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1. INTRODUCTION 

 Many phenomena in nature can be described by 
mathematical models. Typically, the solution of such models 
cannot be given in a closed (analytical) form, therefore we 
construct numerical models in order to approximate the exact 
solution. The investigation of the numerical solution of 
nonlinear operator equations in an abstract (Banach space) 
setting has been done in several works, e.g., in Keller [4], 
Stetter [7] and many others. 

Roughly speaking, the consistency is the characterization 
of the local (truncation) error of the method, which is the 
error committed by one step of the method. (It is the 
difference between the result given by the method, assuming 
that no error was made in earlier steps, and the exact 
solution.) On the other hand, the stability guarantees that the 
numerical method produces a bounded solution whenever 
the solution of the exact differential equation is bounded, in 
other words, the local truncation errors are damped out. 
Convergence means that the numerical solution 
approximates the solution of the original problem, i.e., a 
numerical method is said to be convergent if the numerical 
solution approaches the exact solution as the discretization 
parameter (usually the step size of the mesh) goes to zero. 

The basic problem is the following. The definition of 
convergence assumes the knowledge of the solution of the 
original (continuous) problem, therefore it cannot be verified 
directly. Our aim is its replacement with simpler conditions. 
The main result is that the convergence can be guaranteed by 
two, directly verifiable conditions, which are consistency 
and stability. 

In this context the suitable choice of the stability plays a 
crucial role: it should be chosen to guarantee the  
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convergence (together with the consistency), moreover, that 
the condition can be verified in the applications. The 
relationship between stability and convergence for linear 
problems, hinted by Courant, Friedrichs and Lewy in the 
1920’s ([2]), identified more clearly by von Neumann [1] in 
the 1940’s and brought into organized form by Lax and 
Richtmyer in the 1950’s as the Lax (alternatively, Lax-
Richtmyer-Kantorovich) equivalence theorem (Lax, 
Richtmyer [6]), which states that for consistent numerical 
approximations, stability and convergence are equivalent. 
However, the stability notion for nonlinear problems are less 
investigated. 

Unfortunately, von Neumann’s stability is necessary and 
sufficient for stability in the sense of the Lax equivalence 
theorem only in certain cases: the models must be linear, the 
considered partial differential equation must be constant-
coefficient with periodic boundary conditions, etc. However, 
due to its relative simplicity it is often used in place of a 
more detailed stability analysis as a good guess at the 
restrictions (if any) on the step sizes used in the scheme. 

Stability, in general, can be difficult to investigate, 
especially when the equation under consideration is 
nonlinear. 

The various nonlinear stability notions (Keller [4], Stetter 
[7], Trenogin [8]) are useful for theoretical results, but it is 
not straightforward to verify them. As for the application of 
these stability notions, they are applied to the well-known 
initial-value problem where the right-hand side function f  
is globally Lipschitzian. In [3] we analyzed the explicit Euler 
method (EE method) on uniform grid and also its S-stability 
(and thus K-stability, too) for this problem. It has been 
shown that this method is T-stable, too (see [8]). In this work 
we have also considered the nonlinear abstract setting, and 
we showed that for different nonlinear stability notions the 
conditions of consistency and stability together are a 
sufficient, but not a necessary condition for the convergence. 
For the applied discretization we have considered the same 
model: explicit Euler method on uniform mesh. 
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In this paper we generalize our results. We will show that 
for the above described initial-value problem a much wider 
class of numerical methods is T-stable. Namely, we prove 
that the explicit and implicit one-step methods, including 
both the explicit and implicit Runge-Kutta methods (ERK, 
IRK methods) are T-stable on both uniform and non-uniform 
grids. 

The paper is organized as follows. In Section 2 we give 
the mathematical formulation and a general description of 
the mathematical and numerical models. Moreover, we 
define the basic numerical notions (convergence, 
consistency). In Section 3 we introduce the notion of T-
stability based on the work of Trenogin, we formulate the 
classical results and add further properties. In Section 4 we 
verify the T-stability for initial-value problems for the above 
mentioned cases. In Section 5 we make remarks and draw 
conclusions. 

2. MATHEMATICAL BACKGROUND 

We consider a given problem of the form  

F(u) = 0,             (1) 

where YD:F  is a (nonlinear) operator, XD , X  and 
Y  are normed spaces. In the theory of numerical analysis it 
is usually assumed that there exists a unique solution, which 
will be denoted by u . 

