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Abstract: For parallel manipulator systems a fundamental distinction is drawn between displacement and motion. The 
former is a spatial relation adequately modelled by standard vector and matrix algebra. The latter is a spatial trajectory 
whose ‘history’ also requires modelling. Quaternion, spinor and Clifford algebra representations are utilised for this 
purpose - specifically for rigid body finite rotation in 3D space. Each involves rotation half-angles and hence exhibits 
apparently counter-intuitive features, notably that rotations of 0 and 2π are not equivalent, whereas rotations of 0 and 4π 
are equivalent. In general, rotations of 4nπ are not equivalent to rotations of (4n+2)π, where n is any integer. These 
representations have real physical manifestations, demonstrated here for parallel manipulator designs, adapted from a 
mechanical model devised by Dirac. 
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1. INTRODUCTION 

 The kinematic design of parallel manipulator systems, 
whether cable-based [1], tensegrity-based [2], or rigid-link 
types [3], involves the representation of the shapes, the 
relative positions, and the motions of the links and joints. In 
particular, infinitesimal rotations of the platform and legs are 
commonly modelled by vector and matrix algebra. However, 
finite rotations have been represented mathematically in 
several different forms [4]. Of course the standard 3 3!  
matrix representations are commonly used here also, because 
of widely available software. But the unit quaternion 
representation has better computational efficiency and this 
has led to its extensive use in robotics, computer graphics, 
and space probe attitude control [4-7]. Similarly, related 
spinor and multi-vector representations are used in physics 
for conceptual reasons [8-10]. 
 Unlike the standard 3 3!  matrix representation, the 
quaternion, spinor and multi-vector representations each has 
the important feature of being expressed in terms of half the 
rotation angle, leading to the counter-intuitive conclusion 
that a rotation through an angle of 2π is not equivalent to a 
rotation through an angle of zero, but that a 4π rotation is 
equivalent to a zero rotation. They are considered to form a 
'double cover' for the group of (finite) 3D rotations. 
 There is a physical reason for this double-cover represen-
tation that is recognised in quantum mechanics, and it turns 
out that there is a corresponding realisation in applied 
mechanics that may be demonstrated with a mechanical 
model. This was introduced by Dirac in the early 20th 
Century, to explain some features of electron spin [11]. It is 
adapted and presented here to draw attention to its potential 
use in the kinematic design of parallel manipulators. In 
general, manipulator platform rotations of 4nπ are not 
equivalent to rotations of (4n+2)π, where n is any chosen 
integer (positive, negative or zero). 
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 The conceptual difficulty lies with the meaning of 
'rotation'. Is it just a displacement, in other words a spatial 
relation, relating, via a coordinate transformation, the initial 
pose A of a rigid body to the final pose B? Or, is it a motion, 
in other words an operation involving the 'history' of the 
actual path/trajectory taken from pose A to pose B? In either 
case it is a feature of the relationship between two bodies, 
and has no absolute meaning for a single isolated body. If 
'rotation' means 'a type of spatial relation' then the 
geometrical juxtaposition of initial and final poses should be 
sufficient to represent it. However, if 'rotation' means 'a 
particular path or trajectory' then the topology of the process 
is also important in order to recognise if and when two or 
more distinct paths/trajectories are equivalent. In the former 
case a 2π rotation (or any multiple of 2π) is indistinguishable 
from a zero rotation, but in the latter case it turns out that 
these are essentially different and it requires a 4π rotation (or 
any multiple of 4π) for equivalence to a zero rotation. 

