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Abstract:

Background:

Turbulent flow is characterized by vortices with different scales. Extraction of various scales and filtering the turbulent field into
coherent and incoherent parts are important processes that improve our understanding of turbulent characteristics.

Objective:

Joint probability distribution functions (JPDFs) for the filtered velocity gradient invariants are extensively studied for different scales
as well as for the coherent and incoherent parts of each scale.

Methods:

The Fourier decomposition and the anisotropic diffusion model are used in the investigation. The extraction process is performed by
employing the Fourier decomposition at different cutoff wavenumbers for the velocity field and three distinct scales (large, medium
and fine  scale)  are  identified.  The  velocity  gradient  invariants  such  as  the  second  invariant  Q  and  the  third  invariant  R  for  the
different scales are extracted. Then other important invariants such as the rate of rotation tensor QW and the rate of deformation QS are
also identified for each scale. The anisotropic diffusion model is used to extract the coherent and incoherent parts of each invariant at
each  scale.  Then  the  JPDFs  of  the  coherent  and  incoherent  invariants  are  compared.  The  scale  decomposition  and  the  filtering
process are applied for turbulent flow fields that are simulated using the lattice Boltzmann method with resolution of 1283.

Results:

Results show that the (R-Q) space has a universal topological pear-like shape for the different scales as well as their coherent field.
However, the (R-Q)-space for the incoherent fields are found different and no general shape can be observed. The (Qw-QS)-space
results show self-similar shapes for coherent fields and for the incoherent fields no specific shape can be observed since the noise
distributed as separated points everywhere.

Conclusion:

Two different methods for extraction and filtering of forced isotropic turbulence and the JPDFs of the velocity gradient invariants are
studied. Some universal characteristics for the coherent parts were found. However, for the incoherent parts, no universal JPDFs were
found.
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1. INTRODUCTION

Most fluid flow problems are turbulent and the presence of coherent structure inside a flow field encourages more
researchers  to  investigate  statistical  turbulent  flow  analysis  methods  such  as  the  extraction  and  filtering  methods.
Filtering  turbulent  field  to  coherent  and  incoherent  parts  are  commonly  based  on  the  wavelet  and  Fourier
decompositions. One of the filtering methods is the coherent vorticity extraction (CVE) method. CVE which is based on
a wavelet analysis was introduced by Farge et al. [1, 2]. Wavelet is one of the attractive mathematical features, and it
was  used  in  the  1990s  by  M.  Farge  et  al.  [3,  4]  to  identify  coherent  vortices  in  2D  isotropic  turbulence.  Wavelet
methods in computational fluid dynamics have been reviewed by Schneider and Vasilyev [5]. M. Farge et al. [3] used
the continuous wavelet transform to explore the coherent structure of turbulent flows. Abdel Kareem et al. [6] used two
different methods, the Fourier band-pass cutoff process and the wavelet decomposition to extract large, intermediate
and fine scales. The partial differential equations (PDEs) are used widely in various branches of sciences such as R.
Malladi, J. Sethian [7], where they are used as a class of PDE-based algorithms to enhance images, to remove noise and
to recover objects in the processed image. The extracted coherent and incoherent parts using the fourth order (PDEs)
from a turbulent flow field were studied by Abdel Kareem [8]. Also, Abdel Kareem et al. [9] identified the coherent
vortices of various scales from a turbulent flow field obtained by a direct numerical simulation (DNS using sharp cut-
off filters before the vortex-identifying method. Perona and Malik introduced nonlinear noise removal algorithm [10],
which  at  first  was  used  in  image  processing  and  restoration.  Because  of  the  need  for  better  performance,  edge-
preserving  and  efficient  noise-removing  than  Perona  and  Malik  algorithm,  Mahmoodi  developed  a  new  partial
differential equation model based on Perona and Malik algorithm [11]. Abdel Kareem et al. [12] generalized the model
[11] to a three dimension model to extract the coherent and the noise parts from 3D turbulent flow fields.

The  extraction  process  depends  on  identifying  different  scales  in  the  flow  field  by  using  an  appropriate
decomposition such as the Fourier decomposition which divides the velocity field to large, intermediate and fine scales.
In Fourier decomposition the velocity field converted into Fourier space, and at different cutoff wave numbers, the
different Fourier modes for different scales are obtained. Finally the extracted velocity data is returned to the physical
space.  M. Farge et  al.  [13]  used the coherent  vortex extraction (CVE) and the proper  orthogonal  decomposition to
compare the wavelet and the Fourier decomposition in identifying coherent and incoherent parts. Abdel Kareem et al.
[14] extracted different flow field scales by Fourier decomposition and tracked it at different scales.

