Two-Weight Orlicz Type Integral Inequalities for the Maximal Operator ${ }^{1}$

C.J. Neugebauer*
Department of Mathematics, Purdue University, West Lafayette, in 47907-1395, USA

Abstract

We present a two-weight Orlicz-type integral inequality for the maximal operator which characterizes $(u, v) \in A_{p}$.

Keywords: Maximal operator, two-weights.

1. INTRODUCTION

In this paper we will study integral inequalities of the type
$\int_{R^{\mathrm{n}}} \Phi\left(\mathrm{Mf}(\mathrm{x})^{\mathrm{p}}\right) \mathrm{u}(\mathrm{x}) \mathrm{dx} \leq \mathrm{c}_{1} \int_{\mathrm{R}^{\mathrm{n}}} \Psi\left(\mathrm{c}_{2}|\mathrm{f}(\mathrm{x})|^{\mathrm{p}}\right) \mathrm{v}(\mathrm{x}) \mathrm{dx}$,
where $\operatorname{Mf}(x)=\sup _{x \in \mathrm{Q}} \frac{1}{|\mathrm{Q}|} \int_{\mathrm{Q}}|\mathrm{f}(\mathrm{t})| \mathrm{dt}$ is the Hardy-Littlewood maximal operator, and we ask for condtions on $\Phi, \Psi: \mathrm{R}_{+} \rightarrow \mathrm{R}_{+}$such that (1) holds if and only if $(\mathrm{u}, \mathrm{v}) \in \mathrm{A}_{\mathrm{p}}$.

We say that $(u, v) \in A_{p}$ if $\frac{1}{|Q|} \int_{Q} u\left(\frac{1}{|Q|} \int_{Q} v^{1-p^{\prime}}\right)^{p-1} \leq c<\infty, 1<p<\infty$, and $\operatorname{Mu}(x) \leq \operatorname{cv}(x)$, if $p=1$. These weight classes were introduced by Muckenhoupt [4] and Muckenhoupt and Wheeden [5] to study (1) when $\Phi(t)=\Psi(t)=\mathrm{t}$. If $1<\mathrm{p}<\infty$ and $u=v \in A_{p}$, (1) holds for $\Phi(t)=\Psi(t)=t$, but not if $p=1$. Also for each $1 \leq p<\infty$ there exists a pair $(u, v) \in A_{p}$ so that (1) fails in the special case $\Phi(t)=\Psi(t)=t \quad$ [3, p. 395]. In these exceptional cases we have a weak type inequality. An excellent reference is the book by J.Garcia-Cuerva and J.L.Rubio de Francia [3]. We refer the reader interested in the current state of the two-weight theory to the recent book [1] by Cruz-Uribe, Martell, and Pérez.

The restrictions on Φ, Ψ are: $\Phi(\mathrm{t})=\int_{0}^{\mathrm{t}} \mathrm{a}(\mathrm{s}) \mathrm{ds}, \Psi(\mathrm{t})=\int_{0}^{\mathrm{t}} \mathrm{b}(\mathrm{s}) \mathrm{ds}$ with $\mathrm{a}, \mathrm{b}: \mathrm{R}_{+} \rightarrow \mathrm{R}_{+}$satisfying
$\int_{0}^{\mathrm{s}} \frac{\mathrm{a}(\mathrm{t})}{\mathrm{t}} \mathrm{dt} \leq \mathrm{c}^{\prime} \mathrm{b}\left(\mathrm{c}^{\prime \prime} \mathrm{s}\right), 0<\mathrm{s}<\infty$.
Note that this excludes the classical case $\Phi(t)=\Psi(t)=t$. If ${ }^{(*)}$ holds, we say that Φ, Ψ are ($\left.\mathrm{c}^{\prime}, \mathrm{c}^{\prime \prime}\right)$-related.

[^0]We are now ready to state our main result whose proof will be given in section 3 .

Theorem 1 The following statements are equivalent for $1 \leq \mathrm{p}<\infty$.
(2) For each Φ and Ψ which are ($\mathrm{c}^{\prime}, \mathrm{c}^{\prime \prime}$) -related, we have $\int_{R^{n}} \Phi\left(\mathrm{Mf}^{\mathrm{p}}\right) \mathrm{u} \leq \mathrm{c}_{1} \int_{\mathrm{R}^{\mathrm{n}}} \Psi\left(\mathrm{c}_{2}|\mathrm{f}|^{\mathrm{p}}\right) \mathrm{v}$,
for all $f: R^{n} \rightarrow R$, where the constamts c_{1}, c_{2} depend only on $c^{\prime}, c^{\prime \prime}$ and p.
(3) We have $(u, v) \in A_{p}$.

Remark: In the Lebesgue measure case - $u=v=1$ integral inequalities related to (2) can be found in [6]. It should be noted that $p=1$ is not excluded.

In section 4 we will examine in what sense the condition $\int_{0}^{\mathrm{t}} \frac{\mathrm{a}(\mathrm{s})}{\mathrm{s}} \mathrm{ds} \leq \mathrm{c}^{\prime} \mathrm{b}\left(\mathrm{c}^{\prime \prime t} \mathrm{t}\right)$ is also necessary for Theorem 1, and in section 5 we will examine the extrapolation problem: when is it possible to replace p by $p-\varepsilon$ in (2). In sections 6 and 7 we will study the iterated maximal operator and its relation to extrapolation. In section 8 we will collect some unusual and surprising integral inequalities for Mf obtained by choosing Φ, Ψ and applying Theoren 1.

A final comment is in order. I have dedicated this paper to the memory of Richard A. Hunt who made significant contributions to the theory of A_{p}-weights and to whom I am indebted for introducing me to this subject some 40 years ago.

2. A TWO-WEIGHT DISTRIBUTIONAL INEQUALITY

For convenience all our functions will be non-negative: $f: R^{n} \rightarrow R_{+}$.

The distributional inequality below for $u=v=1$ - the Lebesgue measure case - and a sublinear operator T instead of M is equivalent with saying that T is both weak-type (p,p) and of type (∞, ∞) [11, p. 103].

Theorem 2 The following statements are equivalent for $1 \leq p<\infty$.
(4) There exists $0<c_{0}<\infty$ such that for every $f: R_{n} \rightarrow R_{+}$ we have for $0<t<\infty$
$\mathrm{u}\{\mathrm{x}: \operatorname{Mf}(\mathrm{x})>\mathrm{t}\} \leq \frac{\mathrm{c}_{0}}{\mathrm{t}^{\mathrm{p}}} \int_{\mathrm{t} / \mathrm{c}_{0}}^{\infty} \mathrm{v}\{\mathrm{x}: \mathrm{f}(\mathrm{x})>\mathrm{s}\} \mathrm{s}^{\mathrm{p}-1} \mathrm{ds}$.
(5) We have $(u, v) \in A_{p}$.

Proof. Apart from a minor detail, the proof follows the standard covering argument and we include it for the benefit of the reader.
(5) \rightarrow (4). We may assume that M is the centered maximal operator
$\operatorname{Mf}(x)=\sup \frac{1}{|Q|} \int_{Q} f(\tau) d \tau$,
where the sup is extended over all cubes Q centered at x. We consider the case $1<p<\infty$ first. Fix $f: R_{n} \rightarrow R_{+}$, and for $0<t<\infty$ let $f=f^{t}+f_{t}$, where

$$
\mathrm{f}^{\mathrm{t}}(\mathrm{x})=\left\{\begin{array}{cc}
0, & f(x) \leq t / 2 \\
\mathrm{f}(\mathrm{x}), & f(x)>t / 2 .
\end{array}\right.
$$

Then $\operatorname{Mf}(\mathrm{x}) \leq \mathrm{Mf}^{\mathrm{t}}(\mathrm{x})+\mathrm{Mf}_{\mathrm{t}}(\mathrm{x})$ so that $\{M f>t\} \subset\left\{\mathrm{Mf}^{\mathrm{t}}>\mathrm{t} / 2\right\} \equiv \mathrm{E}_{\mathrm{t}}$. Let $\mathrm{E}_{\mathrm{tN}}=\mathrm{E}_{\mathrm{t}} \cap\{\mathrm{x}:|\mathrm{x}| \leq \mathrm{N}\}$. We can now apply the Besicovitch covering Theorem and obtain cubes $\left\{Q_{j}\right\}$ satisfying

$$
\mathrm{E}_{\mathrm{tN}} \subset \cup \mathrm{Q}_{\mathrm{j}},\left|\mathrm{Q}_{\mathrm{j}}\right| \leq \frac{2}{\mathrm{t}} \int_{\mathrm{Q}_{\mathrm{j}}} \mathrm{f}^{\mathrm{t}}, \sum \chi_{\mathrm{Q}_{\mathrm{j}}} \leq \mathrm{c}<\infty
$$

Then

$$
\begin{aligned}
& u\left(E_{t N}\right) \leq \sum u\left(Q_{j}\right) \leq \frac{c}{t^{p}} \sum \frac{u\left(Q_{j}\right)}{\left|Q_{j}\right|^{p}}\left(\int_{Q_{j}} f^{t} v^{1 / p} v^{-1 / p}\right)^{p} \\
& \leq \frac{c}{t^{p}} \sum \frac{u\left(Q_{j}\right)}{\left|Q_{j}\right|^{p}} \int_{Q_{j}}\left(f^{t}\right)^{p} v \cdot\left(\int_{Q_{j}} v^{1-p^{\prime}}\right)^{p-1} \\
& \leq \frac{c}{t^{p}} \int_{\{f \geq t / 2\}} f^{p} p_{v .} \\
& \text { If } A_{t}=\{x: f(x) \geq t / 2\}, \text { then }
\end{aligned}
$$

$u\left(E_{t N}\right) \leq \frac{c}{t^{p}} \int_{R^{n}}\left(f \chi_{A_{t}}\right)^{p} v_{v}=\frac{c}{t^{p}} \int_{0}^{\infty} v\left\{f \chi_{A_{t}}>s\right\} s^{p-1} d s$
$=\frac{c}{t^{p}}\left(\int_{t / 2}^{\infty} v\{f>s\} s^{p-1} d s+v\left(A_{t}\right) \int_{0}^{t / 2} s^{p-1} d s\right)$.
It is clear that for some constant c
$\left.\mathrm{c} \int_{\mathrm{t} / 4}^{\mathrm{t} / 2} \mathrm{vf(f}>\mathrm{s}\right\} \mathrm{s}^{\mathrm{p}-1} \mathrm{ds} \geq \mathrm{v}\left(\mathrm{A}_{\mathrm{t}}\right) \int_{0}^{\mathrm{t} / 2}{ }^{\mathrm{s}}{ }^{\mathrm{p}-1} \mathrm{ds}$,
and hence for some constant c_{0}
$\mathrm{u}\left(\mathrm{E}_{\mathrm{tN}}\right) \leq \frac{\mathrm{c}_{0}}{\mathrm{t}^{\mathrm{p}}} \int_{\mathrm{t} / \mathrm{c}_{0}}^{\infty} \mathrm{v}\{\mathrm{f}>\mathrm{s}\} \mathrm{s}^{\mathrm{p}-1} \mathrm{ds}$.
Let now $\mathrm{N} \rightarrow \infty$. We use the same notation for the case $p=1$ as above. Since now $u\left(Q_{j}\right) /\left|Q_{j}\right| \leq \inf _{Q_{j}} v$ we get
$u\left(E_{t N}\right) \leq \frac{c}{t} \sum \frac{u\left(Q_{j}\right)}{\left|Q_{j}\right|} \int_{Q_{j}} f^{t}$
$\leq \frac{c}{t} \sum \int_{Q_{j}} f^{t} v \leq \frac{c}{t} \int_{R^{n}} f^{f} \chi_{A_{t}} v$.
Proceed now as in the case $1<\mathrm{p}<\infty$.
(4) \rightarrow (5). For the case $p=1$ we fix a cube Q_{0} and let $f=\chi_{Q}$, where Q is an arbitrary subcube of Q_{0}. Then
$\mathrm{Q}_{0} \subset\left\{\mathrm{Mf} \geq \frac{1}{\left|\mathrm{Q}_{0}\right|} \int_{\mathrm{Q}} \mathrm{f}=\frac{|\mathrm{Q}|}{\left|\mathrm{Q}_{0}\right|} \equiv \mathrm{t}\right\}$.
Thus $\quad u\left(\mathrm{Q}_{0}\right) \leq \mathrm{c}_{0}\left(\left|\mathrm{Q}_{0}\right| /|\mathrm{Q}|\right) \mathrm{v}(\mathrm{Q})$, and thus $\left.u\left(\mathrm{Q}_{0}\right) / \mid \mathrm{Q}_{0}\right) \mid \leq \mathrm{c}_{0} \inf _{\mathrm{Q}_{0}} \mathrm{v}$.

