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Abstract: In this paper we present two time invariant models mobile position tracking in three dimensions, which  

describe the movement in x-axis, y-axis and z-axis simultaneously or separately, provided that there exist measurements 

for the three axes. We present the time invariant filters as well as the steady state filters: the classical Kalman Filter and  

Lainiotis Filter and the Join Kalman Lainiotis Filter, which consists of the parallel usage of the two classical filters.  

Various implementations are proposed and compared with respect to their behavior and to their computational burden: all 

time invariant and steady state filters have the same behavior using both the proposed models but have different 

computational burden.  
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1. INTRODUCTION 

The Global Positioning System (GPS) is the most popu-

lar positioning technique in navigation providing reliable 

mobile location estimates in many applications [1-4]. Thus 

wireless location systems offering reliable mobile location 

estimates have been studied by researchers and engineers 

over the past few years. Various techniques require one base 

station or at least two base stations or more than three base 

stations in order to determine the location of the user. The 

accuracy of the positioning results is affected by many inter-

ference sources as the signals propagate in the atmosphere. 

So, techniques were developed using filters to estimate the 

location of the user through the location information ex-

changed between the handset and the base station. Kalman 

Filter has been used in the localization process [4-7], due to 

the following advantages mentioned in [6]: (a) Kalman Filter 

[5, 8-10] processes noisy measurements and so it can smooth 

out the effects of noise in the estimated state variables by 

integrating more information from reliable data more than 

unreliable data and (b) Kalman Filter allows the combination 

of measurements from different sources (locomotion data) 

and different times. Kalman Filter was implemented for 

Global Systems for Mobile (GSM) position tracking in [6]: 

Kalman Filter was used for tracking in two dimensions and it 

was stated that Kalman Filter is very powerful due to its reli-

able performance, because it yielded enhanced position 

tracking results. Also, in [11] two models for GSM position 

tracking were used in order to describe the movement in  x -

axis and y -axis simultaneously or separately. 
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In this paper we extend the ideas in [6] and [11] by using 
two models for Mobile Position Tracking in three dimen-
sions (3D-MPT), which describe the movement in  x -axis, 

 
y -axis and  z -axis simultaneously or separately and by us-

ing the Kalman Filter and the Lainiotis Filter [9, 12]. This 
approach holds under the condition that there exist meas-
urements for the three axes. The paper is organized as fol-
lows: In Section 2, we present two time invariant models for 
Mobile Position Tracking (MPT), which describe the move-
ment in  x -axis, 

 
y -axis and  z -axis. In Section 3, we present 

the time invariant filters: Kalman Filter, Lainiotis Filter and 
Join Kalman Lainiotis Filter. In Section 4, we present the 
corresponding steady state filters. In Section 5, various im-
plementations are proposed. In Section 6, we compare the 
filters with respect to their behavior and to their 
computational burden. Finally, Section 7 summarizes the 
conclusions. 

2. TIME INVARIANT MODELS 

Linear estimation is associated with time invariant sys-
tems described by the following state space equations: 

  
x(k +1) = Fx(k) + Gw(k)  

  
z(k) = Hx(k) + v(k)  

for   k 0 , where 
  
x(k)  is the  n -dimensional state vector at 

time  k , 
  
z(k)  is the  m -dimensional measurement vector at 

time  k , F  is the  n n  system transition matrix, H  is the 

 m n  output matrix, 
  
w(k)  is the plant noise at time  k , 

v(k)  is the measurement noise at time  k . Also, {w(k)} and 

  
{v(k)}  are Gaussian zero-mean white random processes with 

covariance matrices 
 
Q  and  R , respectively. The initial state 

x(0)  is a Gaussian random variable with mean x
0

 and co-

variance P
0

 and is assumed to be independent of 
  
w(k) and 

v(k) . 



