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Abstract: The aim of this paper is to calculate the horizontal and vertical displacements of a cantilever beam in large deflections.
The proposed structure is composed with Ludwick material exhibiting a different behavior to tensile and compressive actions. The
geometry of the cross-section is constant and rectangular, while the external action is a vertical constant load applied at the free end.
The problem is nonlinear due to the constitutive model and to the large deflections. The associated computational problem is related
to the solution of a set of equation in conjunction with an ODE. An approximated approach is proposed here based on the application
Newton-Raphson approach on a custom mesh and in cascade with an Eulerian method for the differential equation.
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1. INTRODUCTION

Different  authors  studied  the  effect  of  flexibility  on  mechanisms  and  machine  applications  [1  -  5].  Effects  of
stiffness  and  deflections  are  important  in  different  mechanical  fields,  i.e.  industrial,  biomedical  [6  -  9].  In  the
followings, we describe a route of scientific studies that drives to the state of the art on Ludwick materials. Literature
[10] proposed a description of a cantilever beam subjected to large deformation with a vertical action at the free end and
composed  by  Ludwick  non-linear  elastic  material.  Then,  literature  [11]  solved  the  problem associated  to  the  large
deflections of non-linear elastic beams with a constitutive model described by a logarithmic law. Successively [12] the
problem of a cantilever beam with a symmetric Ludwick constitutive law and subjected to a vertical constant force at
the free bound was solved numerically. An analytic solution of a similar problem was found by the same authors for
cantilever  beams subject  to  a  constant  rotary  load at  the  free  bound [13].  Then the  issue of  large  deformation of  a
Ludwick structures [14] was treated numerically on a cantilever beam subjected to two mechanical loads: a distributed
vertical load on the beam in addition to a constant vertical force at the free bound. Other authors [15] described thin
cantilever beams composed by bimodulus Ludwick type material under the presence of a mechanical moment applied at
the free-end. A semi-exact solution was achieved [16] for cantilever beams composed by Ludwick material in large
deformations and subjected to a double vertical load: the first was distributed on the beam and the second concentrated
at the free end. Then non-prismatic cantilever beams composed by a generalized Ludwick material [17] were described
in the presence of large deflections and external constant mechanical loads. A numerical approach was proposed [18]
for the deformation of Ludwick cantilever beams in the elastic domain using a fourth order Runge-Kutta solver. Then a
similar method was proposed [19] for linear elastic cantilever beams with non-constant cross-section under different
loading conditions. Likewise [20] other authors described the mechanical behavior of linear elastic cantilever beams in
large  deformations  under  different  distributed  mechanical  actions  with  an  approximated  approach  applied  to  the
associated Bernoulli-Euler problem.
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Different  authors  worked  on  non-linear  elastic  materials  with  different  constitutive  models  [21],  i.e.  Ramberg-
Osgood  [22],  considering  large  deflections  of  cantilever  beams  under  different  loading  conditions  at  the  free  end.
Furthermore literature proposed different works on non-linear materials with variable constitutive model [23].

This work proposes a study on a cantilever beam with a Ludwick elastic constitutive law that is non-linear and
asymmetric  under  large  deflections.  Different  implementations  of  these  results  can  be  performed  for  applicative
purposes, i.e. in the design of compliant mechanisms or microactuators with large deflections [24 - 26].

2. PROBLEM DESCRIPTION

This work investigates a cantilever beam with the following characteristics: its length, at initial conditions, is L, the
cross-section does not change over the time and is rectangular, the characteristic measures of the cross-section are b and
h, finally the beam is subjected to a vertical constant load F at the free bound.

Fig. (1) shows the transformation of the beam in large deflection under the effects of the constraints and of the F
force applied to the free end. Fig. (1) shows the reference configuration (the initial one) and its associated reference
system Oxyz. The deformed configuration can also be described with respect to this system. Another set of reference
systems, O’x’y’z’, is then placed on each cross-section, with the axes positioned as shown in Fig. (1). This reference
system divides each cross-section into two parts with lengths, respectively, h1  and h2  that must be computed with a
proper algorithm and are, in general, characterized by the equation (1).

Fig. (1). Cantilever beam in the initial and deformed configurations subjected to a constant vertical mechanical load F.

(1)

(2)

The beam is characterized by a Ludwick non-linear constitutive law. The behavior of the beam associated to the
deformation is always elastic. The material shows different characteristics when constrained to a compression or to a
tension,  according to  [8].  In  detail,  the  proposed material  has  a  constitutive law described by different  coefficients
associated  to  compression  and  tension  conditions  (2).  Specifically  the  tensile  and  compressive  Young  moduli  are,
respectively, Et and Ec, whereas the tensile and compressive linear coefficients are, respectively, n and m.