If $1<\mathrm{p}<\infty$ we take the usual test function $\mathrm{f}=\chi_{\mathrm{Q}} \mathrm{v}^{1-\mathrm{p}^{\prime}}$ with
$\mathrm{t}=\frac{1}{|\mathrm{Q}|} \int_{\mathrm{Q}} \mathrm{f}$. Then
$\left.\mathrm{u}(\mathrm{Q}) \leq \mathrm{c}_{0} \frac{|\mathrm{Q}|^{\mathrm{p}}}{\left(\int_{\mathrm{Q}} \mathrm{f}\right)^{\mathrm{p}}} \int_{\mathrm{t} / \mathrm{c}_{0}}^{\infty} \mathrm{vff}>\mathrm{s}\right\} \mathrm{s}^{\mathrm{p}-1} \mathrm{ds}$
$\leq c_{0} \frac{|Q|^{p}}{\left(\int_{Q} f\right)^{p}} \int_{Q} f^{p_{v}}$
$=c_{0}|Q|^{\mathrm{p}}\left(\int_{\mathrm{Q}} \mathrm{v}^{1-\mathrm{p}^{\prime}}\right)^{1-\mathrm{p}}$,
and the A_{p}-condition follows.
3. PROOF OF THEOREM 1. (3) \rightarrow (2).

$$
\begin{aligned}
& \int_{R^{\mathrm{n}}} \Phi\left[\mathrm{Mf}(\mathrm{x})^{\mathrm{p}}\right] \mathrm{u}(\mathrm{x}) \mathrm{dx}=\int_{0}^{\infty} \mathrm{u}\left\{\mathrm{Mf}^{\mathrm{p}}>\mathrm{t}\right\} \mathrm{a}(\mathrm{t}) \mathrm{dt}= \\
& \int_{0}^{\infty} \mathrm{u}\left\{\mathrm{Mf}>\mathrm{t}^{1 / \mathrm{p}}\right\} \mathrm{a}(\mathrm{t}) \mathrm{dt} \leq \mathrm{c}_{0} \int_{0}^{\infty} \frac{1}{\mathrm{t}} \int_{\mathrm{t}^{1 / \mathrm{p} / \mathrm{c}_{0}}}^{\infty} \mathrm{v}\{\mathrm{f}>\mathrm{s}\} \mathrm{s}^{\mathrm{p}-1} \mathrm{dsa}(\mathrm{t}) \mathrm{dt}= \\
& \mathrm{c}_{0} \int_{0}^{\infty} \int_{0}^{\left(\mathrm{c}_{0} 0^{\mathrm{s}}\right)^{\mathrm{p}}} \frac{\mathrm{a}(\mathrm{t})}{\mathrm{t}} \mathrm{v}\{\mathrm{f}>\mathrm{s}\} \mathrm{s}^{\mathrm{p}-1} \mathrm{dtds} \leq \\
& \mathrm{c}_{0} \mathrm{c}^{c^{\prime}} \int_{0}^{\infty} \mathrm{b}\left(\mathrm{c}^{\prime \prime}\left(\mathrm{c}_{0} \mathrm{~s}\right)^{\mathrm{p}}\right) \mathrm{v}\{\mathrm{f}>\mathrm{s}\} \mathrm{s}^{\mathrm{p}-1} \mathrm{ds}= \\
& \frac{\mathrm{c}_{0} \mathrm{c}^{\prime}}{\mathrm{p}} \int_{0}^{\infty} \mathrm{b}\left(\mathrm{c}_{\mathrm{c} * \mathrm{t})}\right) \mathrm{v}\left\{\mathrm{f}^{\mathrm{p}}>\mathrm{t}\right\} \mathrm{dt} \leq \mathrm{c}_{1} \int_{R^{\mathrm{n}}} \Psi\left[\mathrm{c}_{2} \mathrm{f}(\mathrm{x})^{\mathrm{p}}\right] \mathrm{v}(\mathrm{x}) \mathrm{dx} .
\end{aligned}
$$

It is clear that the constants c_{1} and c_{2} have the desired properties.
(2) \rightarrow (3). We assume that
$\mathrm{L} \equiv \int_{0}^{\infty} \mathrm{u}\left\{\mathrm{Mf}^{\mathrm{p}}>\mathrm{t}\right\} \mathrm{a}(\mathrm{t}) \mathrm{dt} \leq \mathrm{c}_{1} \int_{0}^{\infty} \mathrm{v}\left\{\mathrm{c}_{2} \mathrm{f}^{\mathrm{p}}>\mathrm{t}\right\} \mathrm{b}(\mathrm{t}) \mathrm{dt} \equiv \mathrm{R}$.
Fix $0<\lambda_{0}<\infty$ and let
$a(t)=\operatorname{lh} x_{\left[\lambda_{0}, \lambda_{0}+h\right]}(t)$.
Set
$b(t)=\int_{0}^{t} a(s) s d s=0,0 \leq t \leq \lambda_{0} 1 h \log \left(t / \lambda_{0}\right), \lambda_{0}<t \leq \lambda_{0}+h 1 h$ $\log \lambda_{0}+h \lambda_{0}, t>\lambda_{0}+h$.

With this choice Φ and Ψ are (1,1)-related independent of h and λ_{0} and hence c_{1} and c_{2} do not depend on h or λ_{0}. Then
$\mathrm{L}=1 \mathrm{~h} \int_{\lambda_{0}}^{\lambda_{0}+\mathrm{h}}{ }_{\mathrm{u}\left\{\mathrm{Mf}^{\mathrm{p}}>\mathrm{t}\right\} \mathrm{dt} \rightarrow \mathrm{u}\left\{\mathrm{Mf}^{\mathrm{p}}>\lambda_{0}\right\}, ~}^{\text {, }}$
as $h \rightarrow 0$. The right side R is
$R=c_{1} h \int_{\lambda_{0}}^{\lambda_{0}+h} v\left\{c^{2} f^{p}>t\right\} \log \left(t / \lambda_{0}\right) d t+c_{1} h \log \lambda_{0}+h \lambda_{0}$
$\int_{\lambda_{0}+h}^{\infty} v\left\{c_{2} f^{p}>t\right\} d t=I_{1}(h)+I_{2}(h)$.
We see that $\mathrm{I}_{1}(\mathrm{~h}) \rightarrow 0$ as $\mathrm{h} \rightarrow 0$ and

$$
\mathrm{I}_{2}(\mathrm{~h}) \rightarrow \mathrm{c}_{1} \lambda_{0} \int_{\lambda_{0}}^{\infty} \mathrm{v}\left\{\mathrm{c}_{2} \mathrm{f}^{\mathrm{p}}>\mathrm{t}\right\} \mathrm{dt}=\mathrm{c}_{1} \mathrm{c}_{2} \lambda_{0} \int_{\lambda_{0} / \mathrm{c}_{2}}^{\infty} \mathrm{v}\left\{\mathrm{f}^{\mathrm{p}}>\mathrm{t}\right\} \mathrm{dt} .
$$

Since λ_{0} was arbitrary we get for some constant $c_{0}>1$
$\mathrm{u}\left\{\mathrm{Mf}^{\mathrm{p}}>\lambda\right\} \leq \mathrm{c}_{0} \lambda \int_{\lambda / \mathrm{c}_{0}}^{\infty} \mathrm{v}\left\{\mathrm{f}^{\mathrm{p}}>\mathrm{t}\right\} \mathrm{dt}$.
We now make the substitution $\lambda=\mathrm{s}^{\mathrm{p}}$ and then $\mathrm{t} \rightarrow \mathrm{t}^{\mathrm{p}}$ to get
$\mathrm{u}\{\mathrm{Mf}>\mathrm{s}\} \leq \mathrm{c}_{0} \mathrm{~s}^{\mathrm{p}} \int_{\mathrm{s} / \mathrm{c}_{0}}^{\infty} \mathrm{v}\{\mathrm{f}>\mathrm{t}\} \mathrm{t}^{\mathrm{p}-1} \mathrm{dt}$.
By Theorem 2 this is the same as saying $(u, v) \in A_{p}$.
Remark. Theorem 1 is not true with M replaced by a singular integral operator T . If it were true, then the argument as on the previous page shows that
$\mathrm{u}\{|\mathrm{Tf}|>\mathrm{s}\} \leq \mathrm{c}_{0} \mathrm{~s}^{\mathrm{p}} \int_{\mathrm{s} / \mathrm{c}_{0}}^{\infty} \mathrm{v}\{\mathrm{f}>\mathrm{t}\} \mathrm{t}^{\mathrm{p}-1} \mathrm{dt}$,
 is not of type (∞, ∞) [10].

4. A CONVERSE

For a given $\mathrm{a}, \mathrm{b}: \mathrm{R}_{+} \rightarrow \mathrm{R}_{+}$and $\Phi(\mathrm{t})=\int_{0}^{\mathrm{t}} \mathrm{a}(\mathrm{s}) \mathrm{ds}, \Psi(\mathrm{t})=\int_{0}^{\mathrm{t}} \mathrm{b}(\mathrm{s}) \mathrm{ds}$ we wish to examine when (2) of Theorem 1 implies that
$\int_{0}^{\mathrm{s}} \mathrm{a}(\mathrm{t}) \mathrm{tdt} \leq \mathrm{c}^{\prime} \mathrm{b}\left(\mathrm{c}^{\prime \prime} \mathrm{s}\right), 0<\mathrm{s}<\infty$.
Since this condition is independent of $(u, v) \in A_{p}$, we are allowed to take any $(u, v) \in A_{p}$, in particular $u=v=1$, the Lebesgue measure case, or $u=v$ in RH_{∞}. We prefer the second alternative since it is based on an extension of the reverse weak type inequality. We say that $u \in \mathrm{RH}_{\infty}$ if for every cube $Q, \sup _{Q} u(x) \leq c 1|Q| \int_{Q} u$. The inf of all such c 's is called the RH_{∞}-constant of u . This class was studied in [2] and plays roughly the same role among the reverse Hölder classes $\mathrm{RH}_{\mathrm{r}}, \mathrm{r} \rightarrow \infty$, as A_{1} does among $\mathrm{A}_{\mathrm{p}}, \mathrm{p} \backslash 1$. Typical examples of RH_{∞}-weights in R_{+}are $\mathrm{u}(\mathrm{x})=\mathrm{x}^{\alpha}, \alpha>0$.

Theorem 3 Let $u \in \mathrm{RH}_{\infty}$. Then there are constants $0<c_{1}, c^{\prime}<\infty$ such that for all $f: R^{n} \rightarrow R_{+}$and $0<t<\infty$
$1 t \int_{\{f>t\}} f(x) u(x) d x \leq c_{1} u\left\{\right.$ Mf $\left.>c^{\prime} t\right\}$,
where $1 / \mathrm{c}^{\prime}=\mathrm{c}_{*}$ is the RH_{∞}-constant of u .
Proof. Since $u(x) d x$ is a doubling measure [3], we have available the Calderon-Zygmund decomposition at height t and this gives us disjoint cubes $\left\{\mathrm{Q}_{\mathrm{k}}\right\}$ such that
$\mathrm{t} \leq \mathrm{lu}\left(\mathrm{Q}_{\mathrm{k}}\right) \int_{\mathrm{Q}_{\mathrm{k}}} \mathrm{fu} \leq \mathrm{ct}$
$\mathrm{f}(\mathrm{x}) \leq \mathrm{t}$, on $\mathrm{R}^{\mathrm{n}} \backslash \cup \mathrm{Q}_{\mathrm{k}}$.
Then
$1 t \int_{\{f>t\}} \mathrm{fu} \leq 1 \mathrm{t} \sum \int_{\mathrm{Q}_{\mathrm{k}}} \mathrm{fu} \leq \mathrm{c} \sum \mathrm{u}\left(\mathrm{Q}_{\mathrm{k}}\right)=\mathrm{cu}\left(\cup \mathrm{Q}_{\mathrm{k}}\right) \leq \mathrm{cu}\left\{\mathrm{M}_{\mathrm{u}} \mathrm{f}>\mathrm{t}\right\}$,
where $M_{u} f(x)=\sup _{x \in Q} l u(Q) \int_{Q} f u$. Since $u \in R H_{\infty}$
$\operatorname{lu}(\mathrm{Q}) \int_{\mathrm{Q}} \mathrm{fu} \leq \sup _{\mathrm{Q}} \mathrm{uu}(\mathrm{Q}) /|\mathrm{Q}| 1|\mathrm{Q}| \int_{\mathrm{Q}} \mathrm{f} \leq \mathrm{c} * \mathrm{Mf}(\mathrm{x})$,
if $x \in Q$. Hence $m_{u} f(x) \leq c * M f(x)$ and the proof is complete.

Defintion. (1) b: $R_{+} \rightarrow R_{+}$is quasi-increasing (qi) if there is a constant $0<c_{0}<\infty$ such that $\mathrm{t}^{\prime} \leq \mathrm{t}^{\prime \prime}$ implies $\mathrm{b}\left(\mathrm{t}^{\prime}\right) \leq \mathrm{c}_{0} \mathrm{~b}\left(\mathrm{c}_{0} \mathrm{t}^{\prime \prime}\right)$
(2) A measure μ on R_{+}is weakly doubling if there is a constant $0<\mathrm{c}<\infty$ such that $\mu([0,2 \mathrm{~d}]) \leq \mathrm{c} \mu([\mathrm{d}, 2 \mathrm{~d}]), 0<\mathrm{d}<\infty$.

If a measure is doubling, it is also weakly doubling. The converse is not true as the measure $d \mu=e^{x} d x$ shows. In fact if
$\mathrm{f}: \mathrm{R}_{+} \rightarrow \mathrm{R}_{+}$is nondecreasing, then $\mathrm{d} \mu=\mathrm{f}(\mathrm{x}) \mathrm{dx}$ is weakly doubling. The measure $\mathrm{d} \mu=\mathrm{dx} /(1+\mathrm{x})$ is not weakly doubling.