2    The Open Mathematics Journal, 2015, Volume 8 Assimakis and Adam 

In this paper we consider two models: 

Model A 

The first model (model A) describes the movement in  x -

axis, y -axis and  z -axis simultaneously and follows the 

ideas in [6]. The state vector is of dimension   n = 6  and con-

tains the position and the velocity in  x -axis, 
 
y -axis and  z -

axis: x(k) = s
x
(k)

x
(k) s

y
(k)

y
(k) s

z
(k)

z
(k)

T

. The 

measurement vector is of dimension   m = 3  and contains the 

measured position in  x -axis, 
 
y -axis and  z -axis: 

z(k) = z
x
(k) z

y
(k) z

z
(k)

T

. Then we take: 

  

F =

1 t 0 0 0 0

0 1 0 0 0 0

0 0 1 t 0 0

0 0 0 1 0 0

0 0 0 0 1 t

0 0 0 0 0 1

,   

  

G =

1

2
t 0 0

1 0 0

0 1

2
t 0

0 1 0

0 0 1

2
t

0 0 1

,   

and 

  

=

1 t 0 0 0 0

0 0 1 t 0 0

0 0 0 0 1 t

. 

The plant noise w(k) = w
x
(k) w

y
(k) w

z
(k)

T

 is 

Gaussian zero-mean with covariance matrix  

Q =

xq

2
0 0

0
yq

2
0

0 0
zq

2

.  

The measurement noise 
  
v(k) = v

x
(k) v

y
(k) v

z
(k)

T

 is 

Gaussian zero-mean with covariance matrix 

  

R =

xr

2
0 0

0
yr

2
0

0 0
zr

2

. 

Model B 

The second model (model B) describes the movement in 

 x -axis, y -axis and  z -axis separately. In each axis, the state 

vector is of dimension   n = 2  and contains the position and 

the velocity: 
  
x(k) = s(k) (k)

T

. The measurement vector is 

of dimension   m = 1  and contains the measured position 

  
z(k) . Then we take: 

  

F =
1 t

0 1

, 

  

G =

1

2
t

1

, and 
  

= 1 t . 

The plant noise w(k)  is Gaussian zero-mean with co-
variance matrix 

  
Q =

q

2
.  

The measurement noise v(k)  is Gaussian zero-mean 
with covariance matrix R =

r

2
. 

It is obvious that we are able to describe the movement in 

three axis using three separate state vectors: 

  
x

x
(k) = s

x
(k)

x
(k)

T

for the  x -axis, 
  
x

y
(k) = s

y
(k)

y
(k)

T

for 

the 
 
y -axis and 

  
x

z
(k) = s

z
(k)

z
(k)

T

for the  z -axis. If we 

merge these three state vectors, we take the state vector 

  
x(k) = s

x
(k)

x
(k) s

y
(k)

y
(k) s

z
(k)

z
(k)

T

 of model A. 

3. TIME INVARIANT KALMAN AND LAINIOTIS 
FILTERS 

In this section, we present the classical time invariant 
Kalman Filter [8-10] and Lainiotis Filter [9, 12] which are 
the most well-known algorithms that solves the filtering 
problem. Both algorithms compute the estimation 

  
x(k / k)  

and the corresponding estimation error covariance 
  
P(k / k) . 

We also propose the Join Kalman-Lainiotis Filter, which 
consists of the parallel usage of two filters (one Kalman Fil-
ter and one Lainiotis Filter) with the same measurements and 
combination of the results (weight 50% for each filter). 

Kalman Filter (KF) 

The following equations constitute the KF: 

  

x(k +1 / k) = Fx(k / k)

P(k +1 / k) = GQGT
+ FP(k / k)FT

K(k +1) = P(k +1 / k)H T [HP(k +1 / k)H T
+ R] 1

x(k +1 / k +1) = [I K(k +1)H ]x(k +1 / k) + K(k +1)z(k +1)

P(k +1 / k +1) = [I K(k +1)H ]P(k +1 / k)

 (1)  

for   k 0 , with initial conditions 
  
x(0 / 0) = x

0
 and 

  
P(0 / 0) = P

0
. 