Turbulent flow is one of the important subjects in fluid studies, so many of researchers were dedicated to explore
the formation and structure of turbulence in fluids. In the previous efforts,  the velocity gradient tensor was used to
investigate many universal characteristics, so Chong, Perry and Cantwell introduced the invariants R  and Q  [15] to
study  the  topological  features  of  turbulence.  Soria  and  Cantwell  [16],  Cantwell  [17]  and  Ooi  et  al.  [18]  used  the
topological approach to study the structures of the velocity gradient tensor (Δu), the rate of strain tensor QS and rotation
tensor QW by investigating the tensors invariants. The topological methodology was applied by Chen et al. [19] to study
the  turbulent  mixing layer  flows.  This  topological  method is  used in  this  study against  different  scales  and for  the
coherent and incoherent parts. Also, the joint PDFs are applied to the extracted and filtered data divided into different
scales with their coherent and incoherent parts.

The paper is organized as follows. In section 2, the generation of the turbulent flow data by the lattice Boltzmann
method and the invariants of the velocity gradient tensor are introduced. In section 3, the Fourier decomposition to
extract different flow field scales is discussed. In section 4, the anisotropic filtering method for turbulent flow fields is
formulated.  Section  5  is  devoted  to  the  results  and  discussions  of  the  obtained  features.  The  last  section,  Sec.  6,
summarizes the conclusions of the study.

2. TURBULENT FLOW FIELDS

2.1. The Lattice Boltzmann Simulation

The lattice Boltzmann method (LBM) and the spectral method that used to solve the Navier-Stokes equations are
important tools in the simulations of fluid dynamics problems. Many researchers used the lattice Boltzmann method in
turbulence studies (Yu et al. [20], Devaraj et al. [21] and Abdel Kareem et al. [22]).

More details about the derivation of the lattice Boltzmann equation from the Navier-Stokes equations can be found
in the previous works, which were introduced by Chen et al.  [23]. The LBM depends on considering the fluid as a
group of particles instead of considering it as a continuous matter. These particles move in a lattice only from one node
is  the  discrete  velocity  set  in  the  of  1283,  Abdel  Kareem  et  al.  [24],  used  the  LBM  for  forced  turbulence  flow
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simulations. This turbulent flow data are used in the investigation. The lattice Boltzmann equation and definitions of
distribution  functions,  densities,  velocities  and  equilibrium  distribution  function  were  presented  in  many  previous
publications  such  as  by  Succi  [25],  where  he  discussed  the  lattice  Boltzmann  equation  theory,  its  fluid  dynamics
applications, and its major applications. The Lattice Boltzmann equation can be written as:

(1)

where the distribution function in the equilibrium state can be given as:

(2)

and eα is the discrete velocity set in the D3Q19 model defined as:

(3)

Respective weighting coefficients ωα in this case are defined by:

(4)

2.2. Invariants of the Velocity Gradient Tensor

The velocity gradient tensor A or Aij = ∂ui/∂xj, has the following characteristic equation:

(5)

where λi, P, Q and R are the first, second and third invariants of A, respectively. The definition of these invariants
can be written as follows

(6)

(7)

(8)

In incompressible flow case .U= ∂ui/∂xi = Aii = 0, the corresponding tensor invariants can be given as

(9)

(10)

and

(11)

Also, the discriminant for Aij in incompressible flow is defined as:

(12)

Now the velocity gradient tensor can be split into a symmetric component and a skewsymmetric component:

(13)

where Sij is the symmetric rate of strain tensor and Wij is the antisymmetric rate of rotation tensor which is given by:
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(14)

(15)

Using the invariants Sij and Wij, the tensors Q and R can be defined as

(16)

(17)

Q and R can be divided into the strain components Qs, Rs and the rotation components QW and RW as follows:

(18)

where

(19)

(20)

where these different invariants can be described as follows(see [26 - 31])

QS is the rate of deformation or stretching tensor and QW is the rate of rotation or vorticity tensor.
QW is always positive and QS is always negative.
The (QW –QS) map and topological classifications are shown in Fig. (1), QW = -QS represents the 45o line [29].
The discriminant D value (Eqn. 10) determines the eigenvalues of A: D > 0 gives one real and two complex-
conjugate eigenvalues; D < 0 gives three real and distinct eigenvalues.
The (R-Q) map and topological classifications of local flow fields are shown in Fig. (2) [30] where D = 0 or
R=(±2 (√3)/9)(-Q3/2) gives the tent like curve.

The region R < 0; Q > 0 is associated with vortex stretching.
The region R > 0; Q > 0 is associated with vortex compression.
The region R < 0; Q < 0 is associated with tube structures.
The region R > 0; Q < 0 is associated with sheetlike structures.

Fig. (1). The invariant physical map of (QW -QS) for incompressible flows [29].
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Fig. (2). The local (R -Q) topologies for incompressible flows [30].

3. FOURIER DECOMPOSITION

The fast Fourier transform (FFT) over all physical space coordinates is defined by

(21)

and the inverse Fourier transform can be written as

(22)

the last summation is over all wavenumbers in Fourier space. Using the following different cutoff frequencies the
velocity field can be decomposed into different scales in Fourier space using band pass cutoff as follows

scales Large scale Medium scale Find scale
symbols UL UM UF

cutoff 0< k < k1 k1 < k < k2 k2 < k < k3

Depending on the results of a previous study [6], the cutoff wavenumbers are chosen as k1 = 4, k2 = 12, k3 = 60 for
the resolution of 1283 case. Those cutoffs are used also in this study to identify the large, the intermediate and the fine
scales.

4. THE ANISOTROPIC DIFFUSION MODEL

Sasan Mahmoodi [11] proposed an algorithm which demonstrates better performance for band pass noisy signals
containing  discontinuities  depending  on  Perona  and  Malik  algorithm  [10].  This  anisotropic  diffusion  model  is
considered to extract coherent and incoherent parts from a 3D isotropic turbulent flow field. In this study, the 3D model
is applied to decompose the flow field as follows

Large scale velocity UL = ULc + ULinc,1.
Medium scale velocity UM = UMc + UMinc,2.
Fine scale velocity UF = UFc + UFinc .3.
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−∞
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−∞
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The model can be written as

the total real term can be written as

The total imaginary part is defined as

the real functions  are defined as

The imaginary functions  are defined as

(23)

(24)

(25)

(26)

(27)

(28)
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Where the function U(x, y, z, t) is defined as

(34)

Here  is  the  original  signal.  The  detailed  derivation  of  the 3D
model and the application of the Fourier decomposition to extract the different scales and the filtered fileds with their
visualization can be found in [32].

5. RESULTS AND DISCUSSIONS

The velocity field  is  extracted to the components L,  M  and F.  after  using the Fourier decomposition as

explain in section 3, then the extracted velocity L is divided into coherent part LC
 and incoherent part Linc

. The same

is done for the extracted velocities M and F, respectively.

Fig. (3). JPDFs: (large scale) (a) The (RL –QL); (b) The (QWL –QSL).

5.1. JPDFs RESULTS

The results for the joint PDFs in the extracted data, show that in L (Fig. 3a), M (Fig. 4a) and F (Fig. 5a), pear-
like shape appear clearly in the (R-Q) plane. These results are similar to previous studies [30]. Where there is a kind of
universality in the (R-Q) invariant space is found. The strong anti-correlation between R and Q can be observed in the
region (R > 0, Q < 0) with sheet structure, however in the region (R < 0, Q > 0) vortex stretching can be shown. In the
(R-Q)  plane,  for  the  left  side,  the  points  are  classified  as  stable,  and  in  the  right  side  of  the  plane,  the  points  are

ℎ(𝑟, 𝑡) = 𝑢(𝑟, 𝑡)𝑒𝑖�⃗⃗⃗⃗�.�⃗�.    

�⃗⃗� �⃗� �⃗⃗⃗� �⃗⃗⃗�

�⃗⃗⃗�

�⃗⃗⃗� �⃗�

�⃗⃗⃗� �⃗⃗⃗�

  321 ,,  


,  zyxx ,,


 and  tru ,


 

The extraction of different invariants can be summarized as1.
For L we calculate QL, RL, QWL, and QSL.

For M we calculate QM, RM, QWM, and QSM.

