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Abstract: Choosing an optimum linkage for any robotic manipulator is an important task and also a tedious one as it 
needs to simulate/test all the linkages and finally compare them, as we are aware that there are numerous linkages 
available for any given purpose based on their input and output functions. A method is being proposed here which 
generates, simulates/tests the linkages; provided the type of input and output is fixed. This method shall yield the best 
possible linkage as it focuses on the structural as well as the functional aspects and has no limitation for any type of 
linkage. 
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INTRODUCTION 

 Planar Kinematic chains with d.o.f. (degree of freedom) 
> 1 are considered for robotic application [1-6]. Unlike 
spatial linkages, a huge number of distinct planar chains are 
available; for example; nine-link 2 d.o.f of 40 and ten-link 3 
d.o.f of 98 chains. All of them possess parallelism and the 
extent it exists in a chain is not known but is necessary for 
the designer in order to make a right choice of the structure. 
 The parallelism is of both structural and dimensional type 
[7, 8]. It is understood that structural parallelism is inf-
luenced by the link dimensions i.e. variation of link dimen-
sions will vary the parallelism and hence the rigidity. Thus it 
cannot be said which structure and what combination of link 
lengths will lead to optimum rigidity and lot of work is being 
done in this area. A simple measure is desirable to compare 
all the chains for the parallelism with specified link dimen-
sions and this paper is an attempt in this direction. 

THEORY 

 Consider a four-bar chain, (Fig. 1a), which is the simp-
lest single d.o.f chain with structural parallelism among its 
links. Parallelism can be understood as the existence of two 
or more paths between links to transmit motion or power [7]. 
In the chain of Fig. (1a), link 3 receives motion from link 1 
through links 2 and 4. This is called structural parallelism. 
The above concept has coherence through graph theory. A 
chain can be converted into a graph which consists of 
vertices and edges. Every link of a chain is represented by a 
vertex while every joint is represented by an edge. With this 
understanding, the graph of the chain (Fig. 1a) can be drawn 
as shown in Fig. (1b). 
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Fig. (1). 

  Links or vertices 1 and 3, for example are separated by 
two edges. Edges 1-2 and 2-3 constitute one path between 
links 1 and 3 while the edges 1-4 and 4-3 constitute another 
path. Thus, vertices 1 and 3 are parallely connected. 
 Now let us consider the same chain, of Fig. (1a) when all 
its links are equal in length, as shown in Fig. (2a) which is a 
parallelogram. This is called as dimensional parallelism. It 
should be noted that structural parallelism is a prerequisite to 
dimensional parallelism. It is evident that when link-1 is 
fixed and link-2 is driven with an angular velocity ω, the 
angular velocity of link-4 will also be the same, while link-3 
will have zero angular velocity. 
 From the above it can observed that  
1) Incase of dimensionally parallel mechanisms the 

velocities and the accelerations of the parallel links 
will be identical. 

2) As structural parallelism is a prerequisite to dimen-
sional parallelism; in a chain with structural paral-
lelism but having no dimensional parallelism; there 
will not be great variation in the velocities and 
accelerations of parallel links. 

3) Parallel chains are more rigid. 
4) If the input and output links do not differ much with 

respect to the ground link (self) from the view point 
of extent of parallelism, the displacement of the 
output link will be of the same order as that of the 
input link. 
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 The above observations can be understood as below: 
a) Parallel robots will have lesser work space. 
b) In case of function generators, if the output link is 

less parallel than the input link with respect to the 
ground link, the displacement of the output link 
between every precision point will be higher than the 
corresponding input displacements. Non-linear func-
tions have this characteristic and as such generation 
of non-linear functions will be more accurate in case 
of the In-parallel chains (links) where the input and 
output links differ greatly in parallelism. In Four-bar 
chain, the input and output links will have the same 
structural parallelism with respect to the ground link 
and hence it is more suitable to generate less non-
linear functions. 

BASIS 

 In view of the foregoing theory it is evident that the 
designer must have a tool to compare various distinct chains 
with the same number of links and d.o.f before making a 
final choice. Kinematic chains with dimensions (lengths) 
assigned on links must be compared for parallelism. 