Theorem 4 Assume that $b(t)$ is qi and assume that for some n and $\mathrm{u}_{0} \in \mathrm{RH}_{\infty}\left(\mathrm{R}^{\mathrm{n}}\right)$ we have
$\int_{\mathrm{R}^{\mathrm{n}}} \Phi\left(\mathrm{Mf}^{\mathrm{p}}\right) \mathrm{u}_{0} \leq \mathrm{c}_{1} \int_{\mathrm{R}^{\mathrm{n}}} \Psi\left(\mathrm{c}_{2} \mathrm{f}^{\mathrm{p}}\right) \mathrm{u}_{0}$.
Then
$\int_{0}^{\mathrm{s}} \mathrm{a}(\mathrm{t}) \mathrm{tdt} \leq \mathrm{c}^{\prime} \mathrm{b}\left(\mathrm{c}^{\prime \prime} \mathrm{s}\right), 0<\mathrm{s}<\infty$
holds if $\mathrm{p}=1$, and if $1<\mathrm{p}<\infty$ it holds under the additional assumption that the measure $\mathrm{d} \mu=\mathrm{a}(\mathrm{t}) \mathrm{tdt}$ is weakly doubling.

Proof. In distributional form the integral inequality is
$\mathrm{L} \equiv \int_{0}^{\infty} \mathrm{u}_{0}\left\{\mathrm{Mf}^{\mathrm{p}}>\mathrm{t}\right\} \mathrm{a}(\mathrm{t}) \mathrm{dt} \leq \mathrm{c}_{1} \int_{0}^{\infty} \mathrm{u}_{0}\left\{\mathrm{c}_{2} \mathrm{f}^{\mathrm{p}}>\mathrm{t}\right\} \mathrm{b}(\mathrm{t}) \mathrm{dt} \equiv \mathrm{R}$.
The constants c_{1}, c_{2}, \ldots appearing below only depend upon the constants in the overall hypothesis. By Lemma 3
$L \geq c_{3} \int_{0}^{\infty} a(t) t^{1 / p} \int_{\left\{f>c_{4} t^{1 / p}\right\}} f(x) u_{0}(x) d x d t$.
We apply this to the test functions $f(x)=r \chi_{Q}(x), 0<r<\infty$, $\mathrm{Q}=[0,1]^{\mathrm{n}}$ and get
$\mathrm{L} \geq \mathrm{c}_{3} \int_{0}^{\mathrm{c}_{5} \mathrm{r}^{\mathrm{p}}} \mathrm{a}(\mathrm{t})^{1 / \mathrm{p}_{r u_{1}} \mathrm{dt}, \mathrm{u}_{1}=\int_{\mathrm{Q}} \mathrm{u}_{0}(\mathrm{x}) \mathrm{dx} ~}$
The right side $R=\int_{0}^{c_{6} r^{p}} u_{1} b(t) d t$. Hence
$\mathrm{c}_{3} \mathrm{r}_{0}^{\mathrm{c}_{5} \mathrm{r}^{\mathrm{p}}} \mathrm{a}(\mathrm{t}) \mathrm{t}^{1 / \mathrm{p}} \mathrm{dt} \leq \mathrm{c}_{1} \int_{0}^{\mathrm{c}_{6} \mathrm{r}^{\mathrm{p}}} \mathrm{b}(\mathrm{t}) \mathrm{dt}$.
With $\mathrm{s}=\mathrm{c}_{5} \mathrm{r}^{\mathrm{p}}$ this becomes
$\mathrm{c}_{7} \mathrm{~s}^{1 / \mathrm{p}} \int_{0}^{\mathrm{s}} \mathrm{a}(\mathrm{t}) \mathrm{t}^{1 / \mathrm{p}} \mathrm{dt} \leq \mathrm{c}_{1} \int_{0}^{\mathrm{c}_{8} \mathrm{~s}} \mathrm{~b}(\mathrm{t}) \mathrm{dt} \leq \mathrm{c}_{0} \mathrm{sb}\left(\mathrm{c}_{10} \mathrm{~s}\right)$,
since b is quasi-increasing. The left side is
$\geq \mathrm{c}_{7} \mathrm{~s}^{1 / \mathrm{p}} \int_{\mathrm{s} / 2}^{\mathrm{s}} \mathrm{t}^{1 / \mathrm{p}^{\prime}} \mathrm{a}(\mathrm{t}) \mathrm{tdt} \geq \mathrm{c}_{11} \mathrm{~S}_{0}^{\mathrm{s}} \mathrm{a}(\mathrm{t}) \mathrm{tdt}$,
by the weak type doubling condition, which clearly is not needed when $\mathrm{p}=1$.

Remark: 1. The special case $\mathrm{p}=1$ and $\mathrm{u}_{0} \sim 1$ - the Lebesgue measure case - is Theorem 7 in [6].
2. The weak doubling hypothesis of the measure $\mathrm{d} \mu=\mathrm{a}(\mathrm{t}) \mathrm{tdt}$ cannot be omitted if $1<\mathrm{p}<\infty$. The classical norm inequality for $u \in A_{p}$ is
$\int_{\mathrm{R}^{\mathrm{n}}} \mathrm{Mf}^{\mathrm{p}} \mathrm{u} \leq \mathrm{c} \int_{\mathrm{R}^{\mathrm{n}}} \mathrm{f}^{\mathrm{p}}{ }_{\mathrm{u}}$.
This is the $\Phi(\mathrm{t})=\Psi(\mathrm{t})=\mathrm{t}$ case, and $\mathrm{a}(\mathrm{t})=1$.

5. EXTRAPOLATION

As before $\mathrm{a}, \mathrm{b}: \mathrm{R}_{+} \rightarrow \mathrm{R}_{+}$and $\Phi(\mathrm{s})=\int_{0}^{\mathrm{s}} \mathrm{a}(\mathrm{t}) \mathrm{dt}, \Psi(\mathrm{s})=\int_{0}^{\mathrm{s}} \mathrm{b}(\mathrm{t}) \mathrm{dt}$.
We wish to examine the relationship between the following statements.
I. There exists $0<\varepsilon<p, 1 \leq p<\infty$, such that for $(u, v) \in A_{p}$ we have
$\int_{\mathrm{R}^{\mathrm{n}}} \Phi\left(\mathrm{Mf}^{\mathrm{p}-\varepsilon}\right) \mathrm{u} \leq \mathrm{c}_{1} \int_{\mathrm{R}^{\mathrm{n}}} \Psi\left(\mathrm{c}_{2} \mathrm{f}^{\mathrm{p}-\varepsilon}\right) \mathrm{v}$.
II. There exists $\eta>0$ such that
$\int_{0}^{\mathrm{s}} \mathrm{a}(\mathrm{t}) \mathrm{t}^{1+\eta} \mathrm{dt} \leq \mathrm{c}^{\prime} \mathrm{b}\left(\mathrm{c}^{\prime \prime} \mathrm{s}\right) \mathrm{s}^{\eta}, 0<\mathrm{s}<\infty$.
The constants ε, η, and p are related by $\varepsilon=\eta p /(1+\eta)$ or $\eta=\varepsilon /(p-\varepsilon)$.

Theorem $5 \mathrm{II} \Rightarrow \mathrm{I}$, and, if b is quasi-increasing and $u=v=1$, the converse $I \Rightarrow$ II holds if $p=1$, and if $1<p<\infty$ it holds if the measure $\mathrm{d} \mu=\mathrm{a}(\mathrm{t}) / \mathrm{t}^{1+\eta} \mathrm{dt}$ is weakly doubling.

Proof. $\mathrm{II} \Rightarrow \mathrm{I}$. Fix $1 \leq \mathrm{p}<\infty$ and let $\varepsilon=\eta \mathrm{p} /(1+\eta)$. If $\mathrm{q}=\mathrm{p}-\varepsilon$, then $\mathrm{p} / \mathrm{q}=1+\eta$. By Theorem 2
$\int_{R^{n}} \Phi\left(M f^{q}\right) u \leq c_{0} \int_{0}^{\infty} a(t) t^{1+\eta} \int_{t^{1 / q} / c_{0}}^{\infty} v\{f>s\} s^{p-1} d s d t=c_{0} \int_{0}^{\infty} \int_{0}^{\left(c_{0} s\right)^{q}}$
$a(t) t^{1+\eta} d t v\{f>s\} s^{p-1} d s \leq c \int_{0}^{\infty} b\left[\left(c_{0}^{\prime} s\right)^{q}\right]\left(c_{0} s\right)^{q \eta} v\{f>s\} s^{p-1} d s=c \int_{0}^{\infty}$
$b(\sigma) \sigma^{\eta} v\left\{f>\sigma^{1 / q}\right\} \sigma^{(p-1) / q} \sigma^{1 / q-1} d \sigma=c \int_{0}^{\infty} v\left\{f>\sigma^{1 / q}\right\} b(\sigma) d \sigma=c_{1}$
$\int_{R^{n}} \Psi\left(c_{2} f^{q}\right) v$.
$\mathrm{I} \Rightarrow \mathrm{II}$. First let $\mathrm{p}=1$ and $\mathrm{u}=\mathrm{v}=1$. If $\mathrm{q}=1-\varepsilon$, then the statement I in distributional form is
$\mathrm{L}=\int_{0}^{\infty}\left|\left\{\mathrm{Mf}>\mathrm{t}^{1 / \mathrm{q}}\right\}\right| \mathrm{a}(\mathrm{t}) \mathrm{dt} \leq \mathrm{c}_{1} \int_{0}^{\infty}\left|\left\{\mathrm{f}>\mathrm{c}_{3} \mathrm{t}^{1 / \mathrm{q}}\right\}\right| \mathrm{b}(\mathrm{t}) \mathrm{dt}=\mathrm{R}$.
By Lemma 3,
$\mathrm{L} \geq \mathrm{c}_{4} \int_{0}^{\infty} \mathrm{a}(\mathrm{t}) \mathrm{t}^{1 / \mathrm{q}} \int_{\left\{\mathrm{f}>\mathrm{c}_{5} \mathrm{t}^{1 / \mathrm{q}}\right\}} \mathrm{f}(\mathrm{x}) \mathrm{dxdt}$.
We apply this to the test functions $f(x)=r \chi_{[0,1]}(x)$, $0<r<\infty$. Then
$\mathrm{L} \geq \mathrm{c}_{4} \int_{0}^{\mathrm{c}_{6} \mathrm{r}^{\mathrm{q}}}{ }^{\mathrm{q}} \mathrm{ra}(\mathrm{t}) \mathrm{t}^{1 / \mathrm{q}} \mathrm{dt}, \mathrm{R}=\int_{0}^{\mathrm{c}_{7} 7^{\mathrm{r}^{\mathrm{q}}}}{ }^{\mathrm{m}(\mathrm{t}) \mathrm{dt} \leq \mathrm{c}_{8} \mathrm{r}^{\mathrm{q}} \mathrm{b}\left(\mathrm{c}_{9} \mathrm{r}^{\mathrm{q}}\right), ~}$
because b is quasi-increasing. Hence
$\int_{0}^{c_{6} r^{\mathrm{q}}} \mathrm{a}(\mathrm{t}) \mathrm{t}^{1 / q_{\mathrm{q}}} \mathrm{dt} \leq \mathrm{c}_{10} 0^{\mathrm{q}-1} \mathrm{~b}\left(\mathrm{c}_{9} \mathrm{r}^{\mathrm{q}}\right)$.
Let $s=c_{6} r^{q}$ and $1 / q=1+\eta$. Then $\eta=\varepsilon /(1-\varepsilon)$ and
$\int_{0}^{\mathrm{s}} \mathrm{a}(\mathrm{t}) \mathrm{t}^{1+\eta^{1}} \mathrm{dt} \leq \mathrm{c}_{11} \mathrm{~s}^{(\mathrm{q}-1) / \mathrm{q}_{\mathrm{b}}} \mathrm{b}\left(\mathrm{c}_{12} \mathrm{~s}\right)$,
and $(q-1) / q=-\eta$.
The case $1<\mathrm{p}<\infty$ with $\mathrm{q}=\mathrm{p}-\varepsilon$, and $\mathrm{u}=\mathrm{v}=1$ follows the same steps as above and we get
$\int_{0}^{\mathrm{s}} \frac{\mathrm{a}(\mathrm{t})}{\mathrm{t}^{1 / \mathrm{q}}} \mathrm{dt} \leq \mathrm{c}_{11} \mathrm{~s}^{(\mathrm{q}-1) / \mathrm{q}_{\mathrm{b}}\left(\mathrm{c}_{12} \mathrm{~s}\right)}$.
We use now the weak doubling condition and get

Hence
$\int_{0}^{\mathrm{s}} \frac{\mathrm{a}(\mathrm{t})}{\mathrm{t}^{1+\eta}} \mathrm{dt} \leq \mathrm{c}_{15} \mathrm{~b}\left(\mathrm{c}_{12} \mathrm{~s}\right) / \mathrm{s}^{\eta}$.
The result that we discuss now essentially says that, in the presence of condition II, extrapolation for (u, v) is the same as $(u, v) \in A_{p}$.