2. REPRESENTING ROTATION: THE PARAMETRIC 
BALL 

 In 3D space a finite rotation has an axis and a magnitude. 
If the axis is considered to be a direction, then the 
combination of the rotation magnitude and the axis direction 
ostensibly defines a vector, visualised as a line segment 
located at some origin, lying along the direction of the axis 
and having a length equal to the (angular) magnitude [12, 
13]. However, at least three aspects of this 'vector' viewpoint 
are vectorially atypical or misleading. 
 Firstly, a 3D finite rotation is associated with an axis in 
some position, and so the 'vector' representing it cannot be a 
free vector, unlike the case of a translation. 
 Secondly, this 'vector' representation does not preserve 
the structure of combinations of finite rotations about 
different axes. Combining two finite rotations about two 
non-parallel but intersecting axes, gives a resultant finite 
rotation that is not represented by the standard vector 
resultant of the two line segments representing the individual 
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finite rotations. For instance the axis of the resultant does not 
generally lie in the same plane as the axes of the two 
individual rotations. And furthermore if the original two axes 
are skew the resultant is not a rotation but a screw. 
 Thirdly, when considered as a spatial relation, the 
magnitude of a finite rotation is limited to a 2π range, such 
as (0, 2π) or (-π, π), on the real line. Hence the 'vectors' for 
all possible finite rotations about a fixed point are contained 
within the interior or boundary of a sphere of radius π. 
Moreover, each pair of diametrically opposite points on the 
surface of this sphere (and hence also the two radius 'vectors' 
to those points) must be identified, since, for example, a 
rotation of π about any axis direction represents the same 
spatial relation as a rotation of -π about the same axis 
direction. Altmann [13] refers to this sphere as ‘the 
parametric ball’. 
 These problematical aspects have led to much confusion 
in understanding 3D finite rotations. However, the situation 
may be clarified by focusing on the points of the parametric 
ball and not on the position 'vectors' of its points. A given 
point within or on the surface of the parametric ball 
represents a rigid body in some fixed pose A. Any other 
point represents the same rigid body in a different fixed pose 
B (unless the second point is diametrically opposite the first 
point). The origin point may be taken to represent the rigid 
body in some reference fixed pose. The spatial relation 
between any two poses A and B is defined by the two sets of 
parameters for the positions of the two points representing 
the two poses, and not by, for instance, the difference of their 
position 'vectors'. One way to define the spatial relation 
between pose A and the origin pose is to specify its direction 
from the origin and the ‘shortest’ angular distance along this 
direction from the origin. This appears to be a position 
vector, but it behaves differently because of the atypical 
features discussed above. 
 A rigid body may reach a pose A from the origin, or 
change its pose from A to B, along an infinite number of 
different paths within the parametric ball. These paths should 
not be considered as displacement vectors even when they 
appear to be straight line segments, but rather should be 
considered to be directed curvilinear lines. The usefulness of 
the parametric ball representation stems from how it 
illuminates the inter-relationships amongst all these different 
possible paths. It turns out that there are just two essentially 
different classes of path from the point representing pose A 
to the point representing pose B, and the difference between 
the two classes is topological rather than geometrical. The 
paths are homotopically distinct. Within one homotopy class, 
any path, with end points A and B, may be continuously 
deformed into another path with the same end points without 
breaking the path into two or more disjoint parts. But a path 
from one homotopy class cannot be continuously deformed 
in this way into a path from another homotopy class. 
 Fig. (1) shows a plane cross-section of the parametric 
ball and illustrates the situation for three typical directed 
paths from some pose A to another pose B. The direction of 
each path is indicated by arrowheads, but the arrows do not 
signify vector quantities. The first path remains within the 
interior of the parametric ball, the second involves visiting 
the boundary of the parametric ball once, and the third 
involves visiting the boundary twice. Diametrically opposite 

points (such as C and C', or D and D') on the boundary are 
identified, and here, for clarity, C and D (and C' and D') are  
 

 
Fig. (1). Three paths in the parametric ball (radius π) from pose A to 
pose B. 

shown as separate points. Each of the three paths involves a 
rotation about a fixed (vertical) axis, but this is not an essen-
tial feature. The first path may be deformed continuously 
into the third path but not into the second path. The first and 
third paths belong to the same homotopy class, whereas the 
second path belongs to a different homotopy class.  
 Fig. (2) shows the essential features of a typical failed 
attempt to deform the second path of Fig. (1) continuously 
into the first path, by varying the path in a continuous 
sequence of intermediate steps, each of which may involve a 
change in some rotation axis directions. These attempts 
always fail because the identified boundary points C and C' 
must always remain diametrically opposite. 

