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1. INTRODUCTION 

 In this paper we will study integral inequalities of the 
type  

,dx)x(v)|)x(f|c(cdx)x(u))x(Mf( p
2nR

1
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nR

   (1) 

where dt|)t(f|
|Q|

1
sup=)x(Mf

Q
Qx   is the Hardy-Littlewood 

maximal operator, and we ask for condtions on 
  RR:,  such that (1) holds if and only if pA)v,u(  . 

We say that pA)v,u(   if 
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and )x(cv)x(Mu  , if 1=p . These weight classes were 
introduced by Muckenhoupt [4] and Muckenhoupt and 
Wheeden [5] to study (1) when t=)t(=)t(  . If <p<1  and 

pAv=u  , (1) holds for t=)t(=)t(  , but not if 1=p . Also 
for each  <p1  there exists a pair pA)v,u(   so that (1) fails 
in the special case t=)t(=)t(   [3, p. 395]. In these 
exceptional cases we have a weak type inequality. An 
excellent reference is the book by J.Garcia-Cuerva and 
J.L.Rubio de Francia [3]. We refer the reader interested in 
the current state of the two-weight theory to the recent book 
[1] by Cruz-Uribe, Martell, and Pérez. 

 The restrictions on ,  are: ds)s(b=)t(,ds)s(a=)t(
t

0

t

0    

with  RR:b,a  satisfying  

(*).<s<),0sc(bcdt
t

)t(as

0

  

 Note that this excludes the classical case t=Ψ(t)=Φ(t) . If 
(*)  holds, we say that ΨΦ,  are )c,c(  -related. 
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 We are now ready to state our main result whose proof 
will be given in section 3. 
 Theorem 1 The following statements are equivalent for 

 <p1 . 

 (2) For each   and   which are )c,c(  -related, we have  

,v)|f|c(cu)Mf( p
2nR

1
p

nR

   

for all RR:f n  , where the constamts 21 c,c  depend only on 
c,c   and p . 

 (3) We have pA)v,u(  .  

 Remark: In the Lebesgue measure case - 1=v=u  - 
integral inequalities related to (2) can be found in [6]. It 
should be noted that 1=p  is not excluded. 

 In section 4 we will examine in what sense the condition 

)tc(bcds
s

)s(at

0

  is also necessary for Theorem 1, and in 

section 5 we will examine the extrapolation problem: when 
is it possible to replace p  by p  in (2). In sections 6 and 7 
we will study the iterated maximal operator and its relation 
to extrapolation. In section 8 we will collect some unusual 
and surprising integral inequalities for Mf  obtained by 
choosing ,  and applying Theoren 1. 

 A final comment is in order. I have dedicated this paper 
to the memory of Richard A. Hunt who made significant 
contributions to the theory of pA -weights and to whom I am 
indebted for introducing me to this subject some 40 years 
ago. 

2. A TWO-WEIGHT DISTRIBUTIONAL INEQUALITY 

 For convenience all our functions will be non-negative: 
RR:f n . 

 The distributional inequality below for 1=v=u  - the 
Lebesgue measure case - and a sublinear operator T  instead 
of M  is equivalent with saying that T  is both weak-type 

)p,p(  and of type ),(   [11, p. 103]. 
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 Theorem 2 The following statements are equivalent for 
 <p1 . 

 (4) There exists <c<0 0  such that for every RR:f n  
we have for <t<0   
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 (5) We have .A)v,u( p   

 Proof. Apart from a minor detail, the proof follows the 
standard covering argument and we include it for the benefit 
of the reader. 
 (5) (4). We may assume that M  is the centered 
maximal operator  

,d)(f
|Q|

1
sup=)x(Mf
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where the sup  is extended over all cubes Q  centered at x . 
We consider the case <p<1  first. Fix RR:f n , and for 

<t<0  let t
t ff=f  , where  
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 It is clear that for some constant c   
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and hence for some constant 0c   
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 Let now N . We use the same notation for the case 
1=p  as above. Since now vinf|Q|)/Q(u
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 Proceed now as in the case <p<1 . 

 (4) (5). For the case 1=p  we fix a cube 0Q  and let 
Q=f  , where Q  is an arbitrary subcube of 0Q . Then  
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 Thus )Q(v|)Q|/|Q(|c)Q(u 000  , and thus 
vinfc|)Q|)/Q(u

0
Q000  . 

 If <p<1  we take the usual test function p1
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  with 
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 and the pA -condition follows.  