For F we calculate QF, RF, QWF, and QSF .
The filtered invariants are identified as follows2.

For LC
 we calculate QLC

, RLC
, QWLC

 and QSLC

For MC
 we calculate QMC

, RMC
, QWMC

 and QSMC

For FC
 we calculate QFC
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 and QSFC

For Linc
 we calculate QLinc

, RLinc
, QWLinc

 and QSLinc
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classified as unstable. Actually this physical interpretation concluded from the (R-Q) map helps us to explain the local
flow topology, vortex stretching or vortex compression and contraction or expansion. In the (QW-QS) case (Figs. 3b, 4b
and  5b),  a  self-similar  shape  appears  regardless  of  the  filtered  scale,  which  also  in  good  agreement  with  previous
studies,  where  the  horizontal  line  QW  implies  the  points  with  the  vortex  tube  structure,  while  the  vertical  line  -QS

represents the points with irrotational strain fields. The 45o line with QW = -QS represents the vortex sheet structures, or
points with a high dissipation that accompanied with a high enstrophy density.

Fig. (4). JPDFs: (medium scale) (a) The (RM –QM); (b) The (QWM –QSM).

Fig. (5). JPDFs: (fine scale) (a) The (RF –QF); (b) The (QWF –QSF).

The joint PDFs for filtering results, in the coherent part LC
, MC

 and FC
, because the vortices presence, it is clear

that the results are generally similar to the turbulent scales ( L, M and F), where pear-like shape is observed in (R-
Q) plane (Figs. 6a, 7a and 8a). The (QW-QS) plane results (Figs. 6b, 7b and 8b), a self-similar shape appeared. But in the
incoherent part for different scales, Linc

,  Minc
 and Finc

,  because absence of the vortices, there are just noise points
scattered everywhere; there is no specific shape can be extracted in the (R-Q) or the (QW-QS) planes. We can observe for
the large and the medium incoherent (R-Q) plane in focal region and the R = 0 axis, a bulk of data (Figs. 9a and 10a),
and in fine incoherent (R-Q) (Fig. 11a) more noise points scattered in a wide area without specific shape, These points
increase in the negative area. For (QW-QS) plane in large and medium incoherent field (Figs. 9b and 10b) noise points
propagate in an area like that extracted in Figs. (3b and 4b) for the large and medium scales or their coherent cases
(Figs. 6b and 7b) where their existence is concentrated in the center and at small values and decreased with positive
values, as shown in Fig. (11b) where noise points are concentrated in a right-angled triangle shape and decreased in
remaining area.
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Fig. (6). JPDFs: (large coherent part) (a) The (RLc –QLc); (b) The (QWLc –QSLc).

Fig. (7). JPDFs: (medium coherent part) (a) The (RMc –QMc); (b) The (QWMc –QSMc).

Fig. (8). JPDFs: (fine coherent part) (a) The (RFc –QFc); (b) The (QWFc –QSFc).
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Fig. (9). JPDFs: (large incoherent part) (a) The (RLinc –QLinc); (b) The (QWLinc –QSLinc).

Fig. (10). JPDFs: (medium incoherent part) (a) The (RMinc –QMinc); (b) The (QWMinc –QSMinc).

Fig. (11). JPDFs: (fine incoherent part) (a) The (RFinc –QFinc); (b) The (QWFinc –QSFinc).

CONCLUSION

The Fourier decomposition was used to extract different scales and the anisotropic diffusion model was used to
identify  the  coherent  and  noise  parts  of  the  different  scales.  Separating  the  coherent  vortices  from  noisy  parts  are
important and useful for studying and tracking individual vortices, dividing the flow field into different scales helps in
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studying  huge  data  and  understanding  energy  transformation.  By  studying  the  JPDFs  for  different  scales  and  their
corresponding coherent and incoherent parts a confirmation of the pear-like shape in the (R-Q) plane for the different
scales and their coherent part was presented. However the incoherent (R-Q) planes gave undefined shape, these results
are  in  good  agreement  with  previous  turbulent  studies  and  indicate  that  the  vortices  are  the  main  components  of
turbulent motion.

There are some issue that not addressed in this study and can be considered at future work such as study the JPDFs
for boundary layer structures and investigation of the coherent and incoherent JPDFs in high resolution turbulent data
that obtained by simulations or that simulated by solutions of the Navier-Stokes solution.
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