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Abstract: Multiscale design for dealing with 2-scale material and product system is implemented by employing the 
probabilistic analytical target cascading (PATC) and polynomial chaos expansion (PCE) approaches in this paper. PATC 
allows design autonomy at each scale subsystem by formulating the multiscale design problem as a hierarchical structure. 
PCE ensures uncertainties to be propagated within and across each scale accurately and efficiently. In addition, correlation 
between the random inputs is also considered during uncertainty propagation. Comparative study on a multiscale bracket 
design problem shows that the results obtained by our strategy are very close to the reference values. It is demonstrated 
that PATC and PCE are effective and applicable on multiscale design. 
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1. INTRODUCTION 

 Multiscale design is an emerging research topic that is 
built upon multiscale simulations to design systems at 
different scales (length and time) for achieving the required 
system performances [1]. From the design research point of 
view, multiscale design deals with the efficient utilization of 
information from multiscale models that may be associated 
with design explorations at different scales and by different 
engineering disciplines [1]. The widely existing uncertainties 
often cause unexpected quality loss or even catastrophic 
failure which stresses the necessity to consider the design 
robustness during multiscale design. Recently, there have 
seen lots of works about the robust multiscale design. In [2], 
some of the pending challenges for applications of robust 
design to multiscale systems and materials were highlighted. 
An inductive design exploration method for robust multi-
scale material design was proposed to support integrated 
multiscale materials and product design under uncertainty 
[3]. 
 One of the challenges in robust multiscale design is that 
multiscale analyses usually involve multiple scales/discip-
lines, various physical elements, and coupled information 
exchanges, which dramatically increase the demand of com-
putation. The complexity of multiscale analysis places a 
critical obstacle in the employment of conventional design 
methods, which integrate the entire analysis models into 
single system and solve it in an all-in-one fashion. Recent 
years have seen work that views multiscale design as a 
multidisciplinary design activity where design decisions are 
made by each individual discipline (e.g., material design, 
product design, and manufacturing process design) with a 
common objective of achieving the desired product perfor-
mance [2]. Due to the hierarchical structure of scale decom- 
position in multiscale systems, there is a great potential to 
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exploit the existing hierarchical multidisciplinary design 
optimization techniques for making design decisions at 
various scales. As a classical multilevel design formulation, 
the probabilistic analytical target cascading (PATC) [4] 
method has been applied to various probabilistic hierarchical 
design optimization problems such as vehicle and aircraft 
designs, however there does not exist any applications of 
PATC to robust multiscale design.  
 The second challenge in robust multiscale design is 
associated with the various uncertainties in multiscale sys-
tems. It is well known that one of the key components of 
robust optimization is how to effectively propagate the input 
uncertainties to outputs (named as uncertainty propagation, 
UP for short). In multistage systems, the uncertainties may 
exist at each scale in the hierarchy, which would be further 
propagated to the upper scales and finally to the system 
probabilistic performance. It is crucial to develop efficient 
UP approaches that can manage the challenge in propagating 
various uncertainties within and across multiple scales to 
quickly assess the probabilistic product performance in the 
hierarchical materials and product design. Lots of UP appro-
aches have been proposed among which the polynomial 
chaos expansion (PCE) method with attractive attributes has 
demonstrated to be effective in many applications. In addi-
tion, some output responses from the lower scales in the 
hierarchical multiscale systems which act as input to the 
upper scales may be correlated due to the common uncer-
tainty sources which exerts great difficulty on UP in multi-
scale design. Ignoring the correlation in the multiscale 
hierarchy would induce errors to the probabilistic perfor-
mance estimations in the upper scale and finally to the 
system optimal design solution.  
 It is our interest in this work to address the aforemen-
tioned two challenges by employing PATC and PCE to sup-
port the robust multiscale design process involving material 
and product design. The remainder of this paper is organized 
as follows: the proposed robust hierarchical multiscale 
design framework is introduced in Section 2, where the 
PATC and PCE approaches are first briefly reviewed. In 
Section 3, the material and product design of a bracket 
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multiscale problem which is formulated in a hierarchical 
design structure is presented to demonstrate the effectiveness 
of our approach. Conclusions are drawn in Section 4. 