3. PROOF OF THEOREM 1. (3) (2).  
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 It is clear that the constants 1c  and 2c  have the desired 
properties. 

 (2)   (3). We assume that  

.Rdt)t(b}t>fc{vcdt)t(a}t>Mf{uL p
2

0
1

p

0

 


 

 Fix  <<0 0  and let  
).t(h1=)t(a ]h

0
,

0
[   

 Set  

.>,log

1<),/(log10,0=)(=)(

000

0000
0

hth

hhtthtsdssatb
t








 

 With this choice   and   are (1,1) -related independent 
of h  and 0  and hence 1c  and 2c  do not depend on h  or 0 . 
Then  
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 We see that 0)h(I1   as 0h   and  
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 Since 0  was arbitrary we get for some constant 1>c0   
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 We now make the substitution ps=  and then ptt   to 
get  

.dtt}t>f{vsc}s>Mf{u 1p

0
c/s
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 By Theorem 2 this is the same as saying pA)v,u(  . 

Remark. Theorem 1 is not true with M  replaced by a 
singular integral operator T . If it were true, then the 
argument as on the previous page shows that  
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and hence for 0=}s|>Tf{|u,fc>s v,0   and  <Tf u, . But T  
is not of type ),(   [10]. 

 

4. A CONVERSE 

 For a given  RR:b,a  and ds)s(a=)t(
t

0 , ds)s(b=)t(
t

0  

we wish to examine when (2) of Theorem 1 implies that  

.<s<),0sc(bctdt)t(a
s

0

  

 Since this condition is independent of pA)v,u(  , we are 
allowed to take any pA)v,u(  , in particular 1=v=u , the 
Lebesgue measure case, or v=u  in RH . We prefer the 
second alternative since it is based on an extension of the 
reverse weak type inequality. We say that RHu  if for 

every cube Q , u|Q|1c)x(usup
QQ
 . The inf of all such c 's is 

called the RH -constant of u . This class was studied in [2] 
and plays roughly the same role among the reverse Hölder 
classes r,RHr , as 1A  does among pA , 1p . Typical 

examples of RH -weights in R  are x=)x(u , 0> . 

 Theorem 3 Let RHu . Then there are constants 
 <c,c<0 1  such that for all RR:f n  and <t<0   

 },tc>Mf{ucdx)x(u)x(ft1 1
}t>f{

 

where *c=c1/   is the RH -constant of u .  

 Proof. Since dx)x(u  is a doubling measure [3], we have 
available the Calderon-Zygmund decomposition at height t  
and this gives us disjoint cubes }Q{ k  such that  

ctfu)Q(u1t
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 if Qx . Hence )x(Mfc)x(fm *u   and the proof is 
complete. 
 Defintion. (1)  RR:b  is quasi-increasing )qi(  if there 
is a constant <c<0 0  such that tt   implies )tc(bc)t(b 00 

. 

 (2) A measure   on R  is weakly doubling if there is a 
constant <c<0  such that  <d<]),0d,2d([c])d([0,2 . 

If a measure is doubling, it is also weakly doubling. The 
converse is not true as the measure dxe=d x  shows. In fact if  
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 RR:f  is nondecreasing, then dx)x(f=d  is weakly 
doubling. The measure )x/(1dx=d   is not weakly doubling. 

 Theorem 4 Assume that )t(b  is qi  and assume that for 
some n  and )R(RHu n

0   we have  

.u)fc(cu)Mf( 0
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2nR
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 Then  
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holds if 1=p , and if <p<1  it holds under the additional 
assumption that the measure tdt)t(a=d  is weakly doubling.  

 Proof. In distributional form the integral inequality is  
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 We apply this to the test functions )x(r=)x(f Q , <r<0 , 
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by the weak type doubling condition, which clearly is not 
needed when 1=p . 

Remark: 1. The special case 1=p  and 1u0   - the Lebesgue 
measure case - is Theorem 7 in [6]. 

 2. The weak doubling hypothesis of the measure 
tdt)t(a=d  cannot be omitted if <p<1 . The classical norm 

inequality for pAu  is  
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5. EXTRAPOLATION 
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We wish to examine the relationship between the following 
statements. 