 
Fig. (2). Failed attempt to deform the second path of Fig. (1) into 
the first path. 

 Fig. (3) shows the essential features of a possible 
successful sequence to deform the third path of Fig. (1) 
continuously into the first path. For clarity at each step the 
segmented intermediate paths are chosen to be rotations 
about fixed axes (i.e. temporarily fixed radial lines from the 
origin of the parametric ball), but again this is not an 
essential feature. This time the attempt succeeds because 
there are two visits to the boundary and eventually at the end 
of the sequence various intermediate path segments are 
retraced in both directions, thereby cancelling each other 
completely, or at least partly. 

 
Fig. (3). Successful sequence to deform the third path of Fig. (1) 
into the first path. 
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 Now suppose the two poses A and B to be identical and 
both to be located at the origin so that they represent a zero 
rotation about some (any) axis. The three directed paths in 
Fig. (1) would then represent paths from the origin back to 
itself. Again the first path (this time just the origin point) 
remains within the interior of the parametric ball, the second 
involves visiting the boundary of the parametric ball once, 
and the third involves visiting the boundary twice. As before 
the first and third paths will belong to the same homotopy 
class, whereas the second path belongs to a different class. If 
A and B were both at the origin a similar figure to Fig. (2) 
would still show a failed attempt to deform the second path 
continuously into the first. This demonstrates that a 2π 
rotation is not homotopically equivalent to a zero rotation. 
And of course a similar figure to Fig. (3) would still show a 
successful sequence to deform the third path continuously 
into the first. This demonstrates that a 4π rotation is 
homotopically equivalent to a zero rotation, but not to a 2π 
rotation. A mechanical realisation of these counter-intuitive 
features of 3D rotation is presented in section 5 and it has a 
direct bearing on cable-based parallel manipulators. 

3. MATRIX, QUATERNION, SPINOR AND MULTI-
VECTOR REPRESENTATIONS OF ROTATION 

 The commonest representation of a general 3D finite 
rotation, considered as a finite spatial displacement, is the 
following real orthogonal 3 3!  matrix: 
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 The familiar matrix multiplication operation: 

   
!r = T

( l , m , n )
(" )r  (2) 

effects the 3D finite rotation of a vector r ( )x y z= + +i j k  
about an axis with direction cosines ( , , )l m n  through an 
angle !  into a new position !r ( )x y z! ! != + +i j k . Essen-
tially this matrix representation encapsulates the geometry 
(but not the topology) of the spatial relation between the 
initial pose A of a rigid body and its final pose B after 
rotation. It involves the full rotation angle and is single-
valued because: 

( , , ) ( , , )
( 2 ) ( )

l m n l m n
! " !+ =T T

 (3) 

 The symbol T (rather than R) is used here both to signify 
that it involves a coordinate transformation, and to 
distinguish it from the multi-vector representation dealt with 
below.  
 In the 19th Century, Hamilton [14] and Clifford [15] 
discovered different operations that could represent 3D finite 
rotations about an axis in space, but their representations did 
not just represent the finite spatial displacement - they also 
represented aspects of the motion trajectory. But a conse-
quence of both new approaches was that they were double-
valued in the rotation angle. Hamilton’s approach involved a 
new type of (non-commutative) algebra based on a 4-tuple of 
real numbers 

0 1 2 3
( , , , )q q q q  that he referred to as a 

quaternion. A general quaternion is usually written in the 
following form, involving the four quaternion bases 1, , ,i j k : 

0 1 2 3
q q q q= + + +q i j k  (4) 

where 
0
q  is a scalar and 

1 2 3
q q q+ +i j k  is a 3D vector. 

Hamilton constructed a unit quaternion (for which 
2 2 2 2

0 1 2 3
1q q q q+ + + = ) and utilised his non-commutative 

quaternion multiplication to effect the finite rotation of a 3D 
vector r ( )x y z= + +i j k  about an axis with direction 
cosines ( , , )l m n  through an angle !  into a new vector 
!r ( )x y z! ! != + +i j k , having the same magnitude as the first. 