2. A ROBUST HIERRCHICAL MULTISCALE 
DESIGN FRAMEWORK  

 In this paper, we propose to apply the existing PATC 
multilevel design formulation to hierarchical multiscale 
system design. Different from the original PATC approach 
where Monte Carlo Simulation (MCS) is simply used for 
UP, in this work PCE is employed for propagating uncer-
tainties within and across different scales in the hierarchy. 
To further address the correlation between some properties at 
certain scale in the hierarchical multiscale system, correlated 
PCE models for these stochastic properties are constructed 
with the introduction of Gaussian bases which comprise the 
marginal PCE’s. 

2.1. Multilevel Optimization for Multiscale Design 

 A generalized 2-level multiscale modeling pattern is 
displayed in Fig. (1) and the corresponding multilevel design  
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Fig. (1). A generalized 2-level multiscale modeling pattern. 

pattern following a target cascading process at the neigh-
boring levels in this paper is illustrated in Fig. (2). Within 
the PATC design framework, the design for each scale 
(material and product) is implemented at one level, and 
different levels (scales) are interrelated by the output 
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Fig. (2). Robust design pattern of multilevel optimization. 

 
 The corresponding PATC formulation for Level i design 
is given in (1). The completion of all the optimizations of 
each level in the hierarchy is considered as one cycle.  
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where 1( , )i i i i! ! " ! +
= and 1( , )i i i i

g g ! " +
=  which are 

functions of local design variables in Level i and the 
properties from lower Level i+1, and i

g are local constraints 

at Level i, i
! is the tolerance to control design consistency. 

2.2. Uncertainty Propagation in Robust Multiscale 
Design 

 In the robust multiscale design framework, PCE is used 
to implement UP both in and across different scales. At each 
level, robust design is carried out independently with PCE as 
the UP technique for robustness assessment (mean and 
variance). In addition, PCE is also used to propagate uncer-
tainties from the lower levels to the upper levels. A brief 
step-by-step description of PCE is given below and the 
reader can refer to [5, 6] for more detailed introduction.  
Step 1. Represent the inputs as functions of standard random 
variables.  

1( ) ( ( )), 1,2,...,
i i i i
X T F i d! " !#

= = =  (2) 
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where d is the dimension of random input variables, F and  φ 
represent the cumulative density function (CDF) and 
standard random distribution respectively. In this paper, we 
only consider the situation that 

i
!  follows standard normal 

distribution, although other standard non-normal distribu-
tions can also be used.  
Step 2. Expand the output response as a function of random 
variables using PCE model. For Gaussian (normal) variable, 
the Hermite orthogonal polynomials are correspondingly 
used to construct PCE model. In our paper, Hermite ortho-
gonal polynomials since only random normal variables are 
considered in Step 1. As for variables with other probabi-
listic distributions, other types of orthogonal polynomials 
can be used. See Table 1 for detailed information.  

Table 1.  Random Variables and the Corresponding 
Orthogonal Polynomials 

 

Random Variables Gaussian Gamma Beta Uniform 

Orthogonal polynomial  
functions Hermite Laguerre Jacobi Legendre 

 
 The same set of standard random variables that are used 
to represent input randomness can then be used for the 
representation of outputs. An equivalent reduced model for 
an output is expressed in the form of a series expansion 
consisting of multi-dimensional Hermite polynomials of 
normal random variables as, 
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 is a set of standard normal variables, 
P

!  is a 
generic element in the set of multidimensional Hermite 
polynomial of order p, and αi is the deterministic PCE 
coefficient. We can rewrite Eq. (3) in a simpler form as, 
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in Eq. (3) respectively. For example, a two dimensional PCE 
with 2nd order (p=2) can be written as, 
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 If we only consider PCE of pth order, the total number of 
orthogonal polynomial terms, i.e. the number of PCE 
coefficients P, can be expressed as a function of order p and 
input dimension d 
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 Then, the PCE model is now approximated as, 
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weighted least square regression. In this work, we adopt the 
weighted stochastic response surface method (WSRSM) 
developed in our previous work to achieve this goal [7]. As 
an enhanced technique based on stochastic response surface 
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 The coefficients 
1 P
[ ,..., ]