 
Fig. (3). 

 

  Fig. (3) shows a four bar chain with the links numbered 
from 1 to 4 while link dimensions are shown by a=30, b=17, 
c=18 and d=25. There is parallelism between links 1 and 3, 
and also between links 2 and 4. 
 A four bar chain or a quadrangle is parallel dimensionally 
when all the sides are of equal lengths e.g. Fig. (1b). Also, it 

can be expected to be most rigid compared to any other 
combination of link lengths subjected to the condition that 
the sum of the link lengths is same. 
 It is of interest to know how much parallel are the links if 
the dimensions of the links assume different values, 
subjected to the condition, a + b + c + d= k (constant), where 
a, b, c, d etc. are the link lengths. 
 For example, Fig. (2a) to Fig. (2e) shows quadrangles 
with link sizes in cms. They are the quadrangles with 
different link lengths, all having a sum of 60 cm. 
 It is of interest to know how the dimensional parallelism 
is influenced by the change of dimensions, Fig. (2b) and Fig. 
(2d) and by keeping the identical link dimensions but 
changing their adjacency, Fig. (2d) and Fig. (2e). 
 To start with, parallelism P of a chain is expressed as a 
function of link dimensions (a, b, c, etc.). The function is 
chosen in such a way that it satisfies one of the requirements 
of the most uniformly parallel chain. In Fig. (1b) all the 
dimensions are equal. One such function is:  
P=a*b*c*d…………………….. (1) 
 Subject to constraint, 
a+b+c+d=k (constant); …….….. (2) 
 Thus, Eq (1) is also necessary but not fully sufficient to 
judge parallelism. 
 P is maximum when, a=b=c=d and for all other 
combinations the value of P is lower (See the proof below). 

3.1. Proof 

Maximize 
P = a.b.c.d………………………. (1) 
 Subject to the constraint  
a+b+c+d=k (constant) …………. .(2) 
 From eq. (2) 
 a= k-b-c-d 

 
Fig. (2). 
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 Substituting the above value of ‘a’ in eq. (1) we get 
P = kbcd-b2cd-c2bd-d2bc …………………. (i) 
 For P to be maximum, its partial derivatives with respect 
to b, c and d should be zero. 

∂P/ ∂b = kcd-2bcd-c2d-2bcd=0 
Therefore,  
2b+c+d=k …………….………….……….. (a) 
Similarly, 
∂P/ ∂b = 0, gives 2c+b+d=k………………. (b) 
∂P/ ∂b = 0, gives 2d+b+c=k………………. (c) 
 Solving equations a, b, c simultaneously we get, b=c=d 
 Using the above equations, in eq (1) and (a) we get,  

a +3b=k 
and  

4b=k 
Therefore, a=b 
Hence, a=b=c=d 
 It is yet to be proved that the resulting value of P is 
maximum. For this, the second derivatives of P must be 
negative i.e. 
 ∂2P/ ∂b2 = -2cd and same is the case with other 
derivatives. 
Since 

 ∂2P/ ∂b2 is negative, P is maximum  

This can be verified from the examples, Fig. (2) 

For Fig. (2a),  

P = (15)4=50625. 

For Fig. (2b and c),  

P = (20)2 × (10)2 =40000. 

For Fig. (2d and c),  

P =10×15×17×18 = 45900 

 Higher value of P in fact ensures near equal lengths of all 
the members of the chain. In other words, the rigidity of the 
links will be equal. 
 From the above values of P, one can say that Chain Fig. 
(2a) having the highest value of P is most uniformly parallel 
or rigid. P values of Chains Fig. (2b and c) show that the 
links are less rigid/ parallel than Chain Fig. (2a). Chains Fig. 
(2d and e) are less uniform in rigidity than the Chain, Fig. 
(2a), but will be more rigid than the chains, Fig. (2b and c). 
 P values of Chains Fig. (2b and c) indicate that the extent 
of parallelism or rigidity present in both the configurations is 
same which is not true. Same is the case with Chains Fig. 
(2d and c). 
 Geometric parallelism is more in the case of Fig. (2b) 
compared to that of Fig. (2c), but the P values violate this. 
Hence P alone cannot be taken as a measure of parallelism. 

