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Abstract: In this paper, a new gearbox fault identification method was proposed based on mathematical morphological 
filter, ensemble empirical mode decomposition (EEMD), sample entropy and grey relation degree. Firstly, the sampled 
data was de-noised by mathematical morphological filter. Secondly, the de-noised signal was decomposed into a finite 
number of stationary intrinsic mode functions (IMFs) by EEMD method. Thirdly, some IMFs containing the most 
dominant fault information were calculated by the sample entropy for four gearbox conditions. Finally, since the grey 
relation degree has good classified capacity for small sample pattern identification, the grey relation degree between the 
symptom set and standard fault set was calculated as the identification evidence for fault diagnosis. The practical results 
show that this method is quite effective in gearbox fault diagnosis. It’s suitable for on-line monitoring and fault diagnosis 
of gearbox. 
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1. INTRODUCTION 

 Gear is a key component usually used in mechanical 
transmission, for its prominent carrying capacity and 
reliability. Therefore, the fault identification of gear has been 
the subject of extensive research. Enveloping analysis and 
wavelet package decomposition are commonly used in fault 
diagnosis as feature extraction methods for gear signal [1]. 
But the enveloping analysis needs to confirm the center 
frequency and frequency band of band-pass filter, and it will 
impact the analytical results [2]. While the wavelet 
decomposition has finite length of basic function, energy 
will leak in the signal processing. Because the wavelet 
decomposition is based on the linear decomposition, the 
good effectiveness will not be obtained in gear fault data 
processing due to its non-linear and non-stationary 
behaviors. 
 Mathematical morphology is a subject concerned with 
the shape of an object based on set theory and integral 
geometry [3]. In recent years, more and more studies have 
been done on the morphological filter. It is a non-linear filter 
with the advantage of better performance on rejection of 
white noise and pulse noise [3]. The operations of the filter 
are mainly plus, minus and logic. So the implementation of 
the filter by software or hardware is very easy. Its filtering 
idea is based on the geometrical structure of the filtered 
signals and realized through moving predefined structure 
element to match and adjust the singular parts of the signals 
[4]. It has been used in signal de-noising and purification of 
rotor axis [5, 6]. 
 Gear fault signal is the typical non-stationary and non-
linear signal. How to extract feature parameter of different  
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fault patterns is the key for gear fault diagnosis. Sample 
entropy is a good tool to evaluate complexity of non-linear 
time series, compared with other existing non-linear dynamic 
methods. It has many good characteristics, such as good 
resistance of noise interference and closer agreement with 
theory for data sets with known probabilistic content. 
Moreover, sample entropy displays the property of relative 
consistency in some situations where approximate entropy 
does not [7]. These performances are suitable for fault 
extraction in practice. 
 In order to extract fault feature of gearbox, in this paper, 
a novel approach is proposed based on mathematical 
morphological filter, EEMD and grey relation degree. The 
proposed method could extract gear fault feature by EEMD 
and sample entropy. Then we identify a different gearbox 
fault mode by calculating the grey relation degree between 
the fault sample and standard fault pattern. 

2. BASIC CONCEPTS OF MATHEMATICAL 
MORPHOLOGICAL FILTER 

 A mathematical morphological filter is constructed by 
different morphological transformations. First, several 
important morphological transformations are introduced. 

 Dilation and erosion are two basic morphological 
transformations. While dilation is the transformation used to 
expand the targeted object and shrink the hole, erosion is the 
transformation used to shrink the targeted object and expand 
the hole. Let f(x) and g(x) denote one-dimensional input 
signal and structure element, where F= {0, 1, …, N-1} and 
G= {0, 1, …, M-1} denote sets in which signal  f and g are 
defined, here N !M. Dilation and erosion of f and g are thus 
defined as follows: 

(f! g)(n)＝
 
max

m=0,1,!,M!1
{f(n－m)+g(m)} 
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(n=0, 1, …, N－M)  (1) 

(f! g)(n)＝
 
min

m=0,1,!,M!1
{f(n + m)－g(m)} 

(n=0, 1, …, N+M－2)  (2) 

 Usually, dilation and erosion are not mutually inverse. 
They can be combined through cascade connection to form 
new transformations. If dilation is next to erosion, such 
cascade transform is an opening transformation. The 
contrary is a closing transformation. The transformations can 
be computed using the following formulae respectively 

(f ! g)(n)＝[f! g! g](n)  (3) 

(f • g)(n)＝[f! g! g](n)  (4) 

 The opening and closing results of the signal f by the 
elliptical structure element g are shown in Fig. (1) [8]. 

 
Fig. (1). Opening and closing results of the signal f by the elliptical 
structure element g. 