Definition 1  

Problem (1) can be given as a triplet ),,(= FYXP . We 
will refer to it as problem P .  

Definition 2 We say that the sequence 
 
N = (Xn ,Yn ,Fn )n N

 is 

a numerical method if it generates a sequence of problems  

 
Fn (un ) = 0, n = 1,2,…,             (2) 

where  

• 
nn YX ,  are normed spaces,  

• nn XD  and nnnF YD:  .  

If there exists a unique solution of the (approximating) 
problems (2), it will be denoted by nu  .  

Definition 3 We say that the sequence 

N
D nnnn ),,(=  is a discretization if  

• the n -s (respectively n -s) are restriction operators 

from X  into nX  (respectively from Y  into nY ), where 
nn YYXX ,,,  are normed spaces,  

• 
 n : F :D Y|D X{ } Fn :Dn Yn |Dn Xn{ } .  

In the sense of this definition we can imagine the general 
scheme in the following way, as shown in (Fig. 1):  

Assumption 4 The discretization D  possesses the 
property 0=(0)n .  

Assumption 5 The discretization D  generates a 
numerical method N  which possesses the property 

<dim=dim nn YX .  

 

Fig. (1). The general scheme of numerical methods.  
 

Assumption 6 Let us apply the discretization D  to 

problem P . We assume that nF  is continuous on some ball 
))(( uB nR .  

Definition 7 The element 
nnnn uue X)(=  is called 

global discretization error.  

Definition 8 The discretization D  applied to problem  P  
is called convergent if  

 
lim || en ||

Xn
= 0             (3) 

holds.  

Definition 9 The element 

nnnnn vFvFvl Y))(())((=)(  is called local 

discretization error at the element v . The local discretization 
error on the solution, i.e., 

))((=))(())((=)( uFuFuFul nnnnnn
, is called local 

discretization error.  

Definition 10 The discretization  D  applied to problem 
P  is called consistent on the element Dv  if  

• 
nn v D)(  holds from some index,  

• the relation  

 
lim ln (v)

Yn
= 0             (4) 

holds.  

3. T-STABILITY AND ITS APPLICATIONS 

In the 1980’s V. A. Trenogin laid down the foundations 
of this topic. Namely, by giving the definition of T-stability, 
the EE method is considered on a uniform grid, and its T-
stablility for the initial-value problem is proven. First we 
consider Trenogin’s stability definition [8]. 

Definition 11 The discretization D  is called stable in 
Trenogin’s sense (T-stable) if there exists a continuous, 
strictly monotonically increasing function )(s , defined for 

0s , such that 0=(0)  and =)( , and  

 

vn
1 vn

2

Xn
Fn (vn

1 ) Fn (vn
2 )

Yn

            (5) 

holds for all nnn vv D
21 ,

.  
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Several theoretical results derived from Definition 11 
(convergence of the numerical method, uniqueness of the 
discrete solution) can be found in [8]. 

In our consideration we suppose that ),( nn Lin XX . 

Definition 12 The sequence of 
n

X
 norms is called 

consistent to the norm 
X

, when for an arbitrary Xv  the 
relation  

 
lim || n (v) ||

Xn
=|| v ||

X
 (6) 

holds.  

Remark 13 In most cases this condition is automatically 
satisfied.  

For consistent norms the following property is valid. 

Lemma 14 When the norms 
 

Xn

 are consistent to the 

norm 
X

, then the relation v = 0  is valid if and only if 

lim n (v)
Xn

= 0 . 

Proof. We consider two cases.  

• If 0=v , then 0==)(lim
XX

|||||||| vv
n

n ;  

• If lim || n (v) ||
Xn

= 0 , then 0=
X

|||| v  and hence, 
0=v .  

Remark 15 Generally, when in the spaces 
nX  

 
lim n (v)

Xn
= 0  if and only if v = 0 , we say that the spaces 

nX  are regularly normed. Hence, when 
n

X
 is consistent to 

the norm 
X

 , then 
nX  are regularly normed spaces.  

Theorem 16 Suppose that  

• the sequence of norms 
n

X
 is consistent to the norm 

X
 ,  

• there exists a solution to the problem (1)-(2),  

• the discretization D  is consistent and T-stable at the 
element u .  

Then  

• u  is unique,  

• for any Nn  the discrete solution nu  is unique,  

• the numerical method is convergent.  

Proof.  

