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Abstract: As robotic manipulators are increasingly applied in industrial production, higher precision control methods are 
being studied by researchers. But robotic manipulators are a coupled system with a lot of uncertainties; higher precision is 
difficult to obtain by traditional control methods. A novel adaptive robust control method based on neural network is 
proposed by the paper. Neural network controller has been designed for adaptive learning and compensate for the 
unknown system and approach errors as disturbance is eliminated by robust controller. The weight adaptive laws on-line 
based on Lyapunov theory are designed. Robust controller is proposed based on H∞ theory. These can assure the stability 
of the whole system, and L2 gain also is less than the index value. Simulation studies show that the proposed control 
strategy is able to achieve higher control precision and has important engineering applications value. 
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1. INTRODUCTION 

 Robotic manipulators are increasingly applied in 
industrial production. The coupled system has a lot of 
uncertainty, such as quality, inertia matrix and load, its 
dynamic model is difficult to be accurate and external 
disturbance signal will also have certain influence on the 
controller. The variable structure control, adaptive control, 
neural network control and fuzzy control have great 
advantages in the application of the unknown nonlinear, so 
these methods are becoming a hot spot in the study of 
direction in recent years [1-5]. 
 Because neural network has structural characteristics of 
parallel distribution, it possesses certain fault tolerances and 
strong learning ability. It can approach any unknown 
nonlinear system, due to which neural network control 
methods have been studied in recent years the world over. It 
is becoming a hot topic in control fields [6-11]. 
 Optimization characteristic of neural network is used to 
weaken "chattering" of variable structure controller as 
mentioned in ref [12] and ref [13]. But the control form 
belongs to a kind of optimal control of the bandwidth and 
control precision, the result will reduce the robustness and 
control precision, based on which the neural network 
adaptive control method based on Lyapunov theory has been 
designed [14, 15]. Ref [16] puts forward neural network 
adaptive control strategy by GL matrix and its product 
operator. Ref [17] proposes a neural network adaptive 
control scheme to solve parameter uncertainties of system 
dynamics equation and Jacobian matrix. