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Abstract: Based on the research of a periodic forced system with soft impacts, the piecewise properties of the soft-
impacts system, such as asymmetric motion and singularity, were analyzed by using the Poincaré map and Runge-Kutta 
numerical simulation method. The routes from periodic motions to chaos, via Hopf bifurcation and grazing bifurcation, 
were investigated thoroughly. In the case of large constraint stiffness, the Hopf bifurcation is observed in the periodic 
forced system with soft impacts. The clearances of the system are the main reasons for influencing the chaotic motion. For 
small clearances, the grazing bifurcations bring about asymmetric motion and singularity. The steady 1-1-1 period orbits 
will exist within a wideband frequency range when appropriate system parameters are chosen. 
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1. INTRODUCTION 

 The soft impacts induce  extensive oscillation in 
mechanical systems. Such piecewise linear systems are 
capable of exhibiting classically non-linear behavior such as 
grazing bifucations. For example, impact dampers, shakers, 
etc., are based on the impact of moving bodies. With other s,   
mechanisms with clearances, gears, wheel-rail interaction of 
railway coaches, etc., impacts also occur, but they are 
undesirable as they bring about increased wear and noise 
levels. It is necessary to be able to accurately  model the 
dynamics of mechanical systems with soft impacts and 
clearances,  to enlarge profitable effects and minimize 
adverse effects. The grazing bifurcation, which is a key to 
determine the motions switching in discontinuous dynamical 
systems, has been discussed  by a number  of researches in 
the past several years. Shaw and Holmes [1] studied a single-
degree-of-freedom vibro-impact system by using the 
traditional approaches for analyzing periodic-impact 
responses in the system. The results showed all types of 
typical nonlinear behavior: saddle node and flip bifurcations, 
multiple coexisting attracting solutions and chaos, etc. 
Nordmark [2] developed systematic methods for 
investigating grazing dynamics and attendant bifurcations of 
the piecewise linear and vibro-impact systems.  A study De 
Souza and Wiercigroch [3] focused on the grazing 
transitions from no impact to impact motion and investigated 
parameter space region around the grazing bifurcations. The 
qualitative changes that can be associated with grazing and 
corner-collision bifurcations were observed through a 
combination of experiments and numerical calculations 
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Long et al., Luo and Gegg [4, 5] carried out  a comprehensive 
investigation on  grazing motions in the dry-friction oscillator 
for a better understanding of the grazing mechanism of a 
discontinuous system. Experimental study on piecewise linear 
oscillator was performed by Sin and Wiercigroch [6]. Luo and 
O'Connor [7, 8] presented an idealized, piecewise linear system 
to model non-smooth vibration of gear transmission appearing 
from impacts between the gear teeth. For example, in wheel-rail 
impacts of railway coaches Luo et al. [9], Jeffcott rotor with 
bearing clearance Karpenko et al. [10], gears transmissions Al-
shyyab, and Kahraman [11], small vibro-impact pile driver 
Luo and Yao [12], etc., impacting models have been proved to 
be useful. 
 A periodic forced system with soft impacts and 
clearances has been established. The main purpose of the 
present study was to analyze the piecewise properties of such 
system, including stability, Hopf bifurcation, grazing 
bifurcations period doubling bifurcation, etc. The routes 
from quasi-periodic impact motions, grazing motions or 
period-doubling cascades to chaos were  observed by using 
the Poincaré map and numerical simulation. Finally, the 
influences of clearances on periodic motions and 
bifurcations of the periodic forced system are discussed in 
detail. 

2. MECHANICAL MODEL 

 The mechanical model of a periodic forced system with 
soft impacts is shown in Fig. (1). Displacements of the 
masses   M1 ,   M2  and   M3  are described by   X1 ,   X2  and   X3 , 
respectively. The mass   M1 and   M2 are connected by linear 
spring with stiffness   K1  and linear viscous dashpot with 
damping constant   C1 , and  M2  and   M3  are connected by   K2  
and   C2  analogously. The mass   M3  is attached to the 
supporting base by the linear spring with stiffness   K3  and 
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linear viscous dashpot with damping constant   C3 . The 
excitations on masses are harmonic with amplitudes   P1 ,   P2  
and   P3 .  !  is the excitation frequency, and !  is the phase 
angle. The mass   M2  begins to hit the right (left) soft impact 
represented by linear spring with stiffness   K4  (  K5 ) and 
linear viscous dashpot with damping constant   C4  (  C5 ) when 
the displacement   X2  of mass   M2  equals the clearances  B , 
i.e.   X2 (t) = B  (  X2 (t) = !B ). 

 
Fig. (1). Mechanical model of a periodic forced system with soft 
impacts. 

 The motion processes of the system when the absolute 
value of displacement   X2  is less than the clearances are 
considered. The condition of the periodic forced system, just 
immediately after impact, is observed as  initial condition in 
the subsequent process of the motion. The non-dimensional 
differential equations of motion are given by Eq.(1)~(4). 

   
!!x1 + 2!( !x1 " !x2 ) + (x1 " x2 ) = f10 sin #t + $( )   (1) 

   

µm2 !!x2 + 2! 1+ µc2( ) !x2 " 2! !x1 " 2!µc2 !x3 " µk 2x3

+ 1+ µk 2( ) x2 " x1 + f (x2 ) = f20 sin #t + $( )
  (2) 

   

µm3!!x3 + 2! µc2 + µc3( ) !x3 " 2!µc2 !x2 + µk 2 + µk 3( ) x3

" µk 2x2 = (1.0 " f10 " f20 ) sin #t + $( )
  (3) 

   

f (x2 ) =
2!µc4 !x2 + µk 4 (x2 " b) , x1 > b,
0 , " b # x1 # b,
2!µc5 !x2 + µk5(x2 + b) , x1 < "b.

$

%
&

'
&

  (4) 

where the non-dimensional quantities are given by 

  

µmi =
Mi

M1

, µkj =
K j

K1

, µcj =
C j

C1

, fi0 =
Pi

P1 + P2 + P3

,

b =
BK1

P1 + P2 + P3

, xi =
Xi K1

P1 + P2 + P3

,! = "
M1

K1

,

t = T
K1

M1

, # =
C1

2 K1 M1

i = 2,3,4,5, j = 1,2,3

  (5) 

 Periodic-impact motions of the system are described by 
the symbol n-p-q, where n denotes the number of excitation 
periods and p (q) denotes the number of impacts with right 
(left) soft impacts, during one impact motion period, 
respectively. In order to establish the Poincaré map of the 
periodic forced system, we chose the Poincaré section: 

   
! = (x1, !x1, x2 , !x2 ,  x3, !x3, t) "{   R

6 ! S ,   x2 = b,  
   
!x2 > 0} . The 

disturbed map of period n single-impact motion is expressed 
briefly by 

    !X = !f (v, X)   (6) 

where   X !R6 ,  v  is real parameters,   v ! Rm ;   X = X ! +"X ,  

 !X = X " +# !X ,
   
X ! = (x10 , !x1p , !x2 p ,  

    
x30 , !x3 p ,! 0 ) T  is a fixed 

point in the hyperplane ! , 

    
!X = (!x10 ,! !x1p ,! !x2 p ,!x30 ,! !x3 p ,!" )T  and  ! "X =  

    
(! "x10 ,! !"x1p ,! !"x2 p , "! x30 ,! !"x3 p ,! "# )T  are the disturbed vectors 

of  X* . 

3. GRAZING BIFURCATIONS AND PERIODIC 
MOTIONS 

 The existence and stability of n-p-q motions have been 
analyzed explicitly. Bifurcations at the points of change in 
stability are considered, thus giving some information about 
the existence of different kinds of bifurcations named 
periodic-doubling bifurcation, Hopf bifurcation, grazing 
bifurcation, etc. 

(a) global bifurcation 

 
(b) detail of Fig. (2a) 

 
Fig. (2). Bifurcation diagrams. 

 Taking dimensionless parameters (1): b = 0.01,   µk 2 = 2.0, 

  µk 3 = 5.0,   µk 4 = 50.0,   µk5 = 0.1, ! = 0.2,   µc2 = 2.0,   µc3 = 2.0, 

  µc4 = 2.0,   µc5 = 1.0,   µm2 = 1.0,   µm2 = 1.0,   f10 = 0.0,   f20 =
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1.0, to  analyze the nonlinear dynamic performance of the 
soft-impact system. The global bifurcations of the soft-
impact system, in the form of projected Poincaré section, is 
shown for !  varying in the range [2.0, 7.0], see Fig. (2a). 
Fig. (2b) shows  detail of the local bifurcations of Fig. (2a). 
It is shown that the system exhibited stable 1-1-1 motion 
with ! "[2.0, 3.6912). As !  passed through  ! c =3.6912 
increasingly, the 1-1-1 motion  changed its stability. 
Moreover,  period-doubling bifurcation was associated with 
the motion  so that the 2-2-2 impact motion could be 
generated. Stable 2-2-2 motion existed in the frequency 
interval ! " (3.6912, 3.778); a phase portrait of 2-2-2 
motion is shown for ! = 3.772 in Fig. (3a, b). When !  
increased to ! = 3.778, the mass   M2  began to touch the 
right soft impacts with zero velocity and the grazing 
bifurcation took place , while the stable 4-3-4 motion was 
observed  immediately after the grazing bifurcation. Figs. 
(3c, d) showed the 2-2-2 motion with grazing contact for 
! = 3.778. Stable 4-3-4 motion was observed in the 
frequency interval ! "(3.778, 3.9246), with a phase portrait 
of 4-3-4 motion  shown for ! = 3.84 in Fig. (4a). With 
increase in the forcing frequency, the system exhibited  the 
2-1-1 motion for ! "(3.9246, 4.9145) and the 2-1-1 motion 
is shown for ! = 4.2 in Fig. (4b). After chaos, there was 6-3-
4 motion observed at ! = 6.2, and  Figs. (4c, d) showed the 
3-1-3 motion at ! = 6.5. 

4. HOPF BIFURCATION AND QUASI-PERIODIC 
ATTRACTOR 

 The system parameters (2):  b = 0.1,   µk 2 = 1.0,   µk 3 = 1.0, 

  µk 4 = 50.0,   µk5 = 50.0, ! = 0.1,   µc2 = 0.2,   µc3 = 2.0,   µc4 =

2.0,   µc5 = 0.0,   µm2 = 1.0,   µm2 = 2.0,   f10 = 0.0, and   f20 =

1.0, were  chosen for the analysis. In Fig. (5a) the results 
from simulation, in the form of projected Poincaré section, 
are shown for !  varying in the range [2.7, 2.9]. 

 It is shown that the system exhibited stable 1-1-1 motion 
with ! "(2.8351, 2.9). As !  passed through  ! c =2.8351 
decreasingly, the 1-1-1 motion  changed its stability, and 
Hopf bifurcation associated with the motion occurred so that 
the quasi-periodic impact motions could take place . As 
expected, the 1-1-1 motion is represented by one fixed point 
in projected portrait of Poincare´ map, appeared at ! =
2.8351, as shown in  Fig. (5b). Quasi-periodic response, 
represented by the attracting invariant circle is shown in Fig. 
(5c), which appeared at ! = 2.82, just after the Hopf 
bifurcation. With decrease in the forcing frequency, the 
system exhibited  the 3-3-3 motion, and Fig. (5d) shows the 
attracting invariant circle at ! = 2.774 and 3-3-3 motion at 
! = 2.75. 

5. THE INFLUENCE OF CLEARANCES ON 
PERIODIC MOTIONS AND BIFURCATIONS 

 The influence of clearances between the system parts on 
dynamics is presented in the study . Taking  system  
parameters  (1): 

(a) 2-2-2 motion,  ! = 3.772  

 
(b) detail of Fig. (3a) 

 
(c) 2-2-2 motion with grazing contact,  ! = 3.778  

 
(d) detail of Fig. (3c) 

 
Fig. (3). Phase portraits. 
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(a) 4-3-4 motion,  ! = 3.84  

 
(b) 2-1-1 motion,  ! = 4.2  

 
(c) 6-3-4 motion,  ! = 6.2  

 
(d) 3-1-3 motion,  ! = 6.5  

 
Fig. (4). Phase portraits. 

 (a) bifurcation diagram 

 
(b) fixed point,  ! = 2.8351  

 
(c) quasi-periodic motion,  ! = 2.82  

 
(d) quasi-periodic motion,  ! = 2.774  and 3-3-3 motion,  ! = 2.75  

 
Fig. (5). Bifurcation diagram and projected Poincaré maps. 
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 b = 0.01,   µk 2 = 2.0,   µk 3 = 5.0,   µk 4 = 50.0,   µk5 = 0.1, ! =

0.2,   µc2 = 2.0,   µc3 = 2.0,   µc4 = 2.0,   µc5 = 1.0,   µm2 = 1.0, 

  µm2 = 1.0,   f10 = 0.0, and   f20 = 1.0, as the criterion 
parameters, to  analyze the influence of clearances between 
the system parts on periodic motions and bifurcations.  Fig. 
(6) shows  the bifurcation diagrams for the impact velocity 

   
!x2 p  of the periodic forced system under the conditions of 

different clearance parameters. Only changed parameter is 
given in Fig. (6a-d), and all the other parameters, not listed 
in the figure’s description, were the same as the criterion 
parameters. 

 The effects of changes in clearances  b  were analyzed by 
changing their  value. Large or small clearances slightly 
influenced the velocity amplitude of the periodic motion, 
which can be seen in Fig. (6a-d). The minimum value of 
clearances, i.e.  b =0.0, led to small change in the topological 
structure of the bifurcations, as shown in  Fig. (6a). As the 
value of  b   increased, the frequency range of 1-1-1 motion 
became narrow and  period-doubling bifurcations sequence 
was observed, such as 1-1-1 motion and 2-2-2 motion for 
large excitation frequency as shown in Fig. (6b). Large value 
of  b  resulted in the narrow frequency ranges of 1-1-1 
motion, moving  toward small ! . The singularities and 
asymmetric periodic motions such as 2-1-2, 3-2-3, and 4-3-4 
motions are indicated in Fig. (6c). A slightly larger value of 
clearances was considered as shown in Fig. (6d), and the 
dynamic properties of the periodic forced system were 
simple. As shown  in Fig. (6c, d), for large clearances, the 
mass M2 did  not contact the soft impacts at high excitation 
frequency. 

CONCLUSION 

 In this paper, the nonlinear characteristics of the periodic 
forced system with soft impacts were analyzed with special 
attention on  stability of periodic motion, grazing bifurcation, 
period-doubling bifurcation, Hopf bifurcation and chaotic 
motion, etc. The piecewise properties and routes to chaos 
have been shown as follows. 
(1) The 1-1-1 motion, in most cases, underwent grazing 

bifurcation or Hopf bifurcation to chaos with a 
change in  the system parameters. 

(2) Grazing bifurcation led to singularity and asymmetric 
periodic motion, such as 4-3-4 motion, 6-3-4 motion 
3-1-3 motion,. 

(3) The clearances of the system are  the main reasons for 
influencing frequency range of periodic motions and 
chaos. 

(4) The steady 1-1-1 period orbits existed within a 
wideband frequency range and the value of velocity  
achieved the desired results when appropriate system 
parameters were chosen. 
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(a)   b= 0.0  

 
(b)   b= 0.02  

 
(c)   b= 0.05  

 
(d)   b= 0.1  

 
Fig. (6). Bifurcation diagrams associated with the clearances. 
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