Theorem 6 Let $1 \leq p<\infty, \eta \geq 0, \varepsilon=\eta p /(1+\eta)$, and
$\int_{0}^{\mathrm{s}} \frac{\mathrm{a}(\mathrm{t})}{\mathrm{t}^{1+\eta}} \mathrm{dt} \leq \frac{\mathrm{c}^{\prime} \mathrm{b}\left(\mathrm{c}^{\prime \prime} \mathrm{s}\right)}{\mathrm{s}^{\eta}}, 0<\mathrm{s}<\infty$.
Then the following statements are equivalent.
$\int_{\mathrm{R}^{\mathrm{n}}} \Phi\left(\mathrm{Mf}^{\mathrm{p}-\varepsilon}\right) \mathrm{u} \leq \mathrm{c}_{1} \int_{\mathrm{R}^{\mathrm{n}}} \Psi\left(\mathrm{c}_{2} \mathrm{f}^{\mathrm{p}-\varepsilon}\right) \mathrm{v}$,
where c_{1}, c_{2} depend only upon $c^{\prime}, c^{\prime \prime}$ and p.
(2) We have $(u, v) \in A_{p}$.

Remark: Theorem 1 is the special case $\eta=0$.
Proof. (2) $\Rightarrow(1)$. This is $\mathrm{II} \Rightarrow \mathrm{I}$ of Theorem 5. (1) $\Rightarrow(2)$. We proceed as in the proof of Theorem 1 and let
$\mathrm{a}(\mathrm{t})=\frac{1}{\mathrm{~h}} \chi_{[\lambda, \lambda+\mathrm{h}]}(\mathrm{t}), \lambda>0, \mathrm{~h}>0$.
We let $\mathrm{b}(\mathrm{s})=\mathrm{s}^{\eta} \int_{0}^{\mathrm{s}} \frac{\mathrm{a}(\mathrm{t})}{\mathrm{t}^{1+\eta}} \mathrm{dt}$. We may assume that $\eta>0$ since the case $\eta=0$ is Theorem 1. Then
$\mathrm{b}(\mathrm{s})=0,0 \leq \mathrm{s} \leq \lambda \frac{(\mathrm{s} / \lambda)^{\eta}-1}{\mathrm{~h} \eta}, \lambda \leq \mathrm{s} \leq \lambda+\mathrm{h} \frac{(\mathrm{s} / \lambda)^{\eta}-(\mathrm{s} /(\lambda+\mathrm{h}))^{\eta}}{\mathrm{h} \eta}, \mathrm{s} \geq \lambda+\mathrm{h}$.
Our hypothesis in distributional form is
$\mathrm{L}_{\mathrm{h}} \equiv \int_{0}^{\infty} \mathrm{u}\left\{\mathrm{Mf}^{\mathrm{p}-\varepsilon}>\mathrm{t}\right\} \mathrm{a}(\mathrm{t}) \mathrm{dt} \leq \mathrm{c}_{1} \int_{\lambda}^{\infty} \mathrm{v}\left\{\mathrm{c}_{2} \mathrm{f}^{\mathrm{p}-\varepsilon}>\mathrm{t}\right\} \mathrm{b}(\mathrm{t}) \mathrm{dt} \equiv \mathrm{R}_{\mathrm{h}}$.
First
$\mathrm{L}_{\mathrm{h}}=\frac{1}{\mathrm{~h}} \int_{\lambda}^{\lambda+\mathrm{h}} \mathrm{u}\left\{\mathrm{Mf}^{\mathrm{p}-\varepsilon}>\mathrm{t}\right\} \mathrm{dt} \rightarrow \mathrm{u}\left\{\mathrm{Mf}^{\mathrm{p}-\varepsilon}>\lambda\right\}$,
as $h \rightarrow 0$. The right side R_{h} splits into two integrals
$\mathrm{R}_{\mathrm{h}}=\mathrm{c}_{1}\left(\int_{\lambda}^{\lambda+\mathrm{h}}+\int_{\lambda+\mathrm{h}}^{\infty}\right)=\mathrm{I}_{1}+\mathrm{I}_{2}$.
I_{1} is easily disposed of
$\mathrm{I}_{1}=\mathrm{c}_{1} \int_{\lambda}^{\lambda+\mathrm{h}} \frac{(\mathrm{t} / \lambda)^{\eta}-1}{\mathrm{~h} \eta} \mathrm{v}\left\{\mathrm{c}_{2} \mathrm{f}^{\mathrm{p}-\varepsilon}>\mathrm{t}\right\} \mathrm{dt} \rightarrow 0$,
as $\mathrm{h} \rightarrow 0$. Next

as $h \rightarrow 0$. The substitution $\tau=t^{\eta+1}$ gives
$\mathrm{I}_{2} \rightarrow \frac{\mathrm{c}_{3}}{\lambda^{\eta+1}} \int_{\lambda^{\eta+1}}^{\infty}{\mathrm{v}\left\{\mathrm{c}_{2} \mathrm{f}^{\mathrm{p}-\varepsilon}>\tau^{1 /(\eta+1)}\right\} \mathrm{d} \tau,}$
and since $(p-\varepsilon)(\eta+1)=p(\eta+1)-p \eta=p$,
$\mathrm{I}_{2} \rightarrow \frac{\mathrm{c}_{3}}{\lambda^{\eta+1}} \int_{\lambda^{\eta+1}}^{\infty}{\mathrm{v}\left\{\mathrm{c}_{4} \mathrm{f}^{\mathrm{p}}>\tau\right\} \mathrm{d} \tau .}$.
Hence for some constant $c_{0}>1$
$\mathrm{u}\left\{\mathrm{Mf}^{\mathrm{p}-\varepsilon}>\lambda\right\} \leq \frac{\mathrm{c}_{0}}{\lambda^{\eta+1}} \int_{\lambda^{\eta+1} / \mathrm{c}_{0}}^{\infty} \mathrm{v}\left\{\mathrm{f}^{\mathrm{p}}>\mathrm{t}\right\} \mathrm{dt}$.
With $\lambda=\sigma^{\mathrm{p}-\varepsilon}$ we get
$\mathrm{u}\{$ Mf $>\sigma\} \leq \frac{\mathrm{c}_{0}}{\sigma^{\mathrm{p}}} \int_{\sigma^{\mathrm{p}} / \mathrm{c}_{0}}^{\infty} \mathrm{v}\left\{\mathrm{f}^{\mathrm{p}}>\mathrm{t}\right\} \mathrm{dt}=\frac{\mathrm{c}_{0^{\prime}}}{\sigma^{\mathrm{p}}} \int_{\sigma / \mathrm{c}_{0^{\prime}}}^{\infty} \mathrm{v}\{\mathrm{f}>\mathrm{t}\} \mathrm{t}^{\mathrm{p}-1} \mathrm{dt}$.
This shows that $(u, v) \in A_{p}$ by Theorem 2 .
Remark: The following observation may be of interest in connection with condition II: if $\int_{0}^{\mathrm{s}} \frac{\mathrm{a}(\mathrm{t})}{\mathrm{t}} \mathrm{dt} \leq \mathrm{c}_{0} \mathrm{a}(\mathrm{s})$, then there exists $\eta>0$ such that
$\int_{0}^{\mathrm{s}} \frac{\mathrm{a}(\mathrm{t})}{\mathrm{t}^{1+\eta}} \mathrm{dt} \leq \mathrm{c} \frac{\mathrm{a}(\mathrm{s})}{\mathrm{s}^{\eta}}$,
and hence Theorem 5 about extrapolation applies.
Proof. By hypothesis
$\mathrm{L} \equiv \int_{0}^{\mathrm{s}_{1}} \frac{1}{\mathrm{~s}} \int_{0}^{\mathrm{s}} \frac{\mathrm{a}(\mathrm{t})}{\mathrm{t}} \mathrm{dtds} \leq \mathrm{c}_{0} \int_{0}^{\mathrm{s}_{1}} \leq \mathrm{c}_{0}^{2} \mathrm{a}\left(\mathrm{s}_{1}\right)$.
Also
$\mathrm{L}=\int_{0}^{\mathrm{s}_{1}} \int_{\mathrm{t}}^{\mathrm{s}_{1}} \frac{\mathrm{a}(\mathrm{t})}{\mathrm{ts}} \mathrm{dsdt}=\int_{0}^{\mathrm{s}_{1}} \frac{\mathrm{a}(\mathrm{t})}{\mathrm{t}} \log \frac{\mathrm{s}_{1}}{\mathrm{t}} \mathrm{dt} \leq \mathrm{c}_{0}^{2} \mathrm{a}\left(\mathrm{s}_{1}\right)$.
We repeat this argument and finally get
$\int_{0}^{\mathrm{s}} \frac{\mathrm{a}(\mathrm{t})}{\mathrm{t}} \frac{1}{\mathrm{j}!} \log \frac{\mathrm{j}}{\mathrm{s}} \frac{\mathrm{t}}{\mathrm{t}} \leq \mathrm{c}_{0}^{\mathrm{j}+1} \mathrm{a}(\mathrm{s})$.
Let $c_{1}>c_{0}$. Then
$\int_{0}^{\mathrm{s}} \frac{\mathrm{a}(\mathrm{t})}{\mathrm{t}} \sum \frac{1}{\mathrm{j}!} \frac{1}{\mathrm{c}_{1}^{\mathrm{j}}} \log \frac{\mathrm{s}}{\mathrm{t}} \mathrm{dt} \leq \mathrm{ca}(\mathrm{s})$,
and the sum $=(\mathrm{s} /)^{\eta}$ with $\eta=1 / \mathrm{c}_{1}$.

6. ITERATED MAXIMAL OPERATOR. LET

$M_{j} f(x)=\underbrace{M \circ M \circ \cdots \circ \operatorname{Mf}(x) .}_{j \text {-times }}$
The purpose of this section is to present some weighted integral inequalities involving $\mathrm{M}_{\mathrm{j}} \mathrm{f}$.

Theorem 7 Let $\mathrm{u} \in \mathrm{A}_{\mathrm{p}}, 1 \leq \mathrm{p}<\infty$, and assume that $a, b: R_{+} \rightarrow R_{+}$satisfy
$\int_{0}^{\mathrm{s}} \frac{\mathrm{a}(\mathrm{t})}{\mathrm{t}} \log ^{\mathrm{j}-1}(\mathrm{~s} / \mathrm{t}) \mathrm{dt} \leq \mathrm{c}^{\prime} \mathrm{b}\left(\mathrm{c}^{\prime \prime} \mathrm{s}\right)$.
Then, if $\Phi(\mathrm{t})=\int_{0}^{\mathrm{t}} \mathrm{a}(\mathrm{s}) \mathrm{ds}, \Psi(\mathrm{t})=\int_{0}^{\mathrm{t}} \mathrm{b}(\mathrm{s}) \mathrm{ds}$,
$\int_{\mathrm{R}^{\mathrm{n}}} \Phi\left(\mathrm{M}_{\mathrm{j}} \mathrm{f}^{\mathrm{p}}\right) \mathrm{u} \leq \mathrm{c}_{\mathrm{j}^{\prime}} \int_{\mathrm{R}^{\mathrm{n}}} \Psi\left(\mathrm{c}_{\mathrm{j}^{\prime \prime}} \mathrm{f}^{\mathrm{p}}\right) \mathrm{u}$.
Proof. By Theorem 2,
$u\left\{M_{j} f>t\right\} \leq \frac{c_{o}}{t^{p}} \int_{t / c_{o}}^{\infty} u\left\{M_{j-1} f>s_{1}\right\} s_{1}^{p-1} d s_{1} \leq \frac{c_{0}^{2}}{t^{p}} \int_{t / c_{o}}^{\infty} \frac{s_{1}^{p-1}}{s_{1}^{p}} \int_{s_{1} / c_{o}}^{\infty}$
$u\left\{M_{j-2} f>s_{2}\right\} s_{2}^{p-1} d s_{2} d s_{1}=\frac{c_{o}^{2}}{t^{p}} \int_{t / c_{o}^{2}}^{\infty} \int_{t / c_{o}}^{c_{0} s_{2}} \frac{d s_{1}}{s_{1}} u\left\{M_{j-2} f>s_{2}\right\} s_{2}^{p-1} d s_{2}$
$=\frac{c_{o}^{2}}{t^{p}} \int_{t / c_{o}^{2}}^{\infty} \log \frac{c_{o}^{2} s_{2}}{t} u\left\{M_{j-2}>s_{2}\right\} s_{2}^{p-1} d s_{2} \leq \cdots \leq \frac{c_{o}^{j}}{(j-1)!t^{p}} \int_{t / c_{0}^{j}}^{\infty}$
$\log ^{j-1} \frac{c_{o}^{j} s}{t} u\{f>s\} s^{p-1} d s$.