The quaternion multiplication operation that produces a 3D 
finite rotation of a vector is given by: 

1
( ) ( )! !

"
# =r q rq  (5) 

 Here the unit quaternion is: 

( ) cos sin sin sin
2 2 2 2

l m n
! ! ! !

! = + + +q i j k  (6) 

and its inverse is: 

1
( ) cos sin sin sin

2 2 2 2
l m n

! ! ! !
!

"

= " " "q i j k  (7) 

Table 1. Multiplication Rules for Products of Any Two of the 
Four Quaternion Bases 

 
l i j k 

i -l k -j 

j -k -l i 

k j -i -l 

 
 Quaternion multiplication is evaluated using the qua-
ternion multiplication rules for the products of two 
quaternion bases, as shown in Table 1. Hamilton’s 
quaternion representation of 3D finite rotation is double-
valued because it involves the use of half-angles, so that 
( 2 ) ( ) ( )! " ! !+ = # $q q q , whereas ( 4 ) ( )! " !+ =q q . 

 In Clifford’s geometric algebra [15], finite rotations of a 
3D vector about an axis in space are effected by an operation 
involving his non-commutative geometric multiplication of 
an 8-tuple of real numbers 

0 1 2 3 23 31 12 123
( , , , , , , , )a a a a a a a a  

referred to as a multi-vector. In 3D a general multi-vector is 
usually written in the following form, involving the eight 
multi-vector bases 

1 2 3 23 31 12 123
, , , , , , ,e e e e e e e e :  

0 1 1 2 2 3 3 23 23 31 31 12 12 123 123
a a a a a a a a= + + + + + + +A e e e e e e e e

 (8) 

where 
0
a e  is a scalar, 

1 1 2 2 3 3
a a a+ +e e e  is a 3D vector, 

23 23 31 31 12 12
a a a+ +e e e  is a 3D bivector, and 

123 123
a e  is a 3D 

trivector. A unit multi-vector (for which 
2 2 2 2 2 2 2 2

0 1 2 3 23 31 12 123
1a a a a a a a a+ + + + + + + = ) is used for the 

rotation [10]. The geometric multiplication operation that 
effects the 3D finite rotation of a vector 
r

1 2 3
( )x y z= + +e e e  about an axis with direction cosines 
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( , , )l m n  through an angle !  into a new vector 
!r

1 2 3
( )x y z! ! != + +e e e , with the same magnitude as the 

first, is given by: 
†
( ) ( )! !" =r R rR  (9) 

 Here the unit multi-vector has the special form, 
equivalent to that of a spinor [16]: 

23 31 12
( ) cos sin sin sin

2 2 2 2
l m n

! ! ! !
! = + + +R e e e e  (10) 

consisting of the sum of a scalar and a bivector. Its (multi-
vector) reverse is, 

†

23 31 12
( ) cos sin sin sin

2 2 2 2
l m n

! ! ! !
! = " " "R e e e e  (11) 

Table 2.  Multiplication Rules for Products of Any Two of the 
Eight Multi-Vector Bases 

 
e e1 e2 e3 e23 e31 e12 e123 

e1 e e12 -e31 e123 -e3 e2 e23 

e2 -e12 e e23 e3 e123 -e1 e31 

e3 e31 -e23 e -e2 e1 e123 e12 

e23 e123 -e3 e2 -e -e12 e31 -e1 

e31 e3 e123 -e1 e12 -e -e23 -e2 

e12 -e2 e1 e123 -e31 e23 -e -e3 

e123 e23 e31 e12 -e1 -e2 -e3 -e 

 
 Geometric multiplication is evaluated using the multi-
vector multiplication rules for the products of two multi-
vector bases, as shown in Table 2. Like Hamilton’s 
quaternion method, Clifford’s multi-vector representation of 
3D finite rotation is double-valued, because it again involves 
the use of half-angles, so that ( 2 ) ( ) ( )! " ! !+ = # $R R R , 
whereas ( 4 ) ( )! " !+ =R R . 
 Hamilton used a combination of a scalar and a vector to 
form a quaternion representing a 3D rotation. Clifford used a 
combination of a scalar and a bivector (equivalent to a 
spinor) to represent a 3D rotation. The quaternion and spinor 
representations are isomorphic [17]. 