 From Fig. (1a), we can know that when g moves under f 
closely, the parts of f that do not contact with g will fall into 
the upper edge of g. So the opening transformation can be 
used to remove the peaks in the signal. From Fig. (1b), when 
g moves over f closely, the parts of f that do not contact with 
g will roll into the lower edge of g. So the closing 
transformation can be used to fill the valleys in the signal. 
Both transformations can be combined to form a 
morphological filter because they have the capacity of low-
pass filtering. 
 In order to reject both positive and negative noise 
together, the open-closing filter and close-opening filter can 
be realized with the same structure element through cascade 
connection of the opening and closing transformation in 
different order. Two filers are defined as follows: 

 OC( f (n)) = ( f !g• g)(n)   (5) 

 CO( f (n)) = ( f • g !g)(n)   (6) 

 Due to the expansibility of the opening transformation 
and the inverse expansibility of the closing transformation, 
the problem of the statistics deviation exists in the open-
closing filter and close-opening filter. The output of the 
open-closing filter is small, while that of the close-opening 
filter is large. Under most circumstances, the best processing 
performance can’t be achieved by using a single filter. In 
order to lower the output deviation, two filters can be 
cascaded to form a new combined filter, whose output is 
defined as the following: 

y(n)＝[OC(f(n)+CO(f(n)]/2  (7) 

 Actually, the structure element acts as a filtering window, 
in which the data are smoothed to have a similar 
morphological structure as the structure element. The 
effectiveness and accuracy of the morphological filter 
depend on not only the combination mode of different 
transformations, but also the shape and width of the structure 
element. Usually the shape of the structure element should 
be similar to the signal. The commonly used structure 
element has simple geometrical shape, such as line, round, 
triangle and other polygon etc. In general, the more complex 
the structure element, the better the effectiveness will be 
obtained to reject the noises, but it will cost much time. 
 For structure element with the assured shape, it is 
necessary to select proper height and length, of which the 
length is especially more important to the effectiveness of 
signal processing. In vibration signal processing, the 
selection of the height is based on the experience. For the 
triangular structure element, selecting 1 to 5 percent of 
original signal’s height is appropriate [9]. The length is 
mainly determined by the period and sampling frequency of 
signal’s main wave. Meanwhile, only if the width of the 
structure element is longer than that of the widest pulse in 
the series, can all the pulse interferences be removed. 

3. BASIC CONCEPT OF EEMD 

 The concept of the EEMD is the following: the added 
white noise consists of components with different scale and 
would be uniform to inhabit the whole time-frequency space. 
When a signal is added with the uniformly distributed white 
noise background, the different scale components of the 
signal are automatically projected onto proper scales of 
reference established by the white noise in the background. 
Because each of noise-added decompositions contains the 
signal and the added white noise, each individual trial is 
certain to get very noisy results. As the noise in each trial is 
different from separate trials, the noise can be almost 
completely removed by the ensemble mean of entire trials. 
The ensemble mean is treated as the true answer because 
only the signal is persevered finally as more and more trials 
are added in the ensemble. The crucial principle advanced 
here is based on the following observations [10, 11]: 
(1) A collection of white noise cancels each other out in a 

time-frequency ensemble mean; therefore, only the 
signal can continue to exist and remain in the final 
noise-added ensemble mean. 

(2)  White noise of finite amplitude necessarily compels 
the ensemble to discover all possible solutions. The 
white noise makes the different scale signals reside in 
the corresponding IMFs, controlled by dyadic filter 
banks, and renders the results of ensemble mean more 
meaningful. 

(3) The decomposition result with truly physical meaning 
of the empirical mode decomposition is not the one 
without noise; it is assigned to be the ensemble mean 
of a large number of trials comprising the noise-added 
signal. 

 Based on the aforementioned observations, the EEMD 
algorithm can be stated as follows [10, 12]: 
(1) Initialize the ensemble number M and the amplitude 

of the added white noise, let M=1. 
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(2) Execute the mth trial for the signal added white noise. 
(a) Add the white noise series with the given amplitude 

to the investigated signal, i.e. 
 xm(t)=x(t)+nm(t) (8) 
 where nm(t) represents the mth added white noise, and 

xm(t) indicates the noise-added signal of the mth trial. 
(b) Decompose the noise-added signal xm(t) into 1 IMFs 

ci,m(i=1,2,…l, m=1,2,…,M) using the empirical mode 
decomposition method. Where ci,m indicates the ith 
IMF of the mth trial; l is the number of IMFs and M 
means the number of the ensemble. 

(c) If m<M, then let m=m+1 and repeat the step (a) and 
(b) again and again until m=M, but with different 
white noise each time. 