 I. There exists  <p1,p<<0 , such that for pA)v,u(   
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 The constants , , and p  are related by )/(1p=   or 
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 Theorem 5 III , and, if b  is quasi-increasing and 
1=v=u , the converse III  holds if 1=p , and if <p<1  it 
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 III . First let 1=p  and 1=v=u . If 1=q , then the 
statement I  in distributional form is  
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and  =q1)/q( . 

 The case <p<1  with p=q , and 1=v=u  follows the 
same steps as above and we get  
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 We use now the weak doubling condition and get  
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 The result that we discuss now essentially says that, in 
the presence of condition II, extrapolation for )v,u(  is the 
same as pA)v,u(  . 

 Theorem 6 Let )/(1p=0,,<p1  , and  
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 Then the following statements are equivalent.  
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 Remark: Theorem 1 is the special case 0= . 
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 Our hypothesis in distributional form is  
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 This shows that pA)v,u(   by Theorem 2.  
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6. ITERATED MAXIMAL OPERATOR. LET  
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 The purpose of this section is to present some weighted 
integral inequalities involving fM j . 
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 The left side of the conclusion is  
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 Remark: (1) The log  term in the hypothesis of Theorem 
7 can be omitted if 1u , the Lebesgue measure case and 

<p<1 . The operator fM j  is weak )p,p(  and ),(   and 
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 (2) There is a converse to the above. If b  is qi, the 
integral inequality  

dx))x(fc(cdx))x(fM( p
jnR

j
p

jnR
    

implies  

,<s<),0sc(bcdt
t

)t(as

0

  

if 1=p , and if 1>p  this holds if the measure dt
t

)t(a
=d  is 

weakly doubling. This follows from  

,dx))x(fc(cdx))x(fM(dx))x(Mf( p
jnR

j
p

jnR

p

nR
    

and Theorem 4 applies. 

7. THE ITERATED MAX OPERATOR AND 
EXTRAPOLATION  

 There is a connection between the behavior of fM j  and 
extrapolation [7-9]. The next two Theorems will explore this 
connection in our setting. Again let  RR:b,a  and let 

dt)t(b=)s(,dt)t(a=)s(
s

0

s

0    with b  quasi-increasing.. 

 Theorem 8 Let  <p1  and assume that for Nj   

,dx))x(fc(Adx))x(fM( p
2

R

jp
j

R

   

with 2c  independent of j . Let <c<A *  and let )pc1/(= * . If 

in the case p<1  the measure dt
t

)t(a
=d

1 
  is weakly doubling, 

then for )R(A)v,u( n
p   

,v)fc(cu)Mf( p
1nR

1
p

nR




    

where )/(1p=  .  

 Proof. Our goal is to prove  

,
s

)sc(bc
dt

t

)t(a

1

s

0



  

and then Theorem 5 gives us our conclusion. 
 In distributional form our hypothesis is  

.Rdt)t(b|})c/t(>f{|Adt)t(a|}t>fM{|L p1/
2

0

jp1/
j

0

 


 

 By Lemma 3  

dxdt)x(fM
t

)t(a
cL 1j

}
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t
3

c>f
1j

M{
p1/

0
1 





  

with 31 c,c  independent of j . We apply this to the test 
functions  <r<),0x(r=)x(f [0,1] . Then  

.
!i

xlog
=)x()},x()x(

x

1
)x({r=)x(fM

ik

0

k)[1,1i[0,1]i    
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 Therefore the inner integral is  
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 For p
3)c/r(<t<0 , the set ))t([1,}tc>)x()x/r{( p1/

32j   , 
where )t(  is defined by  

.tc=))t(())t(/r( p1/
32j    

 Since 1)x(2j   , we get )tc/(r)t( p1/
3 . Hence  

.
tc

r
log
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r

=
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r
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 Thus  

.dt
tc

r
log

t

)t(a

1)!j(p
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L

p
3

p
1j
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p
)

3
c/r(

0
1j

1 
 

  

 Also  

),rc(brcAdt)t(bAR ppj

p
r

4
c

0

j    

since b  is quasi-increasing. Let p
3)c/r(=s . Then  

).sc(sbcAdt)t/s(log
t

)t(a
s

1)!j(p

c
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j1j
p1/

s

0
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1j
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 Then  