The left side of the conclusion is
$\int_{0}^{\infty} u\left\{M_{j} f>t^{1 / p}\right\} a(t) d t \leq \frac{c_{o}^{j}}{(j-1)!} \int_{0}^{\infty} \frac{a(t)}{t} \int_{t^{1 / p} / c_{0}^{j}}^{\infty} \log ^{j-1} \frac{c_{0}^{j} s}{t^{1 / p}} u\{f>$
$\mathrm{s}\} \mathrm{s}^{\mathrm{p}-1} \mathrm{dsdt}=\frac{\mathrm{c}_{\mathrm{o}}^{\mathrm{j}}}{(\mathrm{j}-1)!} \int_{0}^{\infty} \frac{\mathrm{a}(\mathrm{t})}{\mathrm{t}} \int_{\mathrm{t} / \mathrm{c}_{\mathrm{o}}^{\mathrm{jp}}}^{\infty} \log ^{1-1}\left(\mathrm{c}_{\mathrm{o}}^{\mathrm{j}}(\sigma / \mathrm{t})^{1 / \mathrm{p}}\right) \mathrm{u}\left\{\mathrm{f}>\sigma^{1 / \mathrm{p}}\right\} \mathrm{d} \sigma \mathrm{dt}=$ $\frac{\mathrm{cc}_{0}^{\mathrm{j}}}{(\mathrm{j}-1)!} \int_{0}^{\infty} \int_{0}^{\mathrm{c}_{0}^{\mathrm{jp}}{ }_{0}} \frac{\mathrm{a}(\mathrm{t})}{\mathrm{t}} \log ^{\mathrm{j}-1}\left(\mathrm{c}_{\mathrm{o}}^{\mathrm{jp}} \sigma / \mathrm{t}\right) \mathrm{dtu}\left\{\mathrm{f}>\sigma^{1 / \mathrm{p}}\right\} \mathrm{d} \sigma=\frac{\mathrm{cc}_{\mathrm{o}}^{\mathrm{j}}}{(\mathrm{j}-1)!} \int_{0}^{\infty}$ $\mathrm{b}\left(\mathrm{c}^{\prime \prime} \mathrm{c}_{\mathrm{o}}^{\mathrm{jp}} \sigma\right) \mathrm{u}\left\{\mathrm{f}>\sigma^{1 / \mathrm{p}}\right\} \mathrm{d} \sigma \leq \mathrm{c}_{\mathrm{j}^{\prime}} \int_{\mathrm{R}^{\mathrm{n}}} \Psi\left(\mathrm{c}_{\mathrm{j}^{\prime \prime}} \mathrm{f}^{\mathrm{p}}\right) \mathrm{u}$.

Remark: (1) The log term in the hypothesis of Theorem 7 can be omitted if $u \sim 1$, the Lebesgue measure case and $1<\mathrm{p}<\infty$. The operator $\mathrm{M}_{\mathrm{j}} \mathrm{f}$ is weak (p, p) and (∞, ∞) and hence by [11, p. 103]
$\left|\left\{M_{j} f>t\right\}\right| \leq \frac{c_{j}}{t^{p}} \int_{t / c_{j}}^{\infty}|\{f>s\}| s^{p-1} d s$.
$>$ From this we get
$\int_{R^{n}} \Phi\left(M_{j} f(x)^{p}\right) d x=\int_{0}^{\infty}\left|\left\{M_{j} f>t^{1 / p}\right\}\right| a(t) d t \leq c_{j} \int_{0}^{\infty} \frac{a(t)}{t} \int_{t^{1 / p} / c_{j}}^{\infty}$
$|\{f>s\}| s^{p-1} d s d t=c_{j} \int_{0}^{\infty} \int_{0}^{\left(c_{j} s\right)^{p}} \frac{a(t)}{t}|\{f>s\}| s^{p-1} d t d s=c_{1} \int_{0}^{\infty} b\left(c_{2} s^{p}\right)$
$|\{f>s\}| s^{p-1} d s=c_{3} \int_{0}^{\infty} b\left(c_{2} t\right)\left|\left\{f^{p}>t\right\}\right| d t=c_{j^{\prime}} \int_{R^{n}} \Psi\left(c_{j^{\prime \prime}} f(x)^{p}\right) d x$.
(2) There is a converse to the above. If b is qi, the integral inequality
$\int_{R^{n}} \Phi\left(M_{j} f(x)^{p}\right) d x \leq c_{j^{\prime}} \int_{R^{n}} \Psi\left(c_{j^{\prime \prime}} f(x)^{p}\right) d x$
implies
$\int_{0}^{\mathrm{s}} \frac{\mathrm{a}(\mathrm{t})}{\mathrm{t}} \mathrm{dt} \leq \mathrm{c}^{\prime} \mathrm{b}\left(\mathrm{c}^{\prime \prime} \mathrm{s}\right), 0<\mathrm{s}<\infty$,
if $p=1$, and if $p>1$ this holds if the measure $d \mu=\frac{a(t)}{t} d t$ is weakly doubling. This follows from
$\int_{R^{n}} \Phi\left(M f(x)^{p}\right) d x \leq \int_{R^{n}} \Phi\left(M_{j} f(x)^{p}\right) d x \leq c_{j^{\prime}} \int_{R^{n}} \Psi\left(c_{j^{\prime \prime}} f(x)^{p}\right) d x$,
and Theorem 4 applies.

7. THE ITERATED MAX OPERATOR AND EXTRAPOLATION

There is a connection between the behavior of $\mathrm{M}_{\mathrm{j}} \mathrm{f}$ and extrapolation [7-9]. The next two Theorems will explore this connection in our setting. Again let $\mathrm{a}, \mathrm{b}: \mathrm{R}_{+} \rightarrow \mathrm{R}_{+}$and let $\Phi(\mathrm{s})=\int_{0}^{\mathrm{s}} \mathrm{a}(\mathrm{t}) \mathrm{dt}, \Psi(\mathrm{s})=\int_{0}^{\mathrm{s}} \mathrm{b}(\mathrm{t}) \mathrm{dt}$ with b quasi-increasing..

Theorem 8 Let $1 \leq p<\infty$ and assume that for $\mathbf{j} \in \mathrm{N}$
$\int_{\mathrm{R}} \Phi\left(\mathrm{M}_{\mathrm{j}} \mathrm{f}(\mathrm{x})^{\mathrm{p}}\right) \mathrm{dx} \leq \mathrm{A}^{\mathrm{j}} \int_{\mathrm{R}} \Psi\left(\mathrm{c}_{2} \mathrm{f}(\mathrm{x})^{\mathrm{p}}\right) \mathrm{dx}$,
with c_{2} independent of j. Let $A<c_{*}<\infty$ and let $\eta=1 /\left(c_{*} *\right)$. If in the case $1<\mathrm{p}$ the measure $\mathrm{d} \mu=\frac{\mathrm{a}(\mathrm{t})}{\mathrm{t}^{1+\eta}} \mathrm{dt}$ is weakly doubling, then for $(u, v) \in A_{p}\left(R^{n}\right)$
$\int_{R^{n}} \Phi\left(\mathrm{Mf}^{\mathrm{p}-\varepsilon}\right) \mathrm{u} \leq \mathrm{c}_{1^{\prime}} \int_{\mathrm{R}^{\mathrm{n}}} \Psi\left(\mathrm{c}_{1^{\prime \prime}} \mathrm{f}^{\mathrm{p}-\varepsilon}\right) \mathrm{v}$,
where $\varepsilon=\eta \mathrm{p} /(1+\eta)$.
Proof. Our goal is to prove
$\int_{0}^{s} \frac{a(t)}{t^{1+\eta}} d t \leq \frac{c^{\prime} b\left(c^{\prime \prime} s\right)}{s^{\eta}}$,
and then Theorem 5 gives us our conclusion.
In distributional form our hypothesis is
$\mathrm{L} \equiv \int_{0}^{\infty}\left|\left\{\mathrm{M}_{\mathrm{j}} \mathrm{f}>\mathrm{t}^{1 / \mathrm{p}}\right\}\right| \mathrm{a}(\mathrm{t}) \mathrm{dt} \leq \mathrm{A}^{\mathrm{j}} \int_{0}^{\infty}\left|\left\{\mathrm{f}>\left(\mathrm{t} / \mathrm{c}_{2}\right)^{1 / \mathrm{p}}\right\}\right| \mathrm{b}(\mathrm{t}) \mathrm{dt} \equiv \mathrm{R}$.
By Lemma 3
$L \geq c_{1} \int_{0}^{\infty} \frac{a(t)}{t^{1 / p}} \int_{\left\{M_{j-1}{ }^{f}>c_{3} t^{1 / p}\right\}} M_{j-1} f(x) d x d t$
with c_{1}, c_{3} independent of j. We apply this to the test functions $f(x)=r \chi_{[0,1]}(x), 0<r<\infty$. Then

$$
M_{i} f(x)=r\left\{\chi_{[0,1]}(x)+\frac{1}{x} \phi_{i-1}(x) \chi_{[1, \infty)}(x)\right\}, \phi_{k}(x)=\sum_{0}^{k} \frac{\log ^{i} \mathrm{x}}{\mathrm{i}!} .
$$

Therefore the inner integral is
$\int_{\left\{M_{j-1} f>c_{3} 1^{1 / p}\right\}} M_{j-1} f(x) d x \geq \int_{\left\{(r / x) \phi_{j-2}(x)>c_{3} t^{1 / p}\right\}} M_{j-1} f(x) d x$.
For $0<\mathrm{t}<\left(\mathrm{r} / \mathrm{c}_{3}\right)^{\mathrm{p}}$, the set $\left\{(\mathrm{r} / \mathrm{x}) \phi_{\mathrm{j}-2}(\mathrm{x})>\mathrm{c}_{3} \mathrm{t}^{1 / \mathrm{p}}\right\} \supset[1, \sigma(\mathrm{t}))$, where $\sigma(\mathrm{t})$ is defined by
$(\mathrm{r} / \sigma(\mathrm{t})) \phi_{\mathrm{j}-2}(\sigma(\mathrm{t}))=\mathrm{c}_{3} \mathrm{t}^{1 / \mathrm{p}}$.
Since $\phi_{\mathrm{j}-2}(\mathrm{x}) \geq 1$, we get $\sigma(\mathrm{t}) \geq \mathrm{r} /\left(\mathrm{c}_{3} \mathrm{t}^{1 / \mathrm{p}}\right)$. Hence
$\int_{\left\{M_{j-1}>c_{3} 1^{1 / p}\right\}_{j-1}} M_{j} f(x) d x \geq \int_{1}^{r /\left(c_{3} t^{1 / p}\right)} \frac{r}{x(j-2)!} \log ^{j-2} x d x=\frac{r}{(j-1)!} \log ^{j-1} \frac{r}{c_{3} t^{1 / p}}=$ $\frac{r}{p^{j-1}(j-1)!} \log ^{j-1} \frac{r^{p}}{c_{3}^{p} t}$.

Thus
$L \geq \frac{c_{1} r}{p^{j-1}(j-1)!} \int_{0}^{\left(r / c_{3}\right)^{p}} \frac{a(t)}{t^{1 / p}} \log { }^{j-1} \frac{r^{p}}{c_{3}^{p} t} d t$.
Also
$R \leq A^{j} \int_{0}^{\mathrm{c}_{4}{ }^{\mathrm{r}}{ }^{\mathrm{p}} \mathrm{b}(\mathrm{t}) \mathrm{dt} \leq \mathrm{A}^{\mathrm{j}} \mathrm{c}^{\prime} \mathrm{r}^{\mathrm{p}} \mathrm{b}\left(\mathrm{c}^{\prime \prime} \mathrm{r}^{\mathrm{p}}\right), ~, ~, ~, ~}$
since b is quasi-increasing. Let $s=\left(r / c_{3}\right)^{p}$. Then
$\frac{c_{5}}{p^{j-1}(j-1)!} s^{1 / p} \int_{0}^{s} \frac{a(t)}{t^{1 / p}} \log ^{j-1}(s / t) d t \leq A^{j} c_{6} s b\left(c_{7} s\right)$.
Then
$\frac{c_{5}}{c_{*}} s^{1 / p} \int_{0}^{s} \frac{a(t)}{t^{1 / p}} \sum \frac{1}{(j-1)!p^{j-1} c_{*}^{j-1}} \log ^{j-1}(s / t) d t \leq c_{8} s b\left(c_{7} s\right)$,
since $c_{*}>$ A. Since the sum inside the integral $=(\mathrm{s} /)^{\eta}$, we get
$L_{1} \equiv \mathrm{c}_{9} \mathrm{~s}^{1 / p} \int_{0}^{\mathrm{s}} \frac{\mathrm{a}(\mathrm{t})}{\mathrm{t}^{1 / \mathrm{p}}}(\mathrm{s} / \mathrm{t})^{\eta} \mathrm{dt} \leq \mathrm{c}_{8} \mathrm{sb}\left(\mathrm{c}_{7} \mathrm{~s}\right)$.
If $1=p$ we stop, and if $p>1$ we note that
$L_{1} \geq \mathrm{c}_{10} \int_{\mathrm{s} / 2}^{\mathrm{s}} \frac{\mathrm{a}(\mathrm{t})}{\mathrm{t}}(\mathrm{s} / \mathrm{t})^{\eta} \mathrm{dt}$.
Finally, the weak doubling condition gives us
$\int_{0}^{\mathrm{s}} \frac{\mathrm{a}(\mathrm{t})}{\mathrm{t}^{1+\eta}} \mathrm{dt} \leq \frac{\mathrm{c}_{11} \mathrm{~b}\left(\mathrm{c}_{7} \mathrm{~s}\right)}{\mathrm{s}^{\eta}}$.
There is a converse to Theorem 8 which reads as follows.
Theorem 9 Let $1 \leq \mathrm{p}<\infty$ and assume that for some $\varepsilon>0$
$\int_{R^{n}} \Phi\left(\mathrm{Mf}^{\mathrm{p}-\varepsilon}(\mathrm{x})\right) \mathrm{dx} \leq \mathrm{c}_{1} \int_{\mathrm{R}^{\mathrm{n}}} \Psi\left(\mathrm{c}_{2} \mathrm{f}^{\mathrm{p}-\varepsilon}(\mathrm{x})\right) \mathrm{dx}$.
If in case $p>1$ the measure $d \mu=\frac{a(t)}{t^{1+\eta}} d t, \eta=\varepsilon /(p-\varepsilon)$, is weakly doubling, then for $j \in N$ and $u \in A_{p}$
$\int_{R^{n}} \Phi\left(\mathrm{M}_{\mathrm{j}} \mathrm{f}^{\mathrm{p}}\right) \mathrm{u} \leq \mathrm{c}_{\mathrm{j}^{\prime}} \int_{\mathrm{R}^{\mathrm{n}}} \Psi\left(\mathrm{c}_{\mathrm{j}^{\prime \prime}} \mathrm{f}^{\mathrm{p}}\right) \mathrm{u}$.