(3) Compute the ensemble mean ci of the M trials for 
each IMF, and we obtain 

 c = 1
M

c!   (9) 

(4) Report the mean ci  (i=1,2,…, l) of each of l IMFs as 
the final ith IMF. 

4. DEFINITION OF SAMPLE ENTROPY 

 Let [x(n)]=x(1), x(2), …, x(N) denote N-dimensional 
elements of time series representing rotor vibration signal. 
Then, the estimation algorithm of sample entropy consists of 
the following steps [13]: 
(i) Creating m vectors is defined as: 

 Xm(i)=[x(i), x(i+1), …, x(i+m-1)]. (i=1, 2, …, N-m+1)
 (10) 

(ii) Calculation of distance between two vectors in the 
following way: 

 d[Xm(i), Xm(j)]= 
 
max

k=0,!,m!1
|x(i+k)-x(j+k)|  (11) 

(iii) Calculation of number of similar segments in two 
vectors: 

 nm=# d[Xm(i), Xm(j)]≤r, while i≠j 

 nm+1=# d[Xm+1(i),  Xm+1(j)]≤r, while i≠j 
 where, r is a tolerance parameter. 
(iv) Calculation of similarity measures of these segments: 

 Bi
m (r)= 1

N !m +1
nm  Ai

m  (r)= 1
N !m +1

nm+1  

 i=1,…, N-m. 
(v) Calculation of mean measures of the similar signal 

segments: 

 Bm=
Bi
m (r)

i=1

N!m

"
N !m

 Am=
Ai
m (r)

i=1

N!m

"
N !m

 

(vi) Calculation of sample entropy estimation: 

SampEn(m,r)= !In
Am (r)
Bm (r)

  (12) 

5. GREY RELATION DEGREE 

 According to the grey theory, the relation degree evolves 
from the relation coefficient. The relation coefficient of the 
two series Xi and Xj, is represented by ζij(k), where k 
represents the sampling points [14, 15]. 

∆ij(k)=|Xj(k)-Xi(k)|k∈{1,2,…, N}  (13) 

∆min=min
j
min
k
∆ij(k) ∆max=max

j
max

k
∆ij(k) 

ζij(k) is defined as: 

!ij =
"min + "max # $
"ij (k)+ "max # $

 k∈{1,2,…, N}  (14) 

where ρ is a constant with the range from 0 to 1. The value 
of ρ determines the classification capacity and is usually 
recommended to be 0.5. The relation degree of the two series 
Xi and Xj is as follows: 

!ij =
1

N "1
# 1
2
[ !ij (k)+
k=1

N

$ !ij (k)]
k=2

N"1

$   (15) 

 The relation degree represented by ζij shows the 
comparability of the Xi and Xj series. It is often applied to 
grey cluster in practice [16]. Obviously, the bigger the ζij is, 
the greater the inference of Xi to Xj would be. 

6. ALGORITHM OF FAULT IDENTIFICATION OF 
GEARBOX 

 The detailed algorithm of fault diagnosis can be seen as 
below: 
 Step 1: The sample data are obtained from the 
experimental testing of gearbox under four conditions, which 
are normal, slight-worn, medium-worn and broken-teeth. 
 Step 2: Using mathematical morphological filter to de-
noise the white noise and other interferences in the original 
signal. 
 Step 3: Using EEMD to process the de-noised signals. 
Select some IMFs which contain the most dominant fault 
information as research objects. 
 Step 4: Calculating sample entropy of these IMFs by 
equation (12). 
 Step 5: Building the feature vector by equation (16): 

[T]=[SE1, SE2, …, SEi]  (16) 
 Where i refers to the number of selected IMFs. 
 Step 6: The grey relation degree between the symptom 
set and standard fault set is calculated as the identification 
evidence. 

7. PRACTICAL APPLICATION 

 To verify good effectiveness in gearbox fault 
identification, all vibration signals were collected from the 
experimental testing of gearbox using the accelerometer 
which was mounted on the outer surface of the bearing case 
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of input shaft of the gearbox. The speed of the motor was 
1420 RPM and the sample frequency was 16384 Hz. Testing 
were carried out under four kinds of conditions which were 
normal, slight-worn, medium-worn and broken-teeth. We got 
five sets of sampled data under each condition. First, we 
used mathematical morphological filter to process the 
original signal. Fig. (2a) shows the waveform of the original 
broken-teeth signal in time and frequency domain. Fig. (2b) 
shows the processed signal. 

(a) Original broken-teeth signal and its spectrum 

 
(b) Processed signal and its spectrum 

 
Fig. (2). Waveform of original signal and de-noised results 
comparison. 