3. PROBLEM FORMULATION

This paper deals on large deflections of a thin cantilever beam, under the hypotheses of Euler-Bernoulli. Thus a
cross-section of the beam remains plane and normal to the neutral surface after a deformation and orthogonal without
shape or area deformations. For these reasons, the beam can be described as a curve coincident with its neutral curve
and all the cross-section properties can be associated to the crossing point of the neutral curve, as shown in Fig. (2).
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Fig. (2). Initial and deformed shape of the neutral curve of the beam.

In the focused problem, the axial and the shear effects are small compared to those due to the bending moment.
Therefore, the beam is depicted in Fig. (3) in the deformed configuration loaded only with a bending moment M(x) that
varies with the spatial coordinate x, as described in the expression (3), that depends on the horizontal deflection of the
free tip δh, on the initial length of the neutral curve of the beam L and on the vertical load applied at the free tip of the
beam F.

Fig. (3). Bending moment M(x) associated to a cross-section with coordinate x.

(3)

Fig. (4) describes an infinitesimal part of the beam in the deformed configuration: its length is dx, while the end
sections are S and S1. As just mentioned the deformation is due to only a bending moment M(x) that acting on the beam
transforms its shape from the initial one to the final one, as further shown in Fig. (4).

The horizontal fibre shown in Fig. (4) is distant y from the neutral curve and is exposed to an angular deformation
described by the infinitesimal angle dθ. After this deformation, the length of the fibre L1 can change according to the
governing  equation  (4);  here,  ρ  represents  the  curvature  radius  of  the  neutral  curve  as  further  described  in  (5).
Expression (6) describes the length of the fibre with respect to its initial length dx. The term y’ enhanced in (4) and (6)
is the value of the final location of the horizontal fibre in the deformed configuration.

(4)

M ((x)  F(L  h  x)

L1   x   y ' d
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Fig. (4). Infinitesimal portion of the beam under the effect of the bending moment M(x).

(5)

(6)

The strain εx along the x’ axis (7), according to (6), can be expressed by the equation (8).

(7)

(8)

As just observed, merely the deformation due to bending moment affect the cross-sections of the beam, therefore the
expressions (9-10) can describe the deformed configuration, and here σx’ is the stress along the x’ direction.

(9)

(10)

Equations (11) and (12) are just a representation of relations (9) and (10), where compressed area is distinguished
from the tensile area of the cross-section.

(11)
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(12)

Then equations (13) and (14) follow.

(13)

(14)

The set of equations (1), (13) and (14) refers to a non-linear algebraic problem under the unknown functions h1(x),
h2(x) and ρ(x); δh is set as a tentative numerical value at the first step of the proposed solution algorithm and then is
further refined to the converging solution

Specifically,  the  proposed  solution  algorithm  assigns  an  initial  value  δ  and  divides  the  beam  in  different  parts
constructing a mesh along the x direction, the set of equation that describes the problem is solved approximatively with
a Newton-Raphson method over the mesh obtaining a set of values for the unknowns of the problem: h1(x), h2(x) and
ρ(x).  Then,  the  non-linear  ODE indicated  in  (15)  is  solved approximately  with  an  Euler  approach under  the  initial
conditions described in (16).

(15)

(16)

Then, the computational procedure continues with the verification of the adopted value of ρh, namely it calculates
the  difference  between  the  initial  and  final  values  of  the  length  of  the  beam,  verifying  that  it  is  under  a  set  level;
contrary,  δh  is  incremented  and  the  algorithm  is  restarted.  Finally,  the  value  of  δv  is  computed  with  the  equation
indicated in (17).

(17)

Particularly, if Et and Ec are equal, also n and m, the coefficients of nonlinearity, are also equal to the value 1, the
results are the same of those associated to a linear elastic material under large deflections.

4. RESULTS

To verify the algorithm, the values of δh and δv are calculated for the problem proposed by Lewis and Monasa [12]
and a comparison with this literature case is listed in Tables 3 and 4 for two types of material: annealed copper and NP8
aluminium alloy.

Data describing the real materials adopted in this work, annealed copper and aluminum alloy N.P.8, are shown in
Table 1.

Table 1. Numerical data for Et, Ec, n and m for annealed copper and aluminium alloy N.P.8.