),sc(sbcdt)t/s(log
cp1)!j(

1

t

)t(a
s

c

c
78

1j
1j

*
1jp1/

s

0

p1/

*

5 



  

since A>c* . Since the sum inside the integral )t/s(= , we 
get  

).sc(sbcdt)t/s(
t

)t(a
scL 78p1/

s

0

p1/
91  

  

 If p=1  we stop, and if 1>p  we note that  

.dt)t/s(
t

)t(a
scL

s

/2s
101



  

 Finally, the weak doubling condition gives us  

.
s

)sc(bc
dt

t

)t(a 711
1

s

0


  

 There is a converse to Theorem 8 which reads as follows. 

 Theorem 9 Let  <p1  and assume that for some 0>   

.dx))x(fc(cdx))x(Mf( p
2nR

1
p

nR

    

 If in case 1>p  the measure dt
t

)t(a
=d

1 
 , )p/(=  , is 

weakly doubling, then for Nj  and pAu   

.u)fc(cu)fM( p
jnR

j
p

jnR
    

 Proof. By Theorem 5, .
s

)sc(bc
dt

t

)t(a

1

s

0



  Then  

).sc(bcdt)t/s(log
1)!j(t

)t(a 1j
1js
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 Thus for each Nj   

).sc(bcdt)t/s(log
t

)t(a
j

1j
s

0

 


  

 Theorem 7 completes the proof.  

8. APPLICATIONS 

 We give some examples of   and   which are )c,c(  -
related and investigate the inplications of Theorem 1. We 
will get some unusual and surprising integral inequalities. 

 I. If pA)v,u(   for some  <p1 , then  

,vfcuMf r

nR

r

nR    

for <r<p . 

 Proof. This is well-known [4]. It also follows from 
Theorem 1 by taking 1>,t=)t(   . An easy calculation 
shows that we can take  t=)t( . 

 II. If pA)v,u(   for some  <p1 , then for 1>   

.v)f(1logfcu)Mf(1log
p1p

nR

p

nR

 

  

 Proof. Let )t(1log=)t(   . Then 
t1

)t(1log
=)t(a

1
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1

=dt
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)t(1log
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)t(a 1
2s
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 Also  

).t()t(1logt
1

ds)s(b 1
t

0





 

  

 The desired integral inequality follows from Theorem 1, 
since )x(1logc)cx(1log   if 1c  . 
 Remark: We cannot replace the right side by the more 
symmetric v)f(1log

p

nR



 . As an example let 1=v=u  and 

1=n . If  <r<),0x(r=)x(f [0,1] , then 

)r(1log=)f(1log
pp

R

 

 . Since 1x,x/r)x(Mf  , we get  
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p
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if rx  . Hence  
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.
2

1r
=

2

dx
dx)Mf(1log
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p
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 Our assertion follows since 0
1r

)r(1log
p






 as r . 

 III. If pA)v,u(   for some  <p1 , then  

.v)f(1logfcuMf pp

}
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c>f{
1

p

1}>Mf{
   

 Proof. Let )t(1)t(=)t( 1 , where )t(=)t( )[1,
1

 . Then 

)t(=)t(a 1 . We let  

).s()slog(=dt
t

)t(a
=)s(b 1

s

0

  

 Then )t()tlogt(ds)s(b=)t( 1
t

0

  . By Theorem 1 we get  
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where p1/
2

c=c . By Theorem 2  
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where 1<)c1/(=c
p
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 . Thus we get  
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since )x(1logec)cx(log1   if 1>ec .  

 Remark: As a special case, if 1A)v,u(   and nRK   is 

compact, then  <v)f(1logf
nR

 implies )u(LMf 1
K  . This 

is a two-weight version of the well-known fact that 1
K LMf 

, if LlogLf   [10]. 

 IV. Let pA)v,u(   for some  <p1 , and let 1<<0  . 
Then  
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p
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 Proof. Let )t(1)t(=)t( 1  . Then )t(t=)t(a 11  . We set  
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=)t(dss=)t(b 1112
t

1





 

  

 Hence  

).t(1)/tt(
1

=)t(ds)s(1
1

=)t( 111
t

1



















 

  

 >From Theorem 1, using vfc1}>fc{v p
2

1}>
p

f
2

c{

p
2  , we 

get the desired inequality. 