T
b b b= are calculated using the 

regression approach with the weighted least square method 
based on a set of sample points, the corresponding real 
function evaluations as well as the probabilistic weights.  
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We can rewrite Eq. (8) in the matrix formulation by taking W 
into account 
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 The analytical solution by least square method is 

1( )T T
b AWA A WY

!
=   (12) 

W is a diagonal matrix of probabilistic weights and 
i
w  is the 

weight at the ith sample point 
i

! . It’s then the probabilistic 
weight (or importance) 

i
w that reflects the relative frequency 

of input random variable taking the value at the particular 
sampling site. Although various sampling techniques, i.e., 
Gaussian Quadrature point (GQ), Monomial Cubature rule 
(MCR) and Latin Hypercube Design (LHD), and the 
corresponding techniques to determine the sample probabi-
listic weights have been studied and demonstrated to be 
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effective in WSRSM, only LHD sampling method is emp-
loyed to estimate the PCE coefficients in this paper. We 
follow the method in [7] and use the joint probability density 
function values as the sample probabilistic weights.  
Step 4. Evaluate the PCE model with MCS to obtain the 
probabilistic characteristics of the output response y . 
 Steps 1-4 briefly describe the process of UP in multiscale 
design. The only difference between UP in and across levels 
lies in Step 4. For the formal one, sample points are gene-
rated randomly according to the distribution type of random 
variables. However, when propagating uncertainties from 
lower levels to upper levels, it is foremost to generate the 
equivalent correlated coefficient matrix of the Gaussian 
bases which comprise the marginal PCE’s characterized by a 
set of PCE coefficients. In this work, we follow the approach 
proposed in [8] to accomplish this task. After the optimi-
zation of a lower level, the PCE models are established for 
the stochastic property functions following Steps 1-3 at the 
current optimal design points. Based on the PCE coefficients 
of stochastic property functions, the equivalent correlated 
coefficient matrix of the Gaussian bases are constructed [8]. 
Large amount of correlated standard random normal sample 
points can be generated using the correlated standard 
Guassian bases.  

3. BRACKET PROBLEM DESCRIPTION AND 
ROBUST MULTISCALE DESIGN IMPLEMENTA-
TION 

 The multiscale design problem studied in this work is 
considered as a multilevel multidisciplinary design problem 
to design the optimal material microstructure and product 
geometry that yields the minimum volume of material, 
subject to the stress constraint. Fig. (3) illustrates the 
framework and information flow in the bi-level PATC 
formulation. At Scale 1 (product model), the left vertical 
surface of bracket is fixed on the wall and the displacement 
boundary condition is applied to the upper surface. The three 
product design variables (CX, CY, R) represent the location 

and radius of the hole. The finite element modeling and 
analysis is implemented in ABAQUS© to predict the 
maximum stress in terms of CX, CY, R, k and n when the 
boundary conditions are fully applied. The strength index (k) 
and strain hardening index (n) are material design parameters 
from the power model to represent the material constitutive 
property. At Scale 2 (material model), a Representative 
Volume Element (RVE) material model [9] is employed to 
construct the microstructure-constitutive property relation of 
an aluminum alloy material. The aluminum alloy material 
contains micro silicon particles uniformly distributed in the 
aluminum matrix. Silicon Particle Volume Fraction (PVF) 
and Particle Density (N) which quantitatively characterize 
the material microstructure are introduced as material design 
variables. A power model is employed to fit the strain-stress 
curve from RVE simulations following the way introduced 
in Ref. [10]. Due to the high computational cost of RVE 
simulations, Kriging are constructed for material property 
responses (k and n) as functions of PVF and N.  
 The design objective is to minimize the material volume 
used in the bracket product, which is equivalent to maximiz-
ing the radius of the hole. The maximum stress occurred in 
the bracket should be less than the critical stress (SmaxC). 
Additional geometry constraints (g2−g4) are applied to ensure 
the hole remain within the bracket external contour. The 
deterministic All-In-One optimization formulation of this 
problem is shown in (13). 
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Fig. (3). Framework and information flow in PATC of the multiscale bracket problem. 
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1 2 3Smax model ( , , , , )x x x k n= , modelk and modeln are Kriging 
metamodels for the two interrelated responses k and n; 
models stands for the Kriging metamodel of the structure 
maximum stress (Smax); g1 is the maximum stress cons-
traint. Due to the random nature of material, the microstruc-
ture design variables PVF and N are considered as random 
design variables. During our study, it is found that k and n 
are highly correlated which is expected to have large impact 
on the optimal design solution. Therefore the enhanced 
PATC formulation [11] with the consideration of the cova-
riance between k and n is applied to the multiscale bracket 
design problem formulated in (14) and (15). Following the 
target cascading fashion, targets of the desired material 
design parameters k and n are determined at Scale 1 (see 
(14)) and assigned to the Scale 2 (see (15)). The Scale 2 
design optimization is carried out to match the targets.  
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 Within the PCE method, the stochastic response is 
represented as a PCE model, which is implemented using the 
weighted least square regression approach at a set of sample 
points. In our work, the LHD sampling technique is emp-
loyed in the regression process to establish the PCE models 
for the probabilistic outputs responses (k, n and Smax) in 
each subsystem optimization at every scale. The uncer-
tainties can be propagated with PCE during optimization in 
and across different scales.  
 The standard deviation values for random design varia-
bles (PVF and N) are set as 0.0067, 0.3