 Strictly speaking, P is not a measure of parallelism as it 
ensures maximum value of the product (a b c d) when 
a=b=c=d, which happens to be one of the conditions for the 
parallelism of a four bar chain. Different values of a, b, c etc. 
is certainly an indication of different rigidities of these 
respective links, as rigidity depends upon many factors and 
link length is one amongst them. Thus the requirement of 
link adjacency for the links to become parallel must be 
included. This condition shall be sufficient to judge 
parallelism. 
 Obviously eqn. 1 and eqn. 2 cannot detect the extent of 
parallelism in different configurations, if the link dimensions 
are the same but their adjacencies are different. In order to 
deal with such cases,  
(i) Adjacency of links must be taken into consideration and 
(ii) Link lengths should be normalized.  
 The same is explained below: 

Adjacency of Links 

  From the Fig. (1b) or (2a) it is clear that for two links, 
say 1 and 3, to be parallel at all times, one of the 
requirements is links 2 and 4 should be of the same length. 
In other words the lengths of ab and ad must be equal. Same 
is the case with the adjacencies of the other links. For 
example, considering link-2, its adjacent links are 1 and 3, 
hence ab must be equal to bc. Thus for complete parallelism, 
ab=bc=cd=ad. 
 Thus for link-1,  
ab-cd=0; ………………. (a) 
 And link-2,  
ad-bc=0; ………………. (b) 
 In actual chains where the links are not of equal length, 
(ab-cd) ≠ 0. 
 Thus, there is deviation є1= (ab-cd) for link-1. So is the 
case with the other links. Following the concept of least 
squares one can write a deviation function Q in the following 
manner. 
Q = (ab-ad)2 + (ab-bc)2 + (bc-cd)2 + (cd-ad)2 …………. (3) 
N 
In general,  Q = Σ є2

i 

i = 1 

 where, єi is the deviation of the ith link and n is the 
number of links in the chain. 
 For the most uniformly parallel chains such as that of 
Fig. (1a), Q=0 and for the other chains lesser value of Q 
indicates greater uniformity in parallelism. 
 For example, consider the Figs. (2d and e). 
 For Fig. (2d), deviation of products for links 1,2,3 and 4 
are respectively 36, 120, 20 and 126. 
 For Fig. (2e), the deviations are 90, 10, 85 and 75. 
 Substituting these values in eq.3 we find Q for Fig. (2e) 
is lesser. 
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 Obviously, Fig. (2e) is more parallel than Fig. (2d); and 
similarly Fig. (2b) is more parallel than Fig. (2c). 

(ii) Normalization 

 The foregoing theory is limited to the cases where the 
sum of all the link lengths is constant. In practice this may 
not hold as one has to compare the chains with different 
dimensions; not satisfying the constraint of eq. 2. For 
example consider the chain, (Fig. 3); the dimensions of the 
links are shown on the respective links in the figure in 
Centimeters. 
 Sum of all the link lengths is 90 cms, which is not the 
same as that of the chain Fig. (2d). Still one must be able to 
predict which of the chains, say Fig. (2d) or Fig. (3) is more 
parallel. In order to accomplish this, normalization of link 
lengths is proposed i.e. each link length is divided by the 
sum of the link lengths of the concerned chain. This 
indirectly satisfies the constraint of eq. 2. Since the sum of 
all the normalized lengths of a chain is 1. Application of eq. 
1 then leads to the comparison. 
 For Fig. (2d), normalized link lengths are 1/60, 1/60, 
17/60, 18/60. 
Eq. 1 gives: 

P = 15/60×10/60×17/60×18/60=0.00354 
 For Fig. (3), the normalized lengths are 25/90, 30/90, 
17/90, 18/90 
Hence,  

P = 25/90 x 30/90 x 17/90 x 18/90 =0.0349 
 Value of P being higher in the case of Fig. (2d), its links 
are more uniformly rigid than the links of the chain, (Fig. 3). 