Proof. By Theorem 5, $\int_{0}^{s} \frac{a(t)}{t^{1+\eta}} \mathrm{dt} \leq \frac{\mathrm{c}^{\prime} \mathrm{b}\left(\mathrm{c}^{\prime \prime} \mathrm{s}\right)}{\mathrm{s}^{\eta}}$. Then
$\int_{0}^{\mathrm{s}} \frac{\mathrm{a}(\mathrm{t})}{\mathrm{t}} \sum \frac{\eta^{\mathrm{j}-1}}{(\mathrm{j}-1)!} \log ^{\mathrm{j}-1}(\mathrm{~s} / \mathrm{t}) \mathrm{dt} \leq \mathrm{c}^{\prime} \mathrm{b}\left(\mathrm{c}^{\prime \prime} \mathrm{s}\right)$.
Thus for each $\mathbf{j} \in \mathrm{N}$
$\int_{0}^{\mathrm{s}} \frac{\mathrm{a}(\mathrm{t})}{\mathrm{t}} \log ^{\mathrm{j}-1}(\mathrm{~s} / \mathrm{t}) \mathrm{dt} \leq \mathrm{c}_{\mathrm{j}} \mathrm{b}\left(\mathrm{c}^{\prime \prime} \mathrm{s}\right)$.
Theorem 7 completes the proof.

8. APPLICATIONS

We give some examples of Φ and Ψ which are ($\mathrm{c}^{\prime}, \mathrm{c}^{\prime \prime}$) related and investigate the inplications of Theorem 1. We will get some unusual and surprising integral inequalities.
I. If $(u, v) \in A_{p}$ for some $1 \leq p<\infty$, then
$\int_{R^{n}} M f^{r} u \leq c \int_{R^{n}} f^{r} v$,
for $\mathrm{p}<\mathrm{r}<\infty$.
Proof. This is well-known [4]. It also follows from Theorem 1 by taking $\Phi(\mathrm{t})=\mathrm{t}^{\alpha}, \alpha>1$. An easy calculation shows that we can take $\Psi(\mathrm{t})=\mathrm{t}^{\alpha}$.
II. If $(u, v) \in A_{p}$ for some $1 \leq p<\infty$, then for $\alpha>1$
$\int_{R^{n}} \log ^{\alpha}\left(1+\mathrm{Mf}^{\mathrm{p}}\right) \mathrm{u} \leq \mathrm{c} \int_{\mathrm{R}^{\mathrm{n}}}{ }^{\mathrm{p}}{ }^{\mathrm{p}} \log ^{\alpha-1}\left(1+\mathrm{f}^{\mathrm{p}}\right) \mathrm{v}$.
Proof. Let $\Phi(\mathrm{t})=\log ^{\alpha}(1+\mathrm{t})$. Then $\mathrm{a}(\mathrm{t})=\alpha \frac{\log ^{\alpha-1}(1+\mathrm{t})}{1+\mathrm{t}}$ and $\int_{0}^{\mathrm{s}} \frac{\mathrm{a}(\mathrm{t})}{\mathrm{t}} \mathrm{dt}=\alpha \int_{0}^{\mathrm{s}} \frac{\log ^{\alpha-1}(1+\mathrm{t})}{\mathrm{t}(1+\mathrm{t})} \mathrm{dt} \leq \alpha \int_{0}^{\mathrm{s}} \frac{\log ^{\alpha-2}(1+\mathrm{t})}{1+\mathrm{t}} \mathrm{dt}=\frac{\alpha}{\alpha-1} \log ^{\alpha-1}(1+\mathrm{s})=\mathrm{b}(\mathrm{s})$.

Also
$\int_{0}^{\mathrm{t}} \mathrm{b}(\mathrm{s}) \mathrm{ds} \leq \frac{\alpha}{\alpha-1} \mathrm{t} \log ^{\alpha-1}(1+\mathrm{t}) \equiv \Psi(\mathrm{t})$.
The desired integral inequality follows from Theorem 1, since $\log (1+c x) \leq c \log (1+x)$ if $c \geq 1$.

Remark: We cannot replace the right side by the more symmetric $\int_{R^{n}} \log ^{\alpha}\left(1+\mathrm{f}^{\mathrm{p}}\right) \mathrm{v}$. As an example let $\mathrm{u}=\mathrm{v}=1$ and $\mathrm{n}=1$. If $\mathrm{f}(\mathrm{x})=\mathrm{r} \chi_{[0,1]}(\mathrm{x}), 0<\mathrm{r}<\infty$, then $\int_{R} \log ^{\alpha}\left(1+f^{p}\right)=\log ^{\alpha}\left(1+r^{p}\right)$. Since $\operatorname{Mf}(x) \geq r / x, x \geq 1$, we get $\int_{\mathrm{R}} \log ^{\alpha}\left(1+\mathrm{Mf}^{\mathrm{p}}\right) \mathrm{dx} \geq \int_{1}^{\infty} \log ^{\alpha}\left(1+(\mathrm{r} / \mathrm{x})^{\mathrm{p}}\right) \mathrm{dx}$.

The integrand
$\log ^{\alpha}\left(1+(r / x)^{p}\right)=\left(\log \left(x^{p}+r^{p}\right)-\log x^{p}\right)^{\alpha} \geq\left(\frac{r^{p}}{x^{p}+r^{p}}\right)^{\alpha} \geq 1 / 2^{\alpha}$,
if $x \leq r$. Hence
$\int_{\mathrm{R}} \log ^{\alpha}\left(1+\mathrm{Mf}^{\mathrm{p}}\right) \mathrm{dx} \geq \int_{1}^{\mathrm{r}} \frac{\mathrm{dx}}{2^{\alpha}}=\frac{\mathrm{r}-1}{2^{\alpha}}$.
Our assertion follows since $\frac{\log ^{\alpha}\left(1+r^{p}\right)}{r-1} \rightarrow 0$ as $r \rightarrow \infty$.
III. If $(u, v) \in A_{p}$ for some $1 \leq p<\infty$, then
$\int_{\{M f>1\}} M f^{p} u \leq c_{1} \int_{\left\{f>c_{2}\right\}} f^{p} \log \left(1+f^{p}\right) v$.
Proof. Let $\Phi(\mathrm{t})=(\mathrm{t}-1) \chi^{1}(\mathrm{t})$, where $\chi^{1}(\mathrm{t})=\chi_{[1, \infty)}(\mathrm{t})$. Then $a(t)=\chi^{1}(t)$. We let
$\mathrm{b}(\mathrm{s})=\int_{0}^{\mathrm{s}} \frac{\mathrm{a}(\mathrm{t})}{\mathrm{t}} \mathrm{dt}=(\log \mathrm{s}) \chi^{1}(\mathrm{~s})$.
Then $\Psi(\mathrm{t})=\int_{0}^{\mathrm{t}} \mathrm{b}(\mathrm{s}) \mathrm{d} s \leq(\mathrm{t} \log \mathrm{t}) \chi^{1}(\mathrm{t})$. By Theorem 1 we get
$\int_{\{\mathrm{Mf} \geq 1\}}\left(\mathrm{Mf}^{\mathrm{p}}-1\right) \mathrm{u} \leq \mathrm{c}_{1} \int_{\left\{\mathrm{f} \geq 1 / \mathrm{c}^{\prime}\right\}}{ }^{\mathrm{p}} \log \left(\mathrm{c}_{2} \mathrm{f}^{\mathrm{p}}\right) \mathrm{v}$,
where $c^{\prime}=c_{2}^{1 / p}$. By Theorem 2

where $c^{\prime \prime}=1 /\left(c_{0}^{p}\right)<1$. Thus we get
$\int_{\{\mathrm{Mf} \geq 1\}} \mathrm{Mf}^{\mathrm{p}} \mathrm{u} \leq \mathrm{c}_{1} \int_{\left\{\mathrm{f} \geq \mathrm{c}_{*}\right\}} \mathrm{f}^{\mathrm{p}}\left(1+\log \left(\mathrm{c}_{2} \mathrm{f}^{\mathrm{p}}\right)\right) \mathrm{v} \leq \mathrm{c}_{1^{\prime}} \int_{\left\{\mathrm{f} \geq \mathrm{c}_{*}\right\}} \mathrm{f}^{\mathrm{p}} \log \left(1+\mathrm{f}^{\mathrm{p}}\right) \mathrm{v}$,
since $1+\log (c x) \leq e c \log (1+x)$ if $e c>1$.
Remark: As a special case, if $(u, v) \in A_{1}$ and $K \subset R^{n}$ is compact, then $\int_{R^{n}} \mathrm{f}^{\log (1+\mathrm{f}) \mathrm{v}}<\infty$ implies $\mathrm{Mf} \chi_{\mathrm{K}} \in \mathrm{L}^{1}(\mathrm{u})$. This is a two-weight version of the well-known fact that $\mathrm{Mf}_{\mathrm{K}} \in \mathrm{L}^{1}$, if $\mathrm{f} \in \mathrm{L} \log \mathrm{L}$ [10].
IV. Let $(u, v) \in A_{p}$ for some $1 \leq p<\infty$, and let $0<\alpha<1$. Then
$\int_{\{M f>1\}}\left(\operatorname{Mf}^{\alpha \mathrm{p}}-1\right) \mathrm{u} \leq \frac{\mathrm{c}_{1}}{1-\alpha} \int_{\left\{\mathrm{c}_{2} \mathrm{f}^{\mathrm{p}}>1\right\}}\left(\mathrm{c}_{2} \mathrm{f}^{\mathrm{p}}-\mathrm{c}_{2}^{\alpha} \mathrm{f}^{\alpha \mathrm{p}}\right) \mathrm{v}$.
Proof. Let $\Phi(t)=\left(\mathrm{t}^{\alpha}-1\right) \chi^{1}(\mathrm{t})$. Then $\mathrm{a}(\mathrm{t})=\alpha \mathrm{t}^{\alpha-1} \chi^{1}(\mathrm{t})$. We set $\mathrm{b}(\mathrm{t})=\alpha \int_{1}^{\mathrm{t}} \mathrm{s}^{\alpha-2} \mathrm{ds} \chi^{1}(\mathrm{t})=\frac{\alpha}{1-\alpha}\left(1-\mathrm{t}^{\alpha-1}\right) \chi^{1}(\mathrm{t})$.