• Let 21,vv  be solutions of (1) and assume that for these 
elements the relations  

0=))((lim0;=))((lim 21
n

nn
nn

nn
n

vFvF
YY

 

hold. Then  

n
nnnn

n
n vFvFvv

YX
)))(())((()( 21

1
21

 

0)))(())((( 21
1 +

n
nn

n
nn vFvF

YY

 if n . 

Hence, we get  

0.=)(lim 21
n

n
n

vv
X

 

The solution is unique, due to the fact that the finite 
dimensional spaces nX  are regularly normed.  

 • Let 
nv1  and 

nv2  be two solutions of (2). Substituting 
into (5), we get  

0,)()()(=0 2121
n

nn

n

n

n

n

n vvvFvF
XY

 

i.e., 
0=)( 21

n

nn vv
X . From the norm property it 

follows that 
nn vv 21 = .  

 • Let 1v  and 
nv1  be solutions of (1) and (2), respectively. 

From the Definition 11 we gain  

,)))(((=)))(()(()( 1
1

11
1

11
n

n
n

n

n

n
n

n vFvFvFvv
YY

X  

where we have used the consistency and also the 
continuity of the function 1  at the point 0=t , i.e., it 
approaches zero when n  tends to .  

3.1. How to Verify T-Stability for an Initial-Value Prob-
lem? 

In this part we revise Definition 11 from the application 
point of view. Consider the well-known autonomous initial-
value problem:  

u (t) = f (u(t))  (7) 

u(0) = u0 ,  (8) 

where 
 
t [0,1], u0 R  and 

 
f :R R  is a Lipschitz 

continuous function. In the usual way a non-autonomous 
initial-value problem can be written in an autonomous form, 
where right-hand side function of the original problem is 

denoted by ))(,( tutf . 

In the sense of Definition (1), (2) and (3) the operators 

nnnnFF ,,,,  and the spaces 
nn YXYX ,,,  are defined as 

follows: 

•  |,)(|max=[0,1],= [0,1]
1 tuuC tX

X   

•  
|,||))((|max=,[0,1]= 0[0,1]

0

utu
u

u
C t +

Y

RY
  

•  
.

(0)

))(()(
=)(

0uu

tuftu
uF

  

Applying the given one-step method to problem (7)-(8), 
for Nn  we define the following sequence of triplets:  

•  |,|max=:),,,(=,= ,0,=10
1

ini
n

nnnn

n

n vvvvvv ……
X

XRX
+

 

•  |,|max|=|:),,,(=,= ,1,=010
1

ini
n

nnnn

n

n yyyyyyy …… ++

Y
YRY  

•  The definition of the operator 11: ++ nn

nF RR  depends 
on the chosen one-step method.  

We define the pair of the restriction operators as follows:  
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•  For any Xx  we put nitxx iin ,0,1,=),(=)]([ … , 

•  For any Yy  we put  

 

( )

0.=),(

,,1,=,

=)]([

0

1

ity

nity

y

i

in

…

 

•  The definition of the operator 
 n (F)( n ) :C1[0,1] R

n+1  
depends on the chosen one-step method.  

Remark 17 In the following section we will define 
precisely the operators 

nF  and 
n
 for the explicit and 

implicit one-step methods.  

To verify the T-stability of a given method applied to 
problem (7)-(8), we consider the equation  

Fn (xn + zn ) Fn (xn ) = yn ,             (9) 

 where xn  is some parameter, and zn  is unknown. If we 

can give an estimation in the form  

 
zn Xn

( yn Yn
),           (10) 

where the properties of )(s  correspond with the 
properties of )(s , then by the choice )(:=)( 1 ss  we 
prove the T-stability. 

Let 
n

n xx 1= , while 
n

nn xzx 2=+  in (9). Then 

n

n

n

n

n yxFxF =)()( 12  and n

nn zxx =12 . Based on 
estimation (10), we get  

).)()(( 1212
n

n

n

n

n
n

nn xFxFxx
YX

 

Because the inverse of  exists and it is strictly 
monotonically increasing, we have  

 

1( x2
n x1

n

Xn
) Fn (x2

n ) Fn (x1
n )

Yn
.           (11) 

This matches the stability estimation in Definition 11.  

To verify stability, we have to prove that the estimation  

 

zn Xn
c yn Yn

= c(
1 i n
max | yi | + | u0 |)           (12) 

holds. 