Aluminum Alloy N.P.8 Annealed Copper
Et, Ec 66.1 ksi 4,557434377.108 Pa 66.5 ksi 4.585013405.108 Pa
n, m 0.209-1 0.463-1

Tables 3 and 4 are devoted to compare values calculated with the proposed algorithm with those indicated by Lewis
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and Monasa in their work [12]. Specifically they are applied on a cantilever beam realized with aluminum alloy NP8.
Similarly Tables 5 and 6 compare equivalent values computed on a cantilever beam realized with annealed copper. The
values computed with the proposed algorithm are similar to those calculated by Lewis and Monasa in their [12], as also
highlighted in Figs. (5, 6) for a beam with a geometry described in Table 2.

Table 2. Geometrical data of the beam.

b 0.0254 m
h 0.00635 m
L 0.508 m

Table 3.  Computed values  for δh,  where δh1  is  computed with the proposed algorithm and δh2  is  computed by Lewis  and
Monasa.

F[N] δh1 [m] δh2 [m] (δh1-δh2)/ δh1[%]
0 0 0 0%

53.89154 0.00037112 0.00037084 0.08%
62.29251 0.00147112 0.00144272 1.93%
67.80144 0.00313908 0.00313436 0.15%
72.00309 0.00535064 0.00531368 0.69%
83.22741 0.01677272 0.01661160 0.96%
90.58775 0.02883528 0.02859532 0.83%
96.20146 0.03983020 0.03954780 0.71%
100.79427 0.04954016 0.04923536 0.62%
104.70917 0.05809996 0.05777992 0.55%
108.13757 0.06569116 0.06536944 0.49%
111.19799 0.07248100 0.07215632 0.45%
113.96928 0.07860132 0.07827772 0.41%
116.50676 0.08416271 0.08384032 0.38%

Table 4. Computed values for δv in large deflection, where δv1 is computed with the proposed algorithm and δv2 is computed
by Lewis and Monasa on an aluminium alloy NP8 beam.

F[N] δv1 [m] δv2 [m] (δv1-δv2)/ δv1 [%]
0 0 0 0%

53.89154 0.01877767 0.01863852 0.74%
62.29251 0.03709668 0.03683508 0.71%
67.80144 0.05461301 0.05421376 0.73%
72.00309 0.07102186 0.07053072 0.69%
83.22741 0.12463451 0.12398756 0.52%
90.58775 0.16229257 0.16165576 0.39%
96.20146 0.18961889 0.18903188 0.31%
100.79427 0.21037910 0.20984464 0.25%
104.70917 0.22677872 0.22630384 0.21%
108.13757 0.24015361 0.23972520 0.18%
111.19799 0.25132652 0.25094184 0.15%
113.96928 0.26086103 0.26051256 0.13%
116.50676 0.26911651 0.26879804 0.12%

Table 5. Computed values for δh in large deflection, where δh1 is computed with the proposed algorithm and δh2 is computed
by Lewis and Monasa on an annealed copper beam.

F[N] δh1 [m] δh2 [m] (δh1-δh2)/ δh1 [%]
0 0 0 0%
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9.42112 0.00103508 0.00103124 0.37%
12.98611 0.00402208 0.00389128 3.25%
15.66785 0.00861096 0.00855980 0.59%
17.90013 0.01437780 0.01429512 0.58%
24.67363 0.04202860 0.04186428 0.39%
29.76893 0.06858420 0.06841744 0.24%
34.01026 0.09121844 0.09105900 0.17%
37.71197 0.11021844 0.11007344 0.13%
41.03365 0.12630988 0.12618212 0.10%
44.06934 0.140700 0.14001496 0.08%
46.87991 0.15214224 0.15204948 0.06%
49.50743 0.16272136 0.16264636 0.05%
51.98238 0.17213208 0.17206468 0.04%

Fig. (5). Computed values δh1 in large deflection with the proposed algorithm on aluminium alloy N.P.8 and annealed copper beams.

Extended numerical computations of the vertical and horizontal deflections are listed in Table 7-11 and depicted in
Figs. (7-10), for a vertical external load of 10N, a tensile module of 100GPa and for variable values of Ec, n and m.

Fig. (6). Computed values δv1 in large deflection with the proposed algorithm on aluminium alloy N.P.8 and annealed copper beams.

The computed results show a relation between the deflections and the material parameters Ec, n or m under the same
geometrical, constraint and load conditions.

(Table 5) contd.....
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Table 6. Computed values for δv in large deflection, where δv1 is computed with the proposed algorithm and δv2 is computed
by Lewis and Monasa on an annealed copper beam.