Hence
$\Psi(\mathrm{t})=\frac{\alpha}{1-\alpha} \int_{1}^{\mathrm{t}}\left(1-\mathrm{s}^{\alpha-1}\right) \mathrm{ds} \chi^{1}(\mathrm{t})=\left(\frac{\alpha}{1-\alpha}\left(\mathrm{t}-\mathrm{t}^{\alpha} / \alpha\right)+1\right) \chi^{1}(\mathrm{t})$.
 get the desired inequality.
V. Let $(u, v) \in A_{p}$ for some $1 \leq p<\infty$, and let $0<k<\infty$.
$\int_{\{\operatorname{Mf}>1\}}\left(1-\frac{1}{\mathrm{Mf}^{\mathrm{p}}}\right)^{\mathrm{k}} \mathrm{u} \leq \mathrm{c} \int_{\left\{\mathrm{f}>1 / \mathrm{c}^{\prime}\right\}} \mathrm{f}^{\mathrm{p}}\left(1-1 /\left(\mathrm{c}_{2} \mathrm{f}^{\mathrm{p}}\right)\right)^{\mathrm{k}+1} \mathrm{v}, \mathrm{c}^{\prime}=\mathrm{c}_{2}^{1 / \mathrm{p}}$.
Proof. Let $\quad \Phi(\mathrm{t})=(1-1 /)^{\mathrm{k}} \chi^{1}(\mathrm{t})$. Then $a(t)=k(1-1 / t)^{k-1} 1 /\left(t^{2}\right) \chi^{1}(t)$. We set
$\mathrm{b}(\mathrm{t})=\mathrm{k} \int_{1}^{\mathrm{t}}(1-1 / \mathrm{s})^{\mathrm{k}-1} \frac{1}{\mathrm{~s}^{3}} \mathrm{ds} \chi^{1}(\mathrm{t}) \leq(1-1 / \mathrm{t})^{\mathrm{k}} \chi^{1}(\mathrm{t})$.
$>$ From this we see that
$\Psi(\mathrm{t})=\int_{1}^{\mathrm{t}}(1-1 / \mathrm{s})^{\mathrm{k}} \mathrm{ds} \chi^{1}(\mathrm{t}) \leq(1-1 / \mathrm{t})^{\mathrm{k}}(\mathrm{t}-1) \chi^{1}(\mathrm{t})=\mathrm{t}(1-1 / \mathrm{t})^{\mathrm{k}+1} \chi^{1}(\mathrm{t})$,
and the inequality follows.
VI. Let $(u, v) \in A_{p}$ for some $1 \leq p<\infty$. Then
$\int_{R^{n}} e^{-1 /\left(M f f^{p}\right)} u \leq c_{1} \int_{R^{n}} f^{\left.\mathrm{P}^{-1 /\left(c_{2}\right.} \mathrm{f}^{\mathrm{p}}\right)}{ }_{v}$.
Proof. Let $\Phi(\mathrm{t})=\mathrm{e}^{-1 / t}, \mathrm{t}>0$ and $\Phi(0)=0$. Then $\mathrm{a}(\mathrm{t})=\mathrm{e}^{-1 / \mathrm{t}} 1 / \mathrm{t}^{2}$ and
$\mathrm{b}(\mathrm{t})=\int_{0}^{\mathrm{t}} \frac{\mathrm{e}^{-1 / \mathrm{s}}}{\mathrm{s}^{3}} \mathrm{ds}=\mathrm{e}^{-1 / t}\left(\frac{1}{\mathrm{t}}+1\right)$.
$>$ From this
$\Psi(\mathrm{t})=\int_{0}^{\mathrm{t}} \mathrm{e}^{-1 / \mathrm{s}}\left(\frac{1}{\mathrm{~s}}+1\right) \mathrm{ds}=\mathrm{te}^{-1 / \mathrm{t}}$.
Theorem 1 gives the desired integral inequality.
Remark: The factor f^{p} in the above inequality cannot be omitted as examples of the type $f_{N}=N \chi_{[0,1]}$ show.
VII. Suppose $a(t)=\Phi^{\prime}(t)$ is convex with $a(0)=0$. If $(u, v) \in A_{p}$ for some $1 \leq p<\infty$, then
$\int_{\mathrm{R}^{\mathrm{n}}} \Phi\left(\mathrm{Mf}^{\mathrm{p}}\right) \mathrm{u} \leq \mathrm{c}_{1} \int_{\mathrm{R}^{\mathrm{n}}} \Phi\left(\mathrm{c}_{2} \mathrm{f}^{\mathrm{p}}\right) \mathrm{v}$.
Proof. This follows from
$\int_{0}^{\mathrm{t}} \frac{\mathrm{a}(\mathrm{s})}{\mathrm{s}} \mathrm{ds} \leq \int_{0}^{\mathrm{t}} \mathrm{a}^{\prime}(\mathrm{s}) \mathrm{ds}=\mathrm{a}(\mathrm{t})$.
Remark: Examples illustrating (VII) are $\Phi(t)=t^{2} e^{t}, e^{t}-t-1, \sum_{n \geq 2} a_{n} t^{n}, a_{n} \geq 0$. As an application we will present an inequality involving $\mathrm{e}^{\mathrm{Mf}}{ }^{\mathrm{p}}$.
VIII. If $(u, v) \in A_{p}$ for some $1 \leq p<\infty$, then there exist constants $0<c_{1}, c_{2}<\infty$ such that for every $f: R^{n} \rightarrow R_{+}$
$\int_{\{M f>1\}} \mathrm{e}^{\mathrm{Mf}}{ }^{\mathrm{p}} \mathrm{u} \leq \mathrm{c}_{1} \int_{\left\{\mathrm{c}_{2} \mathrm{f}^{\mathrm{p}}>1\right\}} \mathrm{e}^{\mathrm{c}_{2} \mathrm{f}^{\mathrm{p}}{ }_{\mathrm{v}} .}$
Proof. Let $\Phi(\mathrm{t})=\left(\mathrm{e}^{\mathrm{t}}-\mathrm{te}\right) \chi^{1}(\mathrm{t})$. Then $\mathrm{a}(\mathrm{t})=\left(\mathrm{e}^{\mathrm{t}}-\mathrm{e}\right) \chi^{1}(\mathrm{t})$ and thus from VII

Then

1
$\int_{\{M f>1\}}\left(e^{M f}{ }^{p}-M f f^{p} e\right) u \leq c^{\prime} \int_{\left\{c^{\prime \prime} f\right.} p_{>1\}}\left(e^{c^{\prime \prime \prime} f^{p}}-c^{\prime \prime} f^{p} e\right) v \leq c^{\prime} \int_{\left\{c^{\prime \prime} f\right.} p_{>1\}} e^{c^{\prime \prime \prime} f} v$.

We only need to verify now that
$\int_{\{\operatorname{Mf}>1\}} \operatorname{Mf}^{\mathrm{p}} \mathbf{u} \leq \mathrm{c}_{1} \int_{\left\{\mathrm{c}_{2} \mathrm{f}^{\mathrm{f}}>1\right\}} \mathrm{e}^{\mathrm{c}_{2} \mathrm{f}^{\mathrm{p}}} \mathrm{v}$.
This is easy by letting $\Phi(\mathrm{t})=(\mathrm{t}-1) \chi^{1}(\mathrm{t})$. Then $\mathrm{a}(\mathrm{t})=\chi^{1}(\mathrm{t})$ and thus $\mathrm{b}(\mathrm{t})=\log \mathrm{t}^{1}(\mathrm{t}) \leq \mathrm{e}^{\mathrm{t}} \chi^{1}(\mathrm{t})$.
IX. If $(u, v) \in A_{p}$ for some $1 \leq p<\infty$, then
$\int_{\{\mathrm{Mf}>1\}} \sqrt{M f^{\mathrm{p}}-1} \mathrm{u} \leq \mathrm{c}_{1} \int_{\left\{\mathrm{c}_{2}^{\left.1 / p_{f}>1\right\}}\right.}\left(\mathrm{c}_{2} \mathrm{f}^{\mathrm{p}} \tan ^{-1} \sqrt{\mathrm{c}_{2} \mathrm{f}^{\mathrm{p}}-1}-\sqrt{\mathrm{c}_{2} \mathrm{f}^{\mathrm{p}}-1}\right) \mathrm{v}$.
Proof. Let $\chi^{1}(\mathrm{t})=\chi_{[1, \infty)}(\mathrm{t})$, and take $\Phi(\mathrm{t})=\sqrt{\mathrm{t}-1} \chi^{1}(\mathrm{t})$. Then $a(t)=1 /(2 \sqrt{t-1}) \chi^{1}(t)$ and
$\mathrm{b}(\mathrm{t})=\int_{1}^{\mathrm{t}} \frac{1}{2 \mathrm{~s}(\mathrm{~s}-1)^{1 / 2}} \mathrm{ds} \chi^{1}(\mathrm{t})=\tan ^{-1} \sqrt{\mathrm{t}-1} \chi^{1}(\mathrm{t})$.
Also
$\Psi(\mathrm{t})=\int_{1}^{\mathrm{t}} \tan ^{-1} \sqrt{\mathrm{~s}-1} \mathrm{ds} \chi^{1}(\mathrm{t})=\left(\mathrm{t} \tan ^{-1} \sqrt{\mathrm{t}-1}-\sqrt{\mathrm{t}-1}\right) \chi^{1}(\mathrm{t})$.
Theorem 1 gives us the desired integral inequality.
Remark: It is tempting to replace the right side of IX by the more symmetric
$c_{1} \int_{\left\{c_{2} f^{p}>1\right\}} \sqrt{c_{2} f^{p}-1}$.
Examples of the form $\mathrm{f}_{\mathrm{N}}=\mathrm{N} \chi_{1}$ as $\mathrm{N} \rightarrow \infty$ show that this is not possible.
X. If $(u, v) \in A_{p}$ for some $1 \leq p<\infty$, then

$$
\int_{\{\mathrm{Mf}>\mathrm{y}\}} \log \left(\mathrm{e} \frac{\mathrm{Mf}}{\mathrm{y}}\right)^{\mathrm{p}} \mathrm{u} \leq \frac{\mathrm{c}_{1}}{\mathrm{y}^{\mathrm{p}}} \int_{\left\{\mathrm{f}>\mathrm{c}_{2} \mathrm{y}\right\}} \mathrm{f}^{\mathrm{p}} \mathrm{v}_{\mathrm{v}}
$$

with c_{1}, c_{2} independent of f.
Proof. Fix $\mathrm{y}>0$ and let $\mathrm{e}^{\mathrm{p}} \tau=\mathrm{y}^{\mathrm{p}}$. If $\mathrm{a}(\mathrm{t})=(1 / \mathrm{t}) \chi^{\tau}(\mathrm{t})$ and

$$
\mathrm{b}(\mathrm{t})=\int_{0}^{\mathrm{t}} \frac{\mathrm{a}(\mathrm{~s})}{\mathrm{s}} \mathrm{ds}=\int_{\tau}^{\mathrm{t}} \frac{\mathrm{ds}}{\mathrm{~s}^{2}} \chi^{\tau}(\mathrm{t}) \leq(1 / \tau) \chi^{\tau}(\mathrm{t})
$$

then $\Phi(\mathrm{t})=\log (\mathrm{t} / \tau) \chi^{\tau}(\mathrm{t})$ and $\Psi(\mathrm{t}) \leq(\mathrm{t} / \tau) \chi^{\tau}(\mathrm{t}) .>$ From Theorem 1 we get

$$
\int_{\left\{\mathrm{Mf}^{\mathrm{p}}>\tau\right\}} \log \left(\frac{\mathrm{Mf}^{\mathrm{p}}}{\tau}\right) \mathrm{u} \leq \frac{\mathrm{c}^{\prime}}{\tau} \int_{\left\{\mathrm{f}^{\mathrm{p}}>\mathrm{c}^{\prime \prime} \tau\right\}} \mathrm{f}^{\mathrm{p}_{\mathrm{v}}}
$$

Finally

$$
\int_{\{\mathrm{Mf}>\mathrm{y}\}} \log \left(\mathrm{e}^{\mathrm{p}} \frac{\mathrm{Mf}^{\mathrm{p}}}{\mathrm{y}^{\mathrm{p}}}\right) \mathrm{u} \leq \int_{\{\mathrm{Mf}} \mathrm{p}_{>\tau\}} \log \left(\frac{\mathrm{Mf}^{\mathrm{p}}}{\tau}\right) \mathrm{u} \leq \frac{\mathrm{c}_{1}}{\mathrm{y}^{\mathrm{p}}} \int_{\left\{\mathrm{f}>\mathrm{c}_{2} \mathrm{y}\right\}} \mathrm{f}^{\mathrm{p}_{\mathrm{v}}}
$$

Remark: The above inequality is a generalization of the weak-type inequality $u\{\mathrm{Mf}>\mathrm{y}\} \leq \frac{\mathrm{c}}{\mathrm{y}^{\mathrm{p}}} \int_{\mathrm{R}^{\mathrm{n}}} \mathrm{f}^{\mathrm{p}}$.
XI. If $(u, v) \in A_{p}$ and $p<s<r<\infty$, then
$\int_{\{M f>1\}}\left(\mathrm{Mf}^{\mathrm{r}}-\mathrm{Mf}^{\mathrm{s}}\right) \mathrm{u} \leq \frac{\mathrm{c}_{1}}{\beta-1} \int_{\left\{\mathrm{c}_{2} \mathrm{f}^{\mathrm{p}}>1\right\}}\left(\mathrm{c}_{2}^{\alpha} \mathrm{f}^{\mathrm{r}}-\mathrm{c}_{2}^{\beta} \mathrm{f}^{\mathrm{s}}\right) \mathrm{v}$,
where $\alpha=r / p, \beta=s / p$.
Proof. Let $\quad \Phi(\mathrm{t})=\left(\mathrm{t}^{\alpha}-\mathrm{t}^{\beta}\right) \chi^{1}(\mathrm{t})$. Then $a(t)=\left(\alpha t^{\alpha-1}-\beta t^{\beta-1}\right) \chi^{1}(t)$ and
$b(t)=\left(\frac{\alpha}{\alpha-1} t^{\alpha-1}-\frac{\beta}{\beta-1} t^{\beta-1}+c_{\alpha \beta}\right) \chi^{1}(t)$,
where $c_{\alpha \beta}=\beta /(\beta-1)-\alpha /(\alpha-1)$. Consequently
$\Psi(t)=\left(\frac{t^{\alpha}}{\alpha-1}-\frac{t^{\beta}}{\beta-1}+c_{\alpha \beta} t\right) \chi^{1}(t) \leq\left(\left(\frac{1}{\alpha-1}+c_{\alpha \beta}\right) t^{\alpha}-\frac{1}{\beta-1} t^{\beta}\right)$
$\chi^{1}(t)=\frac{1}{\beta-1}\left(t^{\alpha}-t^{\beta}\right) \chi^{1}(t)$.
Theorem 1 gives the desired inequality.
Remark: If $\mathrm{s}=\mathrm{p}$ above, then using the same type of argument with $\Phi(t)=\left(t^{\alpha}-t\right) \chi^{1}(t)$, etc, we get for $(u, v) \in A_{p}$
$\int_{\{M f>1\}}\left(\mathrm{Mf}^{\mathrm{r}}-\mathrm{Mf}^{\mathrm{p}}\right) \mathrm{u} \leq \frac{\mathrm{c}_{1} \alpha}{\alpha-1} \int_{\left\{\mathrm{c}_{2}{ }_{\mathrm{f}} \mathrm{p}_{>1\}}\right.}\left(\mathrm{c}_{2}^{\alpha_{\mathrm{f}} \mathrm{r}}-\mathrm{c}_{2} \mathrm{f}^{\mathrm{p}}\right) \mathrm{v}$.
XII. The fact that $\operatorname{Mf} \notin L^{1}\left(R^{n}\right)$ unless $f=0$ gives rise to the question for which $\Phi: \mathrm{R}_{+} \rightarrow \mathrm{R}_{+}$is $\Phi(\mathrm{Mf}) \in \mathrm{L}^{1}\left(\mathrm{R}^{\mathrm{n}}\right)$. Let $\mathrm{a}: \mathrm{R}_{+} \rightarrow \mathrm{R}_{+}$be in $\mathrm{L}_{\mathrm{loc}}^{1}((0, \infty))$ and let $\Phi(\mathrm{t})=\int_{0}^{\mathrm{t}} \mathrm{a}(\mathrm{s}) \mathrm{ds}$.