4. T-STABILITY OF ONE-STEP METHODS FOR THE 
INITIAL-VALUE PROBLEM 

In this section we generalize Trenogin’s result. Namely, 
we show that, under a natural assumption, any explicit or 
implicit one-step method is T-stable for the initial-value 
problem on a non-uniform mesh, too. 

Consider the non-uniform grid:  

  
Gn := {hi = ti ti 1, i = 1,…,n, 0 = t0 < t1 <… < tn = 1}.    (13) 

The general form of the one-step method can be written 
as  

),,,,(= 111 iiiiiii hyythyy +           (14) 

where :R4
R  defines the given numerical method 

 N . (We note that the function  is called the increment 
function and can be interpreted as an estimate of the slope of 

yi .) We will say that the methods are explicit if 

= (ti 1, yi 1,hi ) . In the other case the methods are 

implicit. 

4.1. Explicit One-Step Methods 

In this part we consider the case where the numerical 
method is explicit. To this aim, we define the operators Fn

 
and n  as follows:  

• Fn :Rn+1
R

n+1  and for any 
  
vn = (v0 ,v1,…,vn ) R

n+1  it 

acts as  

Fn (vn )( )i
=

1

hi

vi vi 1( ) ti 1,vi 1,hi( ), i = 1,…,n,

v0 u0 , i = 0.

     (15) 

• In order to give n , we define the mapping 

 n (F)( n ) :C1[0,1] R
n+1  in the following way:  

 

nF( )( nu)
i
=

u(ti ) u(ti 1)

hi

(ti 1,u(ti 1),hi ), i = 1,…,n,

u(t0 ) u0 , i = 0.

 
(16)

 

Next we verify the T-stability property of the operator of 
the explicit one-step methods, given in (16). 

In the sequel we assume that  is a Lipschitz continuous 
function with respect to its second variable, by the constant 
L . It means there exists a constant 0L  such that for 
arbitrary R21, ss  the estimation  

| (ti 1, s1,hi ) (ti 1, s2 ,hi ) | L | s1 s2 |  (17) 

holds for 
 
ti 1 Gn

 and 0 < hi
. 

Remark 18 The Lipschitz assumption (17) is obviously 
necessary in proving the convergence. For the explicit 
Runge-Kutta methods this condition can be guarantied 
directly: when the Lipschitz assumption for the function f  
in (7) is valid, then the increment function  of the eligible 
explicit Runge-Kutta method satisfies the condition (17). 
(For non-autonomous problems the same Lipschitz condition 
is w.r.t. the second variable.)  

Substituting nF  into (9) and (15), we gain 

zi zi 1

hi

=yi+( (ti 1, xi 1+zi 1,hi ) (ti 1, xi 1,hi )) 1 i n,

z0 = u0 , i = 0.

     (18) 

From (18), we get the estimation  
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| zi | (1+ L hi ) | zi 1 | +hi | yi |, i = 1,…,n.      (19) 

4.1.1. The case of hi h  

 For each index i  writing out (19) and applying it 
recursively, we get  

| z1 | (1+ L h) | u0 | +h yn  

| z2 | (1+ L h)2 | u0 | +h yn (1+ (1+ L h))  

 

 

| zn | (1+ L h)n

I .

| u0 | + yn h
k=0

n 1

(1+ L h)k

II .

.  (20) 

In the next step we estimate the terms on the right-hand 
side of (20). 

LhnL
eeI =.  

II . h
k=0

n 1

(1+ L h)k = h
(1+ L h)n 1

1+ L h 1
h

e
L hn

1

L h
=

e
L

1

L
 

Then we get for the norm of nz  the following estimation:  

n
n

L

n

L

n
n yc

L

e
yuez

YX
+

1
|| 0

 

with the choice  

).
1

,(max=
L

e
ec

L
L

 

This implies the validity of the estimation (12). 

Hence, we have proved the following statement. 

Theorem 19 Under the condition (17), on a uniform grid 
the explicit one-step numerical method (14) is T-stable.  

Therefore, on the basis of Remark 18, the following 
statement is true. 

Corollary 20 For the Lipschitz continuous function f  
on a uniform grid the explicit Runge-Kutta methods are T-
stable.  

Remark 21 For (ti 1, xi 1,h) f (ti 1, xi 1)  we obtain the 

EE method on a uniform grid. Thus, Theorem 19 implies 
Trenogin’s basic result. (The constant c  is the same which 
is given in [8].)  