 Comparing the above two figures, we can see that the 
high frequency noises are eliminated and the fault feature is 
obtained. It is very useful for the next procedure. 
 Next, we use EEMD to decompose the same signal. Fig. 
(3) gives the processed results. 
 From the above figure, we can see that de-noised 
vibration signals are decomposed into a finite number of 
stationary intrinsic mode functions (IMFs); and IMF 1 to 
IMF 5 contain obvious shocking components. So we 
calculate the sample entropy of these IMFs. Table 1 gives 
the mean calculated values of ten data sets in four fault 
conditions. From Table 1, we can see that different fault 
mode has different sample entropy. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (3). EEMD decomposition results of broken-teeth signal. 

Table 1. Sample entropy of different gearbox fault pattern. 
 

Gearbox Condition SE1 SE2 SE3 SE4 SE5 

Normal 0.8247 0.6391 0.5761 0.3630 0.1611 

Broken-teeth 0.6688 0.5566 0.4976 0.2666 0.1498 

Slight-worn 0.9748 0.6352 0.5815 0.2778 0.1748 

Medium-worn 0.8821 0.6319 0.5715 0.3231 0.1772 
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Table 2. Sample Entropy extracted by EEMD in different conditions. 
 

Gearbox Condition Sample SE1 SE2 SE3 SE4 SE5 

Normal 

1 0.8269 0.6320 0.5827 0.3609 0.1458 

2 0.8146 0.6398 0.5813 0.3546 0.1614 

3 0.8138 0.6355 0.5633 0.3511 0.1501 

4 0.8379 0.6445 0.5881 0.3889 0.1585 

5 0.8413 0.6412 0.5820 0.3993 0.1726 

Slight-worn 

1 0.9903 0.6321 0.5776 0.2581 0.1771 

2 0.9852 0.6363 0.5877 0.2788 0.1700 

3 1.0139 0.6369 0.5827 0.2675 0.1759 

4 0.9545 0.6459 0.5816 0.2913 0.1821 

5 0.9725 0.6211 0.5882 0.2673 0.1705 

Medium-worn 

1 0.8719 0.6391 0.5688 0.2915 0.1832 

2 0.8577 0.6318 0.5698 0.3308 0.1865 

3 0.8942 0.6343 0.5732 0.3140 0.1752 

4 0.8890 0.6282 0.5645 0.3372 0.1741 

5 0.8966 0.6276 0.5693 0.3187 0.1781 

Broken-teeth 

1 0.6630 0.6145 0.4976 0.2259 0.1753 

2 0.6717 0.5580 0.4846 0.2836 0.1343 

3 0.6501 0.5790 0.5061 0.2779 0.1673 

4 0.6523 0.5508 0.5193 0.3167 0.1523 

5 0.6927 0.5760 0.5489 0.2896 0.1477 

Table 3. Grey relation degree between pending series matrix and standard fault matrix. 
 

Sample Normal Slight-Worn Medium-Worn Broken-Teeth Identification Result 

1 0.8855 0.6501 0.7176 0.5410 Normal 

2 0.9384 0.6775 0.7279 0.4927 Normal 

3 0.8397 0.6154 0.7121 0.5656 Normal 

4 0.9221 0.7196 0.7697 0.5748 Normal 

5 0.8548 0.7678 0.8076 0.5329 Normal 

6 0.6908 0.9083 0.8043 0.5865 Slight-worn 

7 0.7188 0.9536 0.7704 0.5854 Slight-worn 

8 0.7077 0.9338 0.7954 0.6209 Slight-worn 
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 Table 2 gives five sample data of each data set selected 
randomly. Then we set the values of Table 1 as the standard 
fault set, and we recognize different gear fault mode by 
calculating the grey relation degree between the fault sample 
and standard fault pattern. Table 3 gives the final 
identification results. We can see that each fault pattern has 
been identified by the proposed method. 

CONCLUSIONS 

 In this paper, a novel gearbox fault identification way is 
proposed by using mathematical morphological filter, 
EEMD, sample entropy and grey relation degree. Firstly, 
mathematical morphological filter is used to eliminate the 
noise interferences in original gearbox vibration signal. 
Secondly, EEMD is used to decompose the processed signal 
adaptively into a finite number of stationary intrinsic mode 
functions. Thirdly, the sample entropy of the first five IMFs 
containing the most dominant fault information is calculated 
and served as the fault feature. Finally, the grey relation 
degree between the fault sample and standard fault pattern is 
obtained as the evidence of fault identification. Practical 
examples verify that the proposed method is very useful for 
gearbox fault type diagnosis. It has a great application value 
in fault diagnosis. 
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