Theorem 10 The following statements are equivalent for $\mathrm{f} \in \mathrm{L}^{\infty} \cap \mathrm{L}^{1}\left(\mathrm{R}^{\mathrm{n}}\right):$
$\Phi(\operatorname{Mf}(\mathrm{x})) \in \mathrm{L}^{1}\left(\mathrm{R}^{\mathrm{n}}\right)$,
$\int_{0}^{\mathrm{s}} \frac{\mathrm{a}(\mathrm{t})}{\mathrm{t}} \mathrm{dt}<\infty, 0<\mathrm{s}<\infty$.
Proof. (2) \rightarrow (1). Since $|\{\mathrm{Mf}>\mathrm{t}\}| \leq \mathrm{c}_{0} / \mathrm{t}\|\mathrm{f}\|_{1}$ and Mf is (∞, ∞), we get

$$
\int_{\mathrm{R}^{\mathrm{n}}} \Phi(\mathrm{Mf}(\mathrm{x})) \mathrm{dx}=\int_{0}^{\|\mathrm{f}\|_{\infty}}|\{\mathrm{Mf}>\mathrm{t}\}| \mathrm{a}(\mathrm{t}) \mathrm{dt} \leq \mathrm{c}\|\mathrm{f}\|_{1} \int_{0}^{\|\mathrm{f}\|_{\infty} \frac{\mathrm{a}(\mathrm{t})}{\mathrm{t}} \mathrm{dt} ~}
$$

$(1) \rightarrow(2)$. We may assume that $a(t) \neq 0$ on any interval $(0, \varepsilon))$ and $\mathrm{f} \neq 0$. By Lemma 3, $\frac{1}{\mathrm{t}} \int_{\{\mathrm{f}>\mathrm{t}\}} \mathrm{f}(\mathrm{x}) \mathrm{dx} \leq \mathrm{c}|\{\mathrm{Mf}>\mathrm{t}\}|$, and thus for $\mathrm{f} \in \mathrm{L}^{\infty} \cap \mathrm{L}^{1}\left(\mathrm{R}^{\mathrm{n}}\right)$

$$
\begin{aligned}
& \infty>\int_{R^{n}} \Phi(\operatorname{Mf}(\mathrm{x})) \mathrm{dx}=\int_{0}^{\|\mathrm{f}\|_{\infty}}|\{\mathrm{Mf}>\mathrm{t}\}| \mathrm{a}(\mathrm{t}) \mathrm{dt} \geq \mathrm{c} \int_{0}^{\|\mathrm{f}\|_{\infty} \frac{\mathrm{a}(\mathrm{t})}{\mathrm{t}}} \\
& \int_{\{\mathrm{f}>\mathrm{t}\}} \mathrm{f}(\mathrm{x}) \mathrm{dxdt}=\mathrm{c} \int_{R^{n}} \int_{0}^{\mathrm{f}(\mathrm{x})} \frac{\mathrm{a}(\mathrm{t})}{\mathrm{t}} \mathrm{f}(\mathrm{x}) \mathrm{dtdx}=\mathrm{c} \int_{R^{n}} \Psi(\mathrm{f}(\mathrm{x})) \mathrm{f}(\mathrm{x}) \mathrm{dx}
\end{aligned}
$$

where $\Psi(\mathrm{r})=\int_{0}^{\mathrm{r}} \frac{\mathrm{a}(\mathrm{t})}{\mathrm{t}} \mathrm{dt}$. Therefore, $\Psi(\mathrm{f}(\mathrm{x})) \mathrm{f}(\mathrm{x})<\infty$, a.e x , and hence $\Psi(f(x))<\infty$, a.e. x.

Incidentally, we have established the following inequality:
$\mathrm{c}_{1} \int_{\mathrm{R}^{\mathrm{n}}} \Psi(\mathrm{f}(\mathrm{x})) \mathrm{f}(\mathrm{x}) \mathrm{dx} \leq \int_{\mathrm{R}^{\mathrm{n}}} \Phi(\mathrm{Mf}(\mathrm{x})) \mathrm{dx} \leq \mathrm{c}_{2} \Psi\left(\|\mathrm{f}\|_{\infty}\right)\|\mathrm{f}\|_{1}$.
XIII. Let $\mathrm{a}: \mathrm{R}_{+} \rightarrow \mathrm{R}_{+}, \mathrm{b}(\mathrm{s})=\int_{0}^{\mathrm{s}} \frac{\mathrm{a}(\mathrm{t})}{\mathrm{t}} \mathrm{dt}$ and $\Phi(\mathrm{t})=\int_{0}^{\mathrm{t}} \mathrm{a}(\mathrm{s}) \mathrm{ds}$. If $1 \leq \mathrm{p}, \mathrm{q}<\infty$ and $(\mathrm{u}, \mathrm{v}) \in \mathrm{A}_{\mathrm{p}}$, then
$\int_{R^{n}} \Phi\left(\mathrm{Mf}^{\mathrm{p}}\right) \mathrm{u} \leq \mathrm{c}_{1} \int_{\mathrm{R}^{\mathrm{n}}} \Psi_{\mathrm{p}, \mathrm{q}}\left(\mathrm{c}_{2} \mathrm{f}^{\mathrm{q}}\right) \mathrm{v}$,
where $\Psi_{\mathrm{p}, \mathrm{q}}(\mathrm{t})=\int_{0}^{\mathrm{t}^{\mathrm{p} / \mathrm{q}}} \mathrm{b}(\mathrm{s}) \mathrm{ds}$.
Proof. This follows from Theorem 1 since $\Psi_{\mathrm{p}, \mathrm{q}}(\mathrm{t})=\Psi\left(\mathrm{t}^{\mathrm{p} / \mathrm{q}}\right)$.

Remark: Theorem 1 deals with functions Φ, Ψ nondecreasing. It is sometimes convenient to have a version of Theorem 1 with Φ, Ψ non-increasing.

Let $a: \mathrm{R}_{+} \rightarrow \mathrm{R}_{+}$and let $\Phi(\mathrm{t})=\int_{\mathrm{t}}^{\infty} \mathrm{a}(\mathrm{s}) \mathrm{ds}$. The function $b: R_{+} \rightarrow R_{+}$is related to a by
$\int_{\mathrm{s}}^{\infty} \mathrm{ta}(\mathrm{t}) \mathrm{dt} \leq \mathrm{c}^{\prime} \mathrm{b}\left(\mathrm{c}^{\prime \prime} \mathrm{s}\right), 0<\mathrm{s}<\infty$.
Finally, let
$\Psi(\mathrm{t})=\int_{\mathrm{t}}^{\infty} \frac{\mathrm{b}(\mathrm{s})}{\mathrm{s}^{2}} \mathrm{ds}$.
Theorem 11 The following statements are equivalent for $1 \leq p<\infty$.
(6) Whenever Φ and Ψ are related as above, then for every $f: R^{n} \rightarrow R_{+}$
$\int_{\mathrm{R}^{\mathrm{n}}} \Phi\left(\frac{1}{\mathrm{Mf}^{\mathrm{p}}}\right) \mathrm{u} \leq \mathrm{c}_{1} \int_{\mathrm{R}^{\mathrm{n}}} \Psi\left(\frac{\mathrm{c}_{2}}{\mathrm{f}^{\mathrm{p}}}\right) \mathrm{v}$,
where the constants ${ }^{c_{1}, c_{2}}$ depend only on $c^{\prime}, c^{\prime \prime}$ and ${ }^{p}$.
(7) $(\mathrm{u}, \mathrm{v}) \in \mathrm{A}_{\mathrm{p}}$.

Proof. The change of variables $s \rightarrow 1 / \mathrm{s}$ shows that condition (2) of Theorem 1 is equivalent with condition (6): $\Phi(\mathrm{t}), \Psi(\mathrm{t})$ satisfy (6) if and only if $\Phi_{*}(\mathrm{t})=\Phi(1 / \mathrm{t}), \Psi *(\mathrm{t})=\Psi(1 / \mathrm{t})$ satisfy (2) of Theorem 1.

As an example let $\Phi(t)=\int_{t}^{\infty} e^{-s} d s$. An easy calculation shows that we get VI. Another interesting example is $\Phi(\mathrm{t})=\left(1-\mathrm{t}^{\alpha}\right) \chi_{1}(\mathrm{t}), \quad 0<\alpha<\infty, \quad$ where $\quad \chi_{1}(\mathrm{t})=\chi_{[0,1]}(\mathrm{t})$. Then $a(t)=\alpha t^{\alpha-1} \chi_{1}(t)$ and s
$b(t)=\frac{\alpha}{\alpha+1}\left(1-t^{\alpha+1}\right) \chi_{1}(t)$.
Thus
$\Psi(\mathrm{t})=\int_{\mathrm{t}}^{\infty} \frac{\mathrm{b}(\mathrm{s})}{\mathrm{s}^{2}} \mathrm{~d} s \chi_{1}(\mathrm{t})=\left\{\frac{\alpha}{\alpha+1}\left(1 / \mathrm{t}+\mathrm{t}^{\alpha} / \alpha\right)-1\right\} \chi_{1}(\mathrm{t})$.
If $(u, v) \in A_{p}$ for some $1 \leq p<\infty$, Theorem 7 gives

$$
\int_{\{\operatorname{Mf}>1\}}\left(1-\frac{1}{M^{\alpha p}}\right) u \leq c_{1} \int_{\left\{c_{2}^{1 / p}<f\right\}}\left(\frac{f^{p}}{c_{2}}+\frac{c_{2}^{\alpha}}{\alpha f^{\alpha p}}\right) v-c_{1} v\left\{f>c_{2}^{1 / p}\right\} .
$$

CONFLICT OF INTEREST

The authors confirm that this article content has no conflicts of interest.

ACKNOWLEDGEMENT

None declared.

REFERENCES

[1] Cruz-Uribe D, Martell J, Pérez C. Weights, Extrapolation, and the Theory of Rubio de Francia. In: Ball JA, Dym H, Kaashock MA, Langes H, Tretter C, Eds. Operator Theory. Advances and Applications. Basal: Birkhäuser 2010; p. 215.
[2] Cruz-Uribe D, Neugebauer CJ. The structure of reverse Hölder classes. Trans Am Math Assoc 1995; 347: 2941-59.
[3] Garcia-Cuerva J, Rubio De Francia JL. Weighted norm inequalities and related topics, North-Holland Mathematics Studies. Netherlands: Elsevier 1985; p. 116.
[4] Muckenhoupt B. Weighted norm inequalities for the Hardy maximal function. Trans Am Math Assoc 1972; 165: 207-26.
[5] Muckenhoupt B, Wheeden R. Two weight function norm inequalities for the Hardy-Littlewood maximal function and the Hilbert transform. Stud Math 1976; 60: 279-94.
[6] Neugebauer CJ. Orlicz-type integral inequalities for operators. J Korean Math 2001; 38: 163-76.
[7] Neugebauer CJ. Weighted norm inequalities for averaging operators of monotone functions. Publicacions Matema t^{\prime} iques 1991; 35: 429-47.
[8] Neugebauer CJ, Leckband MA. A general maximal operator and the A_{p} condition. Trans Am Math Assoc 1983; 275: 821-31.
[9] Neugebauer CJ, Leckband MA. Weighted iterates and variants of the Hardy-Littlewood maximal operator. Trans Am Math Assoc 1983; 275(1): 51-61.
[10] Stein EM. Singular integrals and differentiability properties of functions. Princeton, NJ: Princeton University Press 1970.
[11] Torchinsky A. Real-variable methods in harmonic analysis. USA: Academic Press 1986.

[^0]: *Address correspondence to this author at the Department of Mathematics, Purdue University, West Lafayette, in 47907-1395, USA;
 E-mail: neug@math.purdue.edu
 ${ }^{1} 1991$ Mathematics Subject Classification, 42B25, 42B35.