F[N] δv1 [m] δv2 [m] (δv1-δv2)/ δv1 [%]
0 0 0 0%

9.42112 0.03042169 0.03034284 0.26%
12.98611 0.05978204 0.05964428 0.23%
15.66785 0.08726431 0.08708136 0.21%
17.90013 0.11239629 0.11219180 0.18%
24.67363 0.18931875 0.18915380 0.09%
29.76893 0.23841809 0.23830280 0.05%
34.01026 0.27147425 0.27143964 0.01%
37.71197 0.29519108 0.29522420 -0.01%
41.03365 0.31309028 0.31316168 -0.02%
44.06934 0.32710396 0.32722312 -0.04%
46.87991 0.33845689 0.33859216 -0.04%
49.50743 0.34783638 0.34799524 -0.05%
51.98238 0.35573994 0.35593020 -0.05%

Table 7. Horizontal and vertical deflections of the end tip, when the nonlinear coefficients n and m are equal to 1, the applied
load is equal to 10N and the tensile module is equal to 100GPa.

Ec[GPa] δh1 [m] δv1 [m]
25 0.0003886 0.0181177
50 0.0001632 0.0117420
75 0.0001035 0.0093552
100 0.0000769 0.0080608
125 0.0000619 0.0072326
150 0.0000523 0.0066500
175 0.0000457 0.0062141

Fig. (7). Horizontal deflections of the end tip, when the nonlinear coefficient m is equal to 1, the applied load is equal to 10N and the
tensile module is equal to 100GPa.

Table 8. Horizontal and vertical deflections of the end tip, when the nonlinear coefficients n and m are, respectively, equal to
1 and 0.8, the applied load is equal to 10N and the tensile module is equal to 100GPa.

Ec[GPa] δh1 [m] δv1 [m]
25 0.0040486 0.0580099
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Ec[GPa] δh1 [m] δv1 [m]
50 0.0016681 0.0373019
75 0.0010136 0.0290927

Table 9. Horizontal and vertical deflections of the end tip, when the nonlinear coefficients n and m are, respectively, equal to
1 and 1.2, the applied load is equal to 10N and the tensile module is equal to 100GPa.

Ec[GPa] δh1 [m] δv1 [m]
25 0.0000702 0.0077065
50 0.0000351 0.0054496
75 0.0000252 0.0046110
100 0.0000207 0.0041563
125 0.0000180 0.0038649
150 0.0000162 0.0036595
175 0.0000144 0.0035056

Table 10. Horizontal and vertical deflections of the end tip, when the nonlinear coefficients n and m are, respectively, equal to
0.8 and 1, the applied load is equal to 10N and the tensile module is equal to 100GPa.

Ec[GPa] δh1 [m] δv1 [m]
25 0.0018423 0.0392544
50 0.0010899 0.0301901
75 0.0008445 0.0265667
100 0.0007198 0.0245225
125 0.0006427 0.0231773
150 0.0005909 0.0222102
175 0.0005518 0.0214739

Fig. (8). Horizontal deflections of the end tip, when the nonlinear coefficient n is equal to 1, the applied load is equal to 10N and the
tensile module is equal to 100GPa.

Table 11. Horizontal and vertical deflections of the end tip, when the nonlinear coefficients n and m are, respectively, equal to
1.2 and 1, the applied load is equal to 10N and the tensile module is equal to 100GPa.

Ec[GPa] δh1 [m] δv1 [m]
25 0.0001746 0.0121683
50 0.0000576 0.0069762
75 0.0000306 0.0051266
100 0.0000207 0.0041563

(Table 8) contd.....
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Ec[GPa] δh1 [m] δv1 [m]
125 0.0000144 0.0035512
150 0.0000117 0.0031342
175 0.0000094 0.0028276

Fig. (9). Vertical deflections of the end tip, when the nonlinear coefficient m is equal to 1, the applied load is equal to 10N and the
tensile module is equal to 100GPa.

Fig. (10). Vertical deflections of the end tip, when the nonlinear coefficient n is equal to 1, the applied load is equal to 10N and the
tensile module is equal to 100GPa.

5. FEM VALIDATION OF NUMERICAL RESULTS

In order to validate the numerical  algorithm given in this  paper,  the vertical  displacement δv  and the horizontal
displacement δh are calculated using the FEM software ABACUS/CAE® for a beam made of aluminium alloy N.P.8 and
for a beam made of annealed copper. In ABACUS/CAE® the investigated cantilever beam is discretized using the Hex
method, i.e. the beam is subdivided in parallelepipeds.