The Kalman Filter computes the estimation 
  
x(k / k)  and 

the estimation error covariance 
  
P(k / k)  through the predic-

tion 
  
x(k +1 / k)  and the corresponding prediction error co-

variance 
  
P(k +1 / k)  using the Kalman Filter gain

  
K(k) . 

Lainiotis Filter (LF) 

The following equations constitute the LF: 

  

x(k +1 / k +1) = K
n
z(k +1) + F

n
[I + P(k / k)O

n
] 1

                           [P(k / k)K
m

z(k +1) + x(k / k)]

P(k +1 / k +1) = P
n
+ F

n
[I + P(k / k)O

n
] 1

P(k / k)F
n

T ,

    (2) 

for k 0 , with initial conditions 
  
x(0 / 0) = x

0
 and 

  
P(0 / 0) = P

0
, where 
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A = [HGQG
T

H
T
+ R]

1

K
n
= GQG

T
H

T
A

K
m
= F

T
H

T
A

P
n
= GQG

T
K

n
HGQG

T

F
n
= F K

n
HF

O
n
= F

T
H

T
AHF.

  (3) 

Join Kalman-Lainiotis Filter (JKLF) 

The filter consists of the parallel usage of two filters (one 
Kalman Filter and one Lainiotis Filter) with the same 
measurements and combination of the results (weight 50% 
for each filter). In fact,  

x(k / k) =
1

2
[x
KF
(k / k) + x

LF
(k / k)]    (4) 

and 

P(k / k) =
1

2
[P
KF
(k / k) + P

LF
(k / k)]  ,   (5) 

for k 0 , where the estimation 
  
x

KF
(k / k)  and the estima-

tion error covariance 
  
P

KF
(k / k)  are computed by the associ-

ated equations in (1) and 
  
x

LF
(k / k) , 

  
P

LF
(k / k)  by (2). 

4. STEADY STATE KALMAN AND LAINIOTIS FIL-
TERS 

For time invariant systems, it is well known [8] that there 

exists a steady state value 
 
P

p
 of the prediction error covari-

ance matrix, if the signal process model is asymptotically 

stable, or if the signal process model is not necessarily as-

ymptotically stable, but the pair F ,H  is completely de-

tectable and the pair 
  

F ,GG
1

 is completely stabilizable for 

any 
  
G

1
 with 

  
G

1
G

1

T
= Q . Then, there also exist a steady state 

value 
 
P

e
 of the estimation error covariance matrix and a 

steady state value K  of the Kalman Filter gain.  

In this section we present the steady state Kalman Filter 
and Lainiotis Filter. Both algorithms compute the estimation 

  
x(k / k)  using the previous estimation and the current  

measurement. We also propose the Join Steady State  
Kalman-Lainiotis Filter, which consists of the parallel usage  

of two filters (one Steady State Kalman Filter and one Steady 

State Lainiotis Filter) with the same measurements and  
combination of the results (weight 50% for each filter). 

Steady State Kalman Filter (SSKF) 

The following equation constitutes the SSKF: 

  
x(k +1 / k +1) = A

KF
x(k / k) + B

KF
z(k +1)     (6) 

for k 0 , with initial condition 
  
x(0 / 0) = x

0
, where 

  
A

KF
= [I KH ]F ,  and 

 
B

KF
= K .   (7) 

The steady state Kalman Filter gain K  is computed by  

  
K = P

p
H

T
[HP

p
H

T
+ R]

1
,  (8) 

where 
 
P

p
 is the steady state prediction error covariance 

computed by solving the Riccati Equation emanating from 
Kalman Filter (REKF) 

P
p
= (GQGT ) + FP

p
F
T
FP

p
H
T [HP

p
H
T
+ R] 1HP

p
F
T . (9) 

In view of the importance of the Riccati equation emanat-
ing from Kalman Filter, there exists considerable literature 
on its algebraic solutions [8, 13] or iterative solutions  
[8, 14-17] concerning per step or doubling algorithms.  