 V. Let pA)v,u(   for some  <p1 , and let <k<0 . 
Then  
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 Proof. Let )t()t1/(1=)t( 1k . Then 
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1
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 >From this we see that  
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and the inequality follows. 

 VI. Let pA)v,u(   for some  <p1 . Then  
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 Proof. Let 0>t,e=)t( t1/  and 0=(0) . Then 
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 >From this  
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t

0

    

 Theorem 1 gives the desired integral inequality. 

 Remark: The factor pf  in the above inequality cannot be 
omitted as examples of the type [0,1]N N=f   show. 

 VII. Suppose )t(=)t(a   is convex with 0=(0)a . If 
pA)v,u(   for some  <p1 , then  

.v)fc(cu)Mf( p
2nR

1
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nR

   

 Proof. This follows from  
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 Remark: Examples illustrating (VII) are 
0a,ta1,te,et=)t( n

n
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2n

tt2   
. As an application we will 

present an inequality involving 
p

Mfe . 

 VIII. If pA)v,u(   for some  <p1 , then there exist 

constants <c,c<0 21  such that for every RR:f n   
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 Proof. Let )t()tee(=)t( 1t  . Then )t()ee(=)t(a 1t   and 
thus from VII  
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 We only need to verify now that  
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 This is easy by letting )t(1)t(=)t( 1 . Then )t(=)t(a 1  
and thus )t(e)t(tlog=)t(b 1t1  .  
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 , and take )t(1t=)t( 1 . Then 
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 Also  
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 Theorem 1 gives us the desired integral inequality. 
 Remark: It is tempting to replace the right side of IX by 
the more symmetric  
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f
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 Examples of the form 1N N=f   as N  show that this is 
not possible. 
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with 21 c,c  independent of f . 

 Proof. Fix 0>y  and let pp y=e  . If )t()t(1/=)t(a   and  
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then )t()/t(log=)t(   and )t()/t()t(  . >From Theorem 1 
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 Remark: The above inequality is a generalization of the 

weak-type inequality vf
y
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}y>Mf{u p

nR
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 XI. If pA)v,u(   and <r<s<p , then  
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 Theorem 1 gives the desired inequality. 
 Remark: If p=s  above, then using the same type of 
argument with )t()tt(=)t( 1  , etc, we get for pA)v,u(    
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 XII. The fact that )R(LMf n1  unless 0=f  gives rise to 
the question for which   RR:  is )R(L)Mf( n1 . Let 

 RR:a  be in ))((0,L1
loc

  and let ds)s(a=)t(
t

0 . 

 Theorem 10 The following statements are equivalent for 
)R(LLf n1  :  
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 (1)  (2). We may assume that 0)t(a   on any interval 
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where dt
t

)t(a
=)r(

r

0 . Therefore,  <)x(f))x(f( , a.e x , and 

hence  <))x(f( , a.e. x .  

 Incidentally, we have established the following 
inequality:  

.||f||)||f(||cdx))x(Mf(dx)x(f))x(f(c 12nRnR
1    

 XIII. Let dt
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 Proof. This follows from Theorem 1 since 

)t(=)t( q/p
q,p  . 

 Remark: Theorem 1 deals with functions ,  non-
decreasing. It is sometimes convenient to have a version of 
Theorem 1 with ,  non-increasing. 

 Let  RR:a  and let ds)s(a=)t(
t


 . The function 

 RR:b  is related to a  by  
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 Theorem 11 The following statements are equivalent for 

 <p1 . 
 (6) Whenever   and   are related as above, then for 
every RR:f n   
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where the constants 21 c,c  depend only on c,c   and p . 

 (7) pA)v,u(  .  

 Proof. The change of variables s1/s  shows that 
condition (2) of Theorem 1 is equivalent with condition (6): 

)t(),t(   satisfy (6) if and only if )t(1/=)t(),t(1/=)t( **   
satisfy (2) of Theorem 1. 

 As an example let dse=)t( s

t




 . An easy calculation 

shows that we get VI. Another interesting example is 
)t()t(1=)t( 1  ,  <<0 , where )t(=)t( [0,1]1  . Then 
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 Thus  
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 If pA)v,u(   for some  <p1 , Theorem 7 gives  
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