cJun to the ARE [120]. Both 
in Tubby mice & C57BL/6J mice, sulforaphane-induced 
upregulation of Trx, TrxR, Nrf2 was associated with in-
creased activation of ERKs in preventing photoreceptor de-
generation [121]. In addition, in 661W photoreceptor cells, 
sulforaphane and minocycline inhibited light-induced photo-
receptor apoptosis partly by downregulating nuclear factor-
kappaB (NF- B) p65 subunit, but not effecting mitogen-
activated protein kinase (MAPK) [122]. Similarly, in retinal 
microglial cells derived from Sprague-Dawley rats, these 
compounds inhibited lipopolysaccharide-induced retinal mi-
croglial activation by suppressing the production of induc-
ible nitric oxide synthase (iNOS) and IL-10 [123]. These 
studies provide compelling evidence on the protective role of 
Keap1/Nrf2/ARE pathway and its cross-talk with different 
types of kinases in eye disease. 

Benefits of Curcumin in Eye Disease 

 Curcumin is the main bioactive compound derived from 
the rhizomes (thick, modified roots) of the turmeric plant. It 
has been traditionally used for centuries in Indian cooking 
and in Ayurvedic medicine for the treatment of most debili-
tating diseases. In the last couple of decades, curcumin is one 
of the most intensively studied herbal drugs across all major 
divisions of medicine. This renewed scientific interest is 
frequently attributed to its numerous health benefits in sev-
eral pathologies including eye diseases. The current eye 
literature seems to suggest that curcumin is most beneficial 
in the eye as an anti-inflammatory drug.  

 Curcumin at 0.002% (but not 0.01%) delayed the onset 
and maturation of galactose-induced cataract in Sprague-
Dawley rats by exerting antioxidant and antiglycating ef-
fects, as it inhibited lipid peroxidation, AGE-fluorescence, 
and protein aggregation [124]. In Wistar NIN rats, curcumin 
(0.002-0.01%) and turmeric (0.5%) delayed the progression 
and maturation of STZ-induced diabetic cataract in a dose-
dependent manner by reversing the hyperglycemia-induced 
oxidative stress, with turmeric being more effective than the 
corresponding dosage level of curcumin [125]. A pre-
treatment (24 h) with curcumin (15 μM) protected cells 

against N-methyl-D-aspartic acid (NMDA)-induced excito-
toxicity by reducing the intracellular calcium rise in primary 
retinal cell culture from Wistar rats [126]. Further, in strepto-
tocin (STZ)-induced diabetic Lewis rat retina, curcumin 
(0.05%) restored antioxidant capacity, reduced oxidatively 
modified DNA (8-OHdG) and nitrotyrosine levels, and pro-
vided partial beneficial effects on GSH, in addition to reduc-
ing the diabetes-induced elevation of inflammatory factors 
IL-1 , VEGF and NF- B [127]. In 661W and ARPE-19 
cells, in vitro models for AMD, curcumin protected cells 
from H2O2–induced cell death and upregulated protective 
enzymes, such as HO-1, Trx1, and Nrf2 [128]. These studies 
clearly suggest that in age-related eye diseases, curcumin 
appears to trigger Keap1/Nrf2/ARE pathway and protect eye 
by upregulation of cytoprotective phase 2 genes.  