Steady State Lainiotis Filter (SSLF) 

The following equation constitutes the SSLF: 

x(k +1 / k +1) = A
LF
x(k / k) + B

LF
z(k +1)   (10) 

for k 0 , with initial condition 
  
x(0 / 0) = x

0
, where 

  
A

LF
= F

n
[I + P

e
O

n
]

1 , 
  
B

LF
= K

n
+ F

n
[I + P

e
O

n
]

1
P

e
K

m
,  (11) 

and P
e

 is the steady state estimation error covariance com-
puted by solving the Riccati Equation emanating from  
Lainiotis Filter (RELF) 

P
e
= P

n
+ F

n
[I + P

e
O
n
]
1
P
e
F
n

T .  (12) 

In view of the importance of the Riccati equation  
emanating from Lainiotis Filter, there exists considerable  
literature on its algebraic or iterative solutions [14, 16-18]  
concerning per step or doubling algorithms.  

Note that in [9], it is shown that SSKF is equivalent to 
SSLF, since  

 
A

KF
= A

LF
 and 

 
B

KF
= B

LF
. 

Join Steady State Kalman-Lainiotis Filter (JSSKLF) 

The filter consists of the parallel usage of two steady 
state filters (one Steady State Kalman Filter and one Steady 
State Lainiotis Filter) with the same measurements and com-
bination of the results (weight 50% for each filter). In fact,  

  
x(k / k) =

1

2
[x

KF
(k / k) + x

LF
(k / k)] ,  (13) 

for   k 0 , where the estimations 
  
x

KF
(k / k)  and x

LF
(k / k)  

are given by the equations (6), (10), respectively. 

5. IMPLEMENTATIONS 

In this section, we propose various implementations. 

The use of model A, which describes the movement in 

 x -axis, 
 
y -axis and z -axis simultaneously requires the use 

one filter; we are able to use KF/LF/SSKF/SSLF/JKLF in 
order to compute the estimation and the corresponding esti-
mation error covariance. 

The use of model B, which describes the movement in 

 x -axis, 
 
y -axis and  z -axis separately requires the use  

of two filters KF/LF/SSKF/SSLF/JSSKLF in order to  

compute the estimation and the corresponding estimation 

error covariance for each movement. It is obvious that, if  

we merge the estimation x
x
(k / k) = s

x
(k / k)

x
(k / k)

T

  

for the movement in x -axis, the estimation 
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x

y
(k / k) = s

y
(k / k)

y
(k / k)

T

 for the movement in  

 
y -axis and the estimation  

  
x

z
(k / k) = s

z
(k / k)

z
(k / k)

T

 for the movement in  

 z -axis, we take the state vector of model A: 

  

x(k / k) = s
x
(k / k)

x
(k / k) s

y
(k / k)

y
(k / k) s

z
(k / k)

z
(k / k)

T

= x
x
(k / k) x

y
(k / k) x

z
(k / k)

T

.

 

Also, the estimation error covariance matrices 
  
P

x
(k / k) , 

  
P

y
(k / k)  and 

  
P

z
(k / k)  for each movement can be merged 

to the estimation error covariance of model A: 

  

P(k / k) =

P
x
(k / k) 0 0

0 P
y
(k / k) 0

0 0 P
z
(k / k)

. 

Thus, we propose various implementations for Mobile 
Position Tracking in three dimensions (3D- MPT), as it is 
appeared in Table 1. 
 

Table 1. Implementations for 3D- MPT. 

Implementation Model System Filter 

1 KF 

2 LF 

3 

Time invariant 

JKLF 

4 SSKF 

5 SSLF 

6 

Model A 

Steady state 

JSSKLF 

7 KF 

8 LF 

9 

Time invariant 

JKLF 

10 SSKF 

11 SSLF 

12 

Model B 

Steady state 

JSSKLF 

 
6. COMPARISON OF THE FILTERS 

In this section, we compare the filters with respect to 
their behaviour and to their computational burden. 