4. GEOMETRY AND TOPOLOGY OF ROBOT 
MANIPULATOR PLATFORMS 

 The geometry of the archetypal Stewart-Gough parallel 
manipulator [18] is octahedral in the sense that, in a typical 
position, the moving triangular platform and the fixed 
triangular base form opposite faces of an octahedron, and the 
six legs form the edges of the other six triangular faces as 
shown on the left in Fig. (4) [19]. Often the dimensions are 
such that the moving and fixed platforms are congruent 
equilateral triangles and in the 'home' position each of the six 
legs has the same length, equal to the length of the platform 
edge. In this home position the system forms a regular 
octahedron, but in most other positions the (polyhedral) 
regularity is lost and the system has the geometry of a 

scalene octahedron, although it usually still retains the same 
topology, defined by its interchange graph. 
 It is possible to generalise the Stewart-Group platform 
geometry without changing its topology by re-locating the 
spherical joints in a 2D polygonal arrangement other than 
that of an equilateral triangle [20-23]. In general this will 
form a (non-regular) hexagon. The resulting system then 
consists of a hexagonal platform moving with respect to a 
fixed hexagonal base, as shown in the centre in Fig. (4). 
Similar generalisations lead to quadrilateral, pentagonal and, 
in general, other planar polygonal platforms and bases [2]. 
 A more radical generalisation to form a 3D spatial (i.e. 
non-planar) arrangement of the spherical joints is possible, 
where the joints on the moving 'platform' are located at the 
vertices of a (not necessarily regular) octahedron, as 
illustrated on the right in Fig. (4) [3]. The joints on the fixed 
'base' are similarly arranged at the vertices of a different 
octahedron that encloses the first and this is illustrated in 
transparent outline again on the right in Fig. (4). The 
resulting system then has a more general geometry than 
previous types of parallel robot manipulator derived from the 
Stewart-Gough platform. In this case the actual moving 
'platform', without the legs, is itself a rigid octahedron (rather 
than an equilateral triangle or hexagon, as previously). This 
very general type of parallel manipulator system is referred 
to as a 6-legged 3D octahedral platform. 
 Further generalisations of platform geometry (keeping 
the same topology) are possible by introducing different 
numbers, types and sequences of joints along each leg to 
produce redundant systems in general. Furthermore, the 
topology of parallel manipulators may be changed by 
altering the number of legs, and of course the special case 
with just one leg clearly reduces to a serial manipulator. Of 
course some of the links may be struts, ties or cables so that 
these generalisations are just as valid for tensegrity-based 
and cable-based parallel manipulator systems. 
 The functioning of each of these types of manipulator 
system must be constrained by the fundamental nature of 3D 
motion. Surprisingly, this includes the double-valued aspect 
of finite rotations, as revealed by the parametric ball 
representation and the quaternion and spinor representations 
discussed in Sections 2 and 3. Ostensibly it does not seem 
possible that mechanical manipulators may exhibit this 
aspect, regardless of their geometry and topology. This is 
particularly puzzling in the case of multi-legged systems, 
where intuitively it appears that the legs (whether consisting 
of rigid links or cables) would become hopelessly entangled 
after a 4π rotation and would ‘obviously’ be in a different 
configuration than they would be after a zero rotation. This 
apparent impossibility is dismissed and resolved by 
examining the rotation of 2-legged, 3-legged, and 6-legged 
systems. 