The constraint section is realized by blocking all nodes of that section. The vertical constant force F on the free
section is realized by four equal forces applied on the nodes of the four corners of the free section. Each of the four
forces is equal to a quarter of F.

In order to characterize aluminium alloy N.P.8 and annealed copper materials, Marlow form of the potential energy
is used for both in ABACUS/CAE®, as respectively shown in Figs. (11, 12).

(Table 11) contd.....
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Fig. (11). Diagram stress-strain of aluminum alloy N.P.8. (squares) characterized using Marlow form of potential energy (circles) in
ABAQUS/CAE®.

Fig.  (12).  Diagram  stress-strain  of  annealed  copper  (squares)  characterized  using  Marlow  form  of  potential  energy  (circles)  in
ABAQUS/CAE®.

Values obtained by the proposed algorithm and values calculated by ABACUS/CAE® are very close, as shown in
Figs. (13-16). Some slight differences are due to the Marlow form of the potential used to characterize the proposed
materials.

Fig. (13). Horizontal deflections computed with the proposed algorithm (δ h1) and with ABAQUS/CAE® (δ h3) for a cantilever beam
realized with NP8 aluminium alloy.
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Fig. (14). Vertical deflections computed with the proposed algorithm (δ v1) and with ABAQUS/CAE® (δ v3) for a cantilever beam
realized with NP8 aluminium alloy.

Fig. (15). Horizontal deflections computed with the proposed algorithm (δ h1) and with ABAQUS/CAE® (δ h3) for a cantilever beam
realized with annealed copper.

Fig. (16). Vertical deflections computed with the proposed algorithm (δ v1) and with ABAQUS/CAE® (δ v3) for a cantilever beam
realized with annealed copper.
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CONCLUSION

This work proposed a solution for the problem of the computation of the vertical and horizontal deflections of the
free end in a cantilever beam composed by Luwick material under the effects of a vertical constant load positioned at
the free end. The problem consisted in a non-linear algebraic system coupled with a non-liner second order ordinary
differential equation, where non-linearities are due to the material and the geometry. It  was solved with a Newton-
Raphson method in cascade with an Eulerian approach and the results were verified with FEM software agreeing with it
and with those in literature. Finally, the results were discussed to the role of material coefficients in the analysis of large
deformations.

NOMENCLATURE

S, S1 = Cross-sections bounding an infinitesimal part of the beam.

h1, h2 = Distances between the neutral surface and the external surfaces of the beam, [m].

L1 = Final length of a deformed horizontal fibre of an infinitesimal part of the beam, [m].

y’ = Final location of a deformed horizontal fibre of an infinitesimal part of the beam, [m].

Oxyz = Global coordinate system.

h = Height of the cross-section, [m].

h = Height of the cross-section, [m].

δ h1 = Horizontal deflection of the free tip computed with the proposed algorithm, [m].

δ h2 = Horizontal deflection of the free tip computed with the algorithm proposed by Lewis and Monasa, [m].

δ h3 = Horizontal deflection of the free tip computed with ABACUS/CAE®, [m].

L = Initial length of the neutral curve of the beam, [m].

M = Internal bending moment, [Nm].

dx = Initial length of a an infinitesimal part of the beam.

dθ = Infinitesimal angle.

y = Initial location of a horizontal fibre of an infinitesimal part of the beam, [m].

O’x’y’z’ = Local coordinate system on a cross-section.

n = Non-linearity parameter associated to tension.

m = Non-linearity parameter associated to compression.

ρ = Radius of curvature of the neutral curve, [m].

σt = Stress associated to tension,[GPa].

σc = Stress associated to compression,[GPa].

ε t = Strain associated to tension.

ε c = Strain associated to compression.

σx’ = Stress along x’ direction, [GPa].

εx’ = Strain along x’ direction.

f(x) = Shape function of the neutral curve of the beam, [m].

F = Vertical load applied at the free tip of the beam, [N].

δv = Vertical deflection of the free tip, [m].

δ v1 = Vertical deflection of the free tip computed with the proposed algorithm, [m].

δ v2 = Vertical deflection of the free tip computed with the algorithm proposed by Lewis and Monasa, [m].

δ v3 = Vertical deflection of the free tip computed with ABACUS/CAE®, [m].

b = Width of the cross-section, [m].

Et = Young modulus associated to tension,[GPa].

Ec = Young modulus associated to compression,[GPa].
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