4.1.2. The Case of a Non-Uniform Mesh 

When the grid is non-uniform, i.e., the step size is not 
constant, we can use the previous formula. Namely, for each 
index i  writing out (19) and applying it recursively, we get  

| z1 | (1+ L h1) | u0 | +h1 yn  

 

| zn | (1+ L hn ) … (1+ L h1) | u0 |
I .

+

+ yn

k=1

n

hk (1+ L hk+1) … (1+ L hn )

II .

.

 (21) 

In the next step we estimate the terms on the right-hand 
side of (21).  

++ Lh
n

hLhL
n

hL
eeeeI ==.

)1(1 …

…  

( )

( )
L

e
e

L
edtee

dteeeheehII

L
tLLtLL

tLk
t

k
t

n

k

L
k

tL

k

n

k

LL
k

t

k

n

k

1
=]

1
[==

=<)(=.

1
0

1

0

11=1=

)(1

1=

 

 Then for the norm of nz  we get the following 
estimation:  

n
n

L

n

L

n
n yc

L

e
yuez

YX
+

1
|| 0

 

with the choice  

).
1

,(max=
L

e
ec

L
L

 

Therefore, we obtain the estimation in the form (12). 

Hence, like for uniform meshes, we have proved the 
following statements. 

Theorem 22 Under the condition (17), on a non-uniform 
grid the explicit one-step numerical method (14) is T-stable.  

Corollary 23 For a Lipschitz continuous function f  on 
a non-uniform grid the explicit Runge-Kutta methods are T-
stable.  

4.2. Implicit One-Steps Methods 

In this part we move on to the consideration of implicit 
one-step methods, particularly, to the investigation of 
implicit Runge-Kutta methods. 

As we have already mentioned in Remark 17, we have to 
define the operators nF  and n . In the sequel the operators 
are given as follows:  

•  
 
Fn :Rn+1

R
n+1  and for any 

  
vn = (v0 ,v1,…,vn ) R

n+1  it 

acts as  

 

Fn (vn )( )i
=

1

hi

vi vi 1( ) ti 1,vi 1,vi ,hi( ), i = 1,…,n,

v0 u0 , i = 0.

 (22) 

•  In order to give n , we define the mapping 

 n (F)( n ) :C1[0,1] R
n+1  in the following way:  

nF( )( nu)
i
=

u(ti ) u(ti 1)

hi

(ti 1,u(ti 1),u(ti ),hi ), 1 i n,

u(t0 ) u0 , i = 0.

    (23) 
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Hence, we have to verify the T-stability of the operator, 

given in (23). In the following we suppose that  is a 
Lipschitz continuous function with respect to its second and 
third variable, by the constants L

1
 and L

2
. It means there 

exist L
1
, L

2
0  constants, such that for arbitrary 

 
s1, s2 , p1, p2 R  the estimation  

| (ti 1, s1, p1,hi ) (ti 1, s2 , p2 ,hi ) | L
1

| s1 s2 | +L
2

| p1 p2 |  (24) 

holds for 
 
ti 1 Gn  and 0 < hi . 

Remark 24 For the implicit Runge-Kutta methods the 
Lipschitz assumption (24) can be also guaranteed directly: 
when the Lipschitz assumption for the function f  in (7) is 
valid, then the increment function  of the eligible implicit 
Runge-Kutta method, for a sufficiently small h , satisfies the 
condition (24).  

Substituting nF  into (9), (22) and using the Lipschitz 
condition (24), we get the estimation  

.,1,=|),|||(||||||
2111 nizLzLhyhzz iiiiiii …+++

 

Hence, we get  

 

| zi |
1+ hiL 1

1 hiL 2

| zi 1 | +
1

1 hiL 2

hi | yi |, i = 1,…,n.        (25) 

We give an estimation for 1

1 hiL 2

. If hiL 2
[0,0.5]  for 

all i , then we can write this expression as  

.
1

1
)(1=

1

1
1

2

2

22

2

++
Lh

LhLh
Lh i

ii

i  

Obviously, for the values [0,0.5]
2

Lhi
 the following 

estimation holds:  

.
1

)(

2

2

2

2 Lh
Lh

Lh

i

i

i

 

Therefore, we have the upper bound  

).(2exp21
1

1
22

2

+ LhLh
Lh

ii

i  

Thus, we can write equation (25) in the form:  

 
| zi | (1+hiL 1

)(1+2hiL 2
) | zi 1 |+(1+2hiL 2

)hi | yi |, i = 1,…,n.  (26) 

4.2.1. The Case of hi h  

For each index i  writing out (26) and applying it 
recursively, we get  

++++ nyhhLuhLhLz )2(1||)2)(1(1||
20211  

 

| zn | ((1+hL
1
)(1+2hL

2
))n

I .