5. THE DIRAC MODEL FOR 2-, 3-, AND 6-LEGGED 
PLATFORMS 

 In an attempt to find a classical-mechanical analogue for 
the quantum mechanical property of electron spin Dirac [11] 
constructed a mechanical model that physically demons-
trated the inequivalence of zero and 2π rotations in 3D. The 
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device consisted of a relatively large cubic framework within 
which a smaller cube was located. The smaller cube was 
connected to the larger cube by eight elastic strings, such 
that each string joined a vertex of the inner cube to the 
corresponding vertex of the outer cube. The arrangement was 
very similar to that for the two nested octahedra shown on 
the right of Fig. (4). If Dirac’s inner cube is rotated with 
respect to the outer cube through an angle of 2π about a 
vertical axis the eight elastic strings become entangled. With 
the inner cube held in this position any attempt to untangle 
the strings fails. Of course, reversing the rotation does return 
the configuration to its initial untangled state. The surprising 
feature of the device is that a rotation of the inner cube 
through an angle of 4π from its initial pose leads to a 
configuration that can be untangled, despite the fact that it 
appears to produce an even more entangled state. 
 The similarity of the Dirac model to the octahedral 
manipulator platform of Fig. (4) is suggestive and indeed 
their behaviour is analogous. If the six legs of the octahedral 
manipulator are replaced with elastic cables (or highly 
redundant serial kinematic chains) then Dirac’s procedure 
may be applied directly to the system. If the inner 
octahedron is rotated through 2π it is found that just as with 
Dirac’s model, the legs cannot be untangled, and the system 
is in a different state from its initial (un-rotated) state. 
However, if the inner octahedron is rotated through 4π and 
then held in position to prevent reversal of the rotation, it is 
possible to untangle the legs and return directly to the initial 
state. Hence the initial zero-rotation state is equivalent to the 
4π-rotation state but not to the 2π-rotation state. 
 The process of untangling the legs is essentially inde-
pendent of the number of legs and it is also not dependent on 
their geometrical juxtaposition. The procedure may be 
outlined more easily by considering the slightly simpler case 
of a circular disc platform attached to a circular disc fixed 
base by various numbers of legs (elastic cables). For the 2-
legged system shown in Fig. (5) the situation is straightfor-
ward. As viewed from above, the platform is rotated with 
respect to the fixed base anti-clockwise about a vertical axis 
through an angle of 2π and held in this pose. The effect on 
the cables is to twist them into a right-handed helical con-
figuration. If the cables are now grasped together and passed 
over the top of the platform, they do not untangle but instead  
 

 
Fig. (5). An attempt at untangling the legs of a 2-legged platform 
after a 2π rotation. 

become twisted into a left-handed helical configuration. 
However, if the platform is returned to its initial state and 
then rotated with respect to the base anti-clockwise about a 
vertical axis through an angle of 4π, the cables are untangled 
by the above procedure. 
 In the case of the 3-legged system shown in Fig. (6) the 
process is essentially the same as for the previous 2-legged 
system in Fig. (5). A 2π rotation produces a tangled configu-
ration of the three cables whereas a 4π rotation produces a 
tangled configuration that may be untangled (without 
rotating the platform) by passing the three cables over the 
top of the platform, either one at a time, or all three together. 
Note that for clarity and ease of drawing the central image in 
Fig. (6) is shown with the three (tangled) cables partly 
shrouded in a ‘sleeve’. 

 
Fig. (6). Untangling the legs of a 3-legged platform after a 4π 
rotation. 
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Fig. (4). Three types of 6-6 parallel manipulator geometry, progressively more generalised. 
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 In a similar way a platform supported by six legs from a 
base, or indeed an m-legged system of this type (m>6), may 
have all of its legs untangled after a 4π rotation by passing 
all of the cables over the top of the platform. The process 
shown in Fig. (6) continues to be applicable for six (or for an 
arbitrary number of) legs. 
 However, the type of 6-legged system just described 
differs from the octahedral platform shown on the right in 
Fig. (4) in having the base and all six legs ‘below’ the 
platform. Now consider the slightly modified circular disc 
platform configuration shown in Fig. (7), where the fixed 
base consists of two separated circular discs, one fixed above 
and one fixed below the platform, with three legs attached 
from the platform to each of these two base discs. 

 
Fig. (7). Untangling the legs of a 6-legged platform after a 4π 
rotation. 