Example. 

We implemented the filters with the following parametes: 

- discretization factor: t = 1, 

- movement reliability: 
  xq

2
=

yq

2
=

zq

2
= 0.01 , 

- measurements reliability: 
  xr

2
=

yr

2
=

zr

2
= 0.1 , 

- initial conditions: x
0
= 0  and P

0
= 0 . 

Concerning the behaviour of the filters, we found that: 

- the time invariant filters KF, LF and JKLF are equiva-
lent, since they compute the same outputs (estimation and 
estimation error covariance), using model A or model B 

- the steady state filters SSKF, SSLF and JSSKLF are 
equivalent, since they compute the same outputs (estima-
tion and estimation error covariance), using model A or 
model B, 

- the steady state filters and the time invariant filters com-
pute outputs very close to each other,  

- model A is equivalent to model B, since they produce the 
same outputs. 

These results are depicted in Fig. (1). 
 

 

Fig. (1). Position and velocity estimation solid line: KF/LF/JKLF, 

dashed line: SSKF/SSLF/JSSKLF. 

 

Concerning the computational burden of the filters, we 
cmpared the filters with respect to their per-iteration calcula-
tion burdens, computed using the ideas in [9], as shown in 
Table 2. 
 

Table 2. Per-iteration calculation burden of filters. 

KF 
  
4n

3
+ 3.5n

2 1.5n + 4n
2
m + nm + 3nm

2
+ (16m

3 3m
2

m) / 6  

LF 
  
4nm + (58n

3
+ 9n

2 7n) / 6  

JKLF   n
2
+ 3n  (join procedure) 

SSKF   2n
2
+ 2nm n  

SSLF   2n
2
+ 2nm n  

JSSKLF   2n  (join procedure) 

 
Table 3 summarizes the per-iteration calculation burden 

of all implementations, using model A and model B. 

We observe that: 

- KF is faster than LF 

 speedup(LF model A to KF model A)=1.330 

 speedup(LF model B to KF model B)=1.290 

- model B is faster than model A 
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 speedup(KF model A to SSKF model B)=55.333 

 speedup(LF model A to SSLF model B)=73.567 

CONCLUSION 

In this paper we presented two time invariant models for 

Mobile Position Tracking in three dimensions (3D- MPT), 

which describe the movement in  x -axis, 
 
y -axis and  z -axis 

simultaneously or separately, provided that there exist meas-

urements for the three axes. We presented the time invariant 

filters as well as the steady state filters: the classical Kalman 

Filter and Lainiotis Filter and the Join Kalman Lainiotis Fil-

ter, which consists of the parallel usage of the two classical 

filters. Various implementations are proposed and compared 

with respect to their behavior and to their computational 

burden. We found that all time invariant and steady state 

filters have the same behavior using both the proposed mod-

els. We found that: (a) Kalman Filter is faster than Lainiotis 

Filter, (b) Join Kalman Lainiotis Filter is slower than both 

Kalman Filter and Lainiotis Filter, (c) steady state filters are 

faster than time invariant filters and (d) the filters using the 

model, which handles the movement in  x -axis, 
 
y -axis and 

 z -axis separately, are faster than the same filters using the 

model, which handles the movement in  x -axis, 
 
y -axis and 

 z -axis simultaneously. 

CONFLICT OF INTEREST 

The authors confirm that this article content has no con-
flicts of interest. 

ACKNOWLEDGEMENTS 

Declared none. 

REFERENCES 

[1] Drane C, Macnaughtan M, Scott C. Positioning GSM telephones. 

IEEE Communications Magazine 1998; 36(4): 46-54.  

[2] Küpper A. Location-based services. Fundamentals and operation. 

John Wiley and Sons 2005. 