+ yn h
k=1

n

(1+hL
1
)k 1(1+hL

2
)k

II .

.  (27)
 

In the next step we estimate the terms on the right-hand 
side of (27).  

2
2

12
2

12
2

1 ==.
+ LLLLhnLhnL

eeeeeI  

21

2
2

1

221

2

1

2
2

1

21

1

21

21
1=

2

1

22

1

1))(1(1

1)])(1[(1
)])(1[(1.

++

+

+++

++

++
++

LL

e

hLLLhhL

e
h

hLhL

hLhL
hhLhLhII

LLLL

n

k
n

k

 

 Then for the norm of nz  we get the following 
estimation:  

n
n

LL

n

LL

n
n yc

LL

e
yuez

YX +
+

+
+

21

2
2

1

0
2

2
1

2

1
||

 

with the choice  

).
2

1
,(max=

21

2
2

1
2

2
1

+
+

+ LL

e
ec

LL
LL

 

Hence, we obtain the estimation (12), which shows the 
validity of the following statements. 

Theorem 25 Under the condition (24) on a uniform grid, 
the implicit one-step numerical method (23) is T-stable.  

Corollary 26 For a Lipschitz continuous function f  on 
a uniform grid the implicit Runge-Kutta methods are T-
stable.  

4.2.2. The Case of Non-Uniform Meshes 

In the sequel we consider the implicit one-step methods 
on non-uniform meshes. Similarly to the previous case, for 
each index i  writing out (26) and applying it recursively, we 
get  

++++ nyhLhuLhLhz 121021111 )2(1||)2)(1(1||
 

 

 

| zn | (1+hnL 1
)...(1+h1L 1

)(1+2hnL 2
)...(1+2h1L 2

)
I .

+

+ yn

k=1

n

hk (1+hk+1L 1
)...(1+hnL 1

)(1+2hk L 2
)...(1+2hnL 2

)

II .

,

 (28) 

 In the next step we estimate the terms on the right-hand 
side of (28). 
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 Then for the norm of nz  we get the estimation  
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Hence, we can write an estimation in the form (12) again. 
Hence, we can formulate our main result in the form of the 
following statements. 

Theorem 27 Under the condition (24) on a non-uniform 
grid, the implicit one-step numerical method (23) is T-stable.  

Corollary 28 For a Lipschitz continuous function f  on 
a non-uniform grid, the implicit Runge-Kutta methods are T-
stable.  

5. SUMMARY 

In this paper we have considered initial-value problems 
in an abstract (Banach space) setting. As we have seen in [8] 
and also in our previous work [3], the explicit Euler method 
on a uniform grid is S- and T-stable for the initial-value 
problem with a Lipschitz continuous function f . In the 
present work we have shown that under the same condition 
for the function f , the T-stability is preserved for more 
general Runge-Kutta methods, namely, for any explicit and 
implicit methods. We have also shown that the stability 
results are valid for both uniform and non-uniform meshes, 
too. We have also shown that under some natural condition 
for the numerical method  N  , which is automatically 
satisfied for Runge-Kutta methods, the results remain valid 
for arbitrary one-step methods. 

As we can see in (Table 1), we get that the same stability 
constant c  can be achieved for the different meshes, i.e., 
from this aspect there is no distinction between the cases of 
uniform and non-uniform grids. 

The obtained T-stability together with the consistency 
ensures the convergence. The consistency of the one-step 
methods can be given by the following two properties (see, 
e.g., [5]): the Lipschitz condition and the increment function 

 for the function f = 0  should be identically zero, i.e., 
ti 1,vi 1,vi ,hi( ) = 0 . 

Recently we have introduced the local version of T-
stability (called locT-stability) and we have proved a similar 

theorem to Theorem 16. This motivates that in the upcoming 
works it is worth dealing with the case where the right-hand 
side function f  is a locally Lipschitz function. The other 
direction of the future work is to extend our results to multi-
step methods. 
 

Table 1. T-Stability Constants of the Different Cases 

 Explicit one-step method Implicit one-step method 
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