PVF N
! != =  in this 

study. The results solved by the Probabilistic All-In-One 
(PAIO) method integrating Monte Carlo Simulation (MCS) 
as UP strategy are used as reference values to verify the 
accuracy of the obtained results. For simplicity, we denote 
the results produced by our scheme and PAIO combining 
MCS respectively as PATC and PAIO, which are shown in 

Table 2. The confirmed f and the confirmed mean and 
standard deviation values of k and n are displayed in Table 3, 
which are obtained by plugging the obtained optimal design 
variables into the PAIO formulation. In Table 2, eX is the 
square sum of the absolute error of X and ef is the absolute 
error of f relative to the solutions of PAIO. 
Table 3. Comparison of the Confirmed Interrelated Responses 
 

 µk σk µn σn  

PATC 0.2560 0.0035 0.8667 0.0166 

PAIO 0.2557 0.0033 0.8663 0.0163 

 
 It is found that the optimal design variables and objective 
values obtained by PATC are almost identical to the ones 
using PAIO. Meanwhile, the mean and standard deviation 
values of the two interrelated responses also show great 
agreement to those of PAIO. Compared to PAIO that treats 
all analysis models at the material and product scale levels as 
an integrated complicated system, PATC follows the hierar-
chical decomposition strategy where a complex system is 
divided into subsystems at different levels, and each subsys-
tem design problem is solved in a target cascading iterative 
fashion. Such a method maintains the design autonomy of 
each scale at different levels and greatly facilitates the 
implement of parallel process. Meanwhile, PCE yields effi-
cient and accurate results for propagating uncertainties 
within or across multiple scales, while at a much smaller 
fraction of the cost of MCS. As is well-know that PCE suf-
fers from the “curse of dimension” problem, it is only useful 
for small to middle sized problems. In the future, techniques 
such as “dimension adaptivity” will be investigated to deal 
with this problem.  

4. CONCLUSIONS 

 Conventional design methods for multiscale design 
integrate all the models from multiple scales into single 
system and solve it in an all-in-one fashion, which greatly 
limit the autonomy of each individual scale and bring about 
intensive complexity. By applying the PATC method, the 
complicated multiscale design problem is formulated as a 
multilevel design structure within which each scale can 
achieve independent design. The introduction of PCE as UP 
strategy in the PATC design formulation ensures accurate 
and efficient uncertainty propagation within and across 
different scales. The comparative study on the engineering 
bracket design problem associated with material and product 
design evidently demonstrates the effectiveness and applica-
bility of PATC and PCE on multiscale design. 

Table 2. Optimal Design Variables and Confirmed Objective 
 

 X eX f ef 

PATC 52.0000  -50.3268 30.3268 0.0500 4.0646 1.5883 919.7148 0.0060 

PAIO 50.4183  -50.4183 30.4183 0.0500 4.0000 --- 925.2730 --- 
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