[3] Mouly M, Pautet M. The GSM system for mobile communications. 

Washington DC: Telecom Publishing 1992.  

[4] Rooney S, Chippendale P, Choony R, Le Roux C, Honary B. Accu-

rate vehicular positioning using DAB-GSM hybrid system, IEEE 

51st Conference Proceedings of VTC 2000-Spring. Tokyo: 2000; 

vol. 1: pp. 97-101.  

[5] Andreu JB. Tracking a mobile receiver using the unscented kalman 

filter. Master Thesis: University of Freiburg 2013.  

[6] Dubois JP, Daba JS, Nader M, El Ferkh C. GSM position tracking 

using a Kalman Filter. World Academy of Science, Engineering 

and Technology 2012; 68: pp. 1610-19.  

[7] Kos T, Grgic M, Sisul G. Mobile user positioning in GSM/UMTS 

cellular networks, in multimedia signal processing and communica-

tions, Conference Proceedings 48th International Symposium EL-

MAR-2006: 2006; pp. 185-8.  

[8] Anderson BDO, Moore JB. Optimal Filtering. New York: Dover 

Publications 2005.  

[9] Assimakis N, Adam M. Discrete time Kalman and Lainiotis filters 

comparison. IJMA 2007; 1(13): 635-59.  

[10] Kalman RE. A new approach to linear filtering and prediction 

problems.  J Basic Eng-T ASME, (series D) 1960; 82(1): 34-45.  

[11] Assimakis N, Adam M. Global systems for mobile position track-

ing using Kalman and Lainiotis filters. Scientific World Journal 

2014, Article ID 130512: 1-8. [Available from: 

http://dx.doi.org/10.1155/2014/130512]  

[12] Lainiotis DG. Partitioned linear estimation algorithms: discrete 

case. IEEE Trans Automat Contr 1975; AC-20: 255-7.  

[13] Vaughan DR. A nonrecursive algebraic solution for the discrete 

time Riccati equation. IEEE Trans Automat Contr 1970; 15(5): 

597-9.  

[14] Assimakis N, Lainiotis D, Katsikas S, Sanida F. A survey of recur-

sive algorithms for the solution of the discrete time Riccati equa-

tion. Nonlinear Anal Theor 1997; 30(4): 2409-20.   

[15] Assimakis N, Roulis S, Lainiotis D. Recursive solutions of the 

discrete time Riccati equation. Neural Parallel Sci Comput 2003; 

11: 343-50.  

Table 3. Per-iteration calculation burden of implementations. 

Implementation Model System Filter Calculation Burden 

1 KF 1660 

2 LF 2207 

3 

Time invariant 

JKLF 3921 

4 SSKF 102 

5 SSLF 102 

6 

Model A 

Steady state 

JSSKLF 216 

7 KF 207 

8 LF 267 

9 

Time invariant 

JKLF 484 

10 SSKF 30 

11 SSLF 30 

12 

Model B 

Steady state 

JSSKLF 64 

 



6    The Open Mathematics Journal, 2015, Volume 8 Assimakis and Adam 

[16] Lainiotis DG, Assimakis ND, Katsikas SK. A new computationally 

effective algorithm for solving the discrete Riccati equation. J Math 

Anal Appl 1994; 186(3): 868-95.  

[17] Lainiotis DG, Assimakis ND, Katsikas SK. Fast and numerically 

robust recursive algorithms for solving the discrete time Riccati 

equation: the case of nonsingular plant noise covariance matrix. 

Neural Parallel Sci Comput 1995; 3(4): 565-84.  

[18] Lainiotis DG. Discrete Riccati equation solutions: Partitioned algo-

rithms.  IEEE Trans Autom Control 1975; AC-20: 555-6.  

 

Received: March 01, 2014 Revised: November 18, 2014 Accepted: December 10, 2014 

© Assimakis and Adam; Licensee Bentham Open. 
 

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/-

licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited. 