 Uveitis is the most prominent inflammatory response, 
occurring in the middle, pigmented layer of the eye called 
uvea (iris, ciliary body, and choroid) as well as in adjacent 
tissues including retina. The animals models for uveitis sug-
gest that the process of blood cell leakage is a function of 
complex, well-orchestrated molecular interactions involving 
two critical early events: (1) activated blood cells—
lymphocytes (CD4+ T helper cell subtypes Th1 and Th17 
cells), monocytes (macrophages), and granular leukocytes 
(neutrophils), and (2) inflamed endothelial cells in the blood 
vessels. Activated Th1 cells secrete inflammatory cytokines 
such as, interferon-gamma (IFN- ), interleukin-6 (IL-6), and 
tumor necrosis factor-alpha (TNF- ). Besides secreting 
TNF-  and IL-6, Th17 cells also secrete IL-17, a cytokine 
that participates in the pathology of uveitis. The secreted 
cytokines trigger the production of cell adhesion molecules 
by endothelial and other surrounding cells. In a single pub-
lished article on the efficacy of curcumin in the management 
of chronic anterior uveitis, a group of patients who received 
oral administration of 375 mg of curcumin 3 times a day for 
12 weeks, showed efficacy and recurrence rate comparable 
to corticosteroid therapy but without any adverse drug ef-
fects [129]. Topical application of aqueous solution of tur-
meric (0.1%) to rabbit eyes (3 times/day for 3 days) prior to 
the induction of LPS endotoxin-induced uveitis (EIU) sig-
nificantly reduced the clinical symptoms of EIU [130]. Cur-
cumin (10-30 μM) inhibited stroma-derived factor-1  (SDF-
1 )-induced CXCR4 cytokine receptor signaling in human 
retinal endothelial cells (HRECs) and inhibited the growth of 
new blood vessels in proliferative diabetic retinopathy [131]. 
In addition, it dose-dependently reduced the viability of 
HRECs and at 10 μM concentration inhibited high glucose-
induced proliferation of HRECs by attenuating VEGF-
induced signaling [132]. In a recent study, the inflammatory 
cytokine TNF-  disrupted the barrier function by causing 
disappearance of zonula occluden-1 (ZO-1) protein from 
tight junctions and this disruption was prevented by curcu-
min (5-10 μM) through blocking of NF-kB protein [133]. 
Curcumin (20-100 μM) also dose-dependently down-
regulated IL-8 and monocyte chemotactic protein 1 (MCP-1) 
expressions in human retinal pigment epithelial cells follow-
ing stimulation with glycated human serum albumin, a cell 
culture model for studying diabetic retinopathy [134]. These 
studies strongly suggest that curcumin possesses therapeutic, 
anti-inflammatory functions and modulates numerous in-
flammatory pathologies in human eye and elsewhere in the 
body.  
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BIOAVAILABILITY AND SAFETY CONCERNS RE-
LATED TO CR MIMETICS  

 The bioavailability and safety of a given CRM depends 
on the following three considerations: (1) absorption by hu-
man colon, (2) crossing the blood-retinal barrier, and (3) 
causing minimal adverse drug effects [135]. Although 
bioavailability of none of the three prominent CRMs (resev-
eratrol, sulforaphane, curcumin) specifically in the eye is 
known, based on their studies in other organs (plasma, intes-
tine, brain), they seem to be as readily bioavailable to the eye 
as readily as in the brain. Some limited bioavailability data 
on these three CRMs are discussed below. 

Resveratrol 

 A broad range of resveratrol doses seem to affect benefi-
cial biological functions in the published in vivo bioavailabil-
ity studies involving rodents and humans [63, 136-142]. The 
maximum tolerated dose of resveratrol in mice is 4 g/day/kg 
body weight for 28 days [143]. In our preliminary studies 
with Lewis and Sprague-Dawley rats, 100 mg/kg body 
weight was well tolerated by the animals, as the animals 
showed no signs of any adverse drug effects. Bioavailability 
studies in resveratrol have consistently shown that it forms 
glucuronide and sulfate conjugates within 30 min of injec-
tion, suggesting a very low bioavailability of original agly-
cone [137, 141, 142, 144]. Red wine and cooked peanuts 
seem to possess larger quantities of resveratrol rather than 
white wine and raw peanuts [136]. However, experts believe 
that many of the useful effects of resveratrol come not only 
from aglycone but also from the modified resveratrol glucu-
ronide and resveratrol-3-sulfate conjugates that circulate in 
the blood stream in minute quantities.  