APPLICATION TO MULTI-LOOP CHAINS 

 Comparison is possible only among Kinematic chains 
with the same number of links and d.o.f. These chains 
usually consist of high connectivity links such as ternary, 
quaternary etc. but the number of design parameters will be 
the same. When computing the sum of link lengths, lengths 
of all sides of polygonal links should be included. 
 If two chains with different link dimensions are to be 
compared, the product of the normalized dimensions of all 
the links of a chain needs to be considered. The links of the 
chain with higher product will be more uniformly rigid.  
 On the other hand, if two chains have identical links i.e. a 
particular link assortment (dimensional links) are arranged in 
two or more different ways structurally, then eq. 3 needs to 
be applied. The products should, however be computed 
systematically for every dimension of the chain going round 
the loop in which the particular dimension (side of the link) 
lies. This should include not only the clear inner loops but 
also the peripheral loop of the chains. For illustration 
consider two seven link, single d.o.f. chains which can be 
adopted as manipulator structures, as shown in Fig. (4a and 
b).  
 Links are numbered 1, 2, 3, etc inside the fig. while the 
link lengths in cms are marked on the periphery. Loops are 
indicated by encircled numbers (1), (2). Outside or 

peripheral loop is always the last loop, if numbered or not 
numbered but should be taken as loop (3). Dimensions taken 
are purely arbitrary. 

   
Fig. (4). Seven Link single d.o.f chains. 

 The product of the adjacent link for every loop of each 
are computed. 
 For chain Fig. (4a): 
LOOP 1:-  LOOP 2:-  

Links Product Links Products 
1 and 2 66 1 and 4 56 
2 and 3 110 4 and 5 56 
3 and 4 60 5 and 6 35 
4 and 1 36 6 and 7 50 
7 and 1 70   

 
LOOP 3:-  

Links Product 
1 and 2 99 
2 and 3 110 
3 and 4 90 
4 and 5 63 
5 and 6 35 
6 and 7 50 
7 and 1 90 

 
 Deviation of the products, say for link-1, loop (1) is 
given by the difference in the products of links (1 and 2) and 
links (4 and 1), as link-1 is common between these two. In 
this case it is equal to (66-36) = 30. Likewise deviation can 
be obtained for every link in the corresponding loop and then 
application of eq. 3 leads to total deviation of the chain. Thus 
in this case total deviation is 11214. 
 Similarly proceeding, for chain Fig. (4b) the products are 
given below: 
LOOP 1:- 
Links Product 

1 and 2 66 
2 and 3 110 
3 and 4 60 
4 and 5 30 
5 and 1 30 
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LOOP 2:- 
Links Product 

1 and 5 35 
5 and 4 40 
4 and 6 56 
6 and 7 70 
7 and 1 70 
LOOP 3:- 
Links Product 

1 and 2 99 
2 and 3 110 
3 and 4 90 
4 and 6 63 
6 and 7 70 
7 and 1 70 
 Total deviation in this case is 9538. 
 Comparison of the deviation of the products shows that it 
is less in case of Fig. (4b) and hence it is dimensionally more 
parallel. Working out in the above manner all the chains with 
a specified number of the links and d.o.f can be easily 
compared. 

CONCLUSION 

 As we are aware that More parallel chains are considered 
as more rigid and Less parallel chains are more suitable for 
generation of greater workspace. The following conclusions 
from the above methodology can be added to these and 
utilized beneficially: 

1) The product of the lengths of all the links is the 
criterion to judge the equality of link lengths; higher 
the product, greater is the rigidity of the links. This is 
only a necessary condition but not sufficient to judge 
parallelism. 

2) Deviation of the products of the adjacent links is 
another criterion. Smaller the deviation, greater is the 
parallelism. Thus eqs.1 and 3 form necessary and 
sufficient conditions to judge the parallelism. 

3) While working out the products, independent loops 
and the peripheral loop should be considered. This 
ensures that the product for each dimension, in a 
multi loop chain, is taken. 
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