 This is much closer to the octahedral arrangement shown 
on the right of Fig. (4). As before the platform may be 
rotated, with respect to the fixed bases, anti-clockwise about 
a vertical axis through an angle of 4π. This results in the 
three lower cables being twisted into a right-handed helical 
configuration, whereas the three upper cables are twisted into 
a left-handed helical configuration. Now the untangling 
procedure should be applied in two stages, but it is just as 
successful at untangling the cables. Firstly, the three lower 
cables (again shown wrapped in a sleeve for clarity) are 
passed over the top of the platform. This completes the first 
stage and it now appears that the three lower cables are 
hopelessly entangled with the three upper cables. The second 
stage of the process entails passing the three upper cables 
underneath the platform, and surprisingly this completely 
untangles all six cables. Needless to say, after just a 2π 
rotation of the platform with respect to the base(s) the 
procedure will not untangle the cables, nor will any similar 
procedure that does not cut the cables nor rotate the platform. 

6. DISCUSSION AND CONCLUSIONS 

 The procedures introduced in this paper have implica-
tions for the kinematic design and operation of parallel and 
hybrid parallel-serial robot manipulator systems. They dem-
onstrate, for instance, that the state of a platform depends 
fundamentally not only on its spatial finite displacement 
from one pose to another pose and configuration, but also on 
the history of its spatial motion. A platform in any one pose 

may have achieved that pose in two inequivalent ways – by 
rotation through 4nπ, or by rotation through (4n+2)π, where 
n is any integer (positive, negative or zero). Hence, every 
pose of a platform is in one of two states, depending on the 
previous motion history of the platform. The two states are 
manifested by the two theoretically possible configurations 
of the legs (‘tangled’ and ‘untangled’) connecting the 
platform to the base. However, for this feature to be realised 
in an actual mechanical system, the legs would have to be so 
designed that they allowed the platform to rotate through at 
least 4π with respect to the base. This would probably 
require the legs to have unusual shapes and to have (many) 
redundant freedoms so that they almost behaved as cables. 
Currently the designs of most manipulators prevent such 
unrestrained rotations. 
 For serial manipulators (1-legged platform systems) these 
aspects are not generally manifested overtly (but would be if 
power- and instrumentation- cabling or hydraulic lines were 
taken into account). For m-legged parallel manipulators 
(m>1) an untangling procedure might be exploited to 
produce, for instance, continuous rotation of the platform 
about a vertical axis through as many full turns as desired 
without entangling the legs, assuming the legs are ‘flexible 
enough’ to go through the untangling procedure for every 4π 
of rotation angle. This possibility may be seen most clearly 
in the case of a 2-legged system. If the two legs were viewed 
either as two separate cables or else as the two edges of a 
ribbon cable (for example), there could be continuous 
rotation of the platform with respect to the base without the 
cable(s) becoming irretrievably coiled. This would provide a 
way for a rotor to rotate continuously with respect to a stator 
without the need for slip-rings or commutators. 
 Such a system has actually been designed and success-
fully patented by Adams [24, 25] in the context of providing 
(electrical) energy communication between a moving and a 
stationary terminal. His purpose was to avoid the use of 
commutators and slip-rings because these generate increa-
singly unacceptable levels of electrical noise as electronic 
systems are miniaturised. The construction utilises a gear 
train involving a 2:1 gear ratio and it provides a novel 
mechanical arrangement for continuously untangling the 
cables. It is effective but there is considerable scope for 
improvement in its mechanical features. Adams’ patent [25] 
also shows application to pneumatic and hydraulic connec-
tions and to folded optical systems involving sequences of 
prisms. Moreover, it could provide a practical means of 
rotating the revolute joints of a serial manipulator through 
any number of complete turns without their angular range 
being restricted by power-cable or sensor-cable constraints. 
Its utilisation in the design of parallel manipulators is a 
natural extension. 
 Further work is planned to explore the implications of 
this approach for the detailed geometry, topology and 
mechanical configurations of new types of robot manipulator 
designs. In particular, the mobility, dexterity and redundancy 
aspects required of platform legs, in order for them to be able 
to execute an untangling procedure, are expected to form a 
major focus for future exploration. Additionally, the 
implications for more general screw motion (rather than just 
for rotational motion) will be explored in several follow-up 
papers. 
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