Sulforaphane 

 Relative to resveratrol and curcumin only a limited num-
ber of bioavailability studies have been performed for sul-
foraphane. When rats were injected intravenously with sul-
foraphane or fed orally, sulforaphane was absorbed rapidly 
and showed an absolute bioavailability of 82% in the plasma 
and showed a dose-dependent pharmacokinetics [145]. A 
recent study in humans determined the bioavailability of 
sulforaphane after the consumption of raw and cooked broc-
coli [146]. Higher levels of sulforaphane conjugates were 
detected in blood and sulforaphane-derived mercapturic acid 
in urine when broccoli was consumed raw than cooked. The 
consumption of raw broccoli resulted in faster absorption as 
well as higher bioavailability (37% for raw versus 3.4% for 
cooked) of sulforaphane in the blood [146]. Another 
bioavailability study involving humans also suggested that 
bioavailability of isothiocyanates was three times greater in 
raw broccoli than the cooked broccoli [147]. 

Curcumin 

 A combination of curcumin’s broad biological functions, 
its unique ability to be used as a dietary supplement, appar-
ent lack of toxic effects even at extraordinary quantities, and 
its cheap availability in the market, make it suitable for the 
development of most essential preventative drugs for the 
treatment of high-risk patients. Federal Food and Drug Ad-
ministration listed curcumin as “generally regarded as safe” 
drug. Although curcumin is a safe drug, it exhibits poor 
bioavailability after oral consumption. In a Phase I clinical 

trial of curcumin with 25 patients suffering from high-risk or 
pre-malignant lesions, the curcumin dosages were gradually 
increased from 0.5 g/day to 1, 2, 4, 6, 8, 12 mg/day [148]. 
The peak serum concentrations after 1-2 hours of oral con-
sumption of 4, 8, and 6 g/day were 0.51±0.11, 0.63±0.06, 
and 1.77±1.87 μM, respectively [148]. Although there were 
no toxic effects at 12 g/day dose, bulkiness of the drug was 
not relished. Since then numerous bioavailability studies 
have been conducted and a general story is that curcumin can 
easily reach distant organs in the body including liver, lungs, 
heart, and brain and affect biological functions in minute 
concentrations. Overall there is a limited oral bioavailability. 
When administered i.p. or i.v., bioavailability slightly in-
creases but not substantially. The major reasons for the low 
bioavailability include: rapid metabolism, rapid systemic 
elimination, and poor absorption by the target tissues [149, 
150]. Perhaps its poor bioavailability and yellow color ap-
pear to be the main limitations for therapeutics and drug de-
velopment. Yet, curcumin is considered as the lead molecule 
for dozens of drugs under development. In the academia and 
pharmaceutical world alike, there seems to be a race towards 
developing curcumin formulations that enhance its bioavail-
ability in the target tissue. Many curcumin formulations have 
been suggested: mixing curcumin with adjuvant piperine that 
blocks curcumin metabolism, or formulations with nanopar-
ticles, liposomes, micelles, and phospholipid complexes 
[149, 150-152]. An optimized lipid formulation of curcumin, 
for example, increased its oral bioavailability by 11-fold in 
plasma and 4-fold in the brain compared to curcumin alone 
formulation (Verdure Sciences, Noblesville, Indiana). Two 
weeks after administration of lipidated form of curcumin in 
chow at 500 ppm (or 25 mg/kg body weight), the drug 
concentration in the mouse brain was 5.79±1.22 M, which 
is remarkably well above the 1-2 μM range of EC50 required 
for inhibition of iNOS, IL-1 , and PGE2 in Alzheimer’s 
animal models for neuroinflammation [153]. Collective evi-
dence on curcumin bioavailability and molecular functions 
suggests that concentrations ranging from 10 nM to 50 μM 
ranges are suitable for our in vitro studies with human retinal 
endothelial cells, and wide ranging doses at milligram levels 
to even a gram (say 10 mg to 1 g) can be safely employed for 
in vivo studies depending on the formulations.  

CONCLUSIONS 

 The CRM resveratrol appears to function as a pleiotropic 
compound that triggers multiple beneficial effects including 
the activation of both anti-aging sirtuin and 
Keap1/Nrf2/ARE pathways in age-related and eye diseases 
that occur in all ages. Both sulforaphane and curcumin also 
exhibit pleiotropic beneficial effects that include the 
Keap1/Nrf2/ARE pathway, but not the sirtuin pathway. 
While sulforaphane seem to exert its beneficial functions in 
age-related diseases, curcumin appears to affect beneficial 
functions in both age-related and diseases such as uveitis that 
may occur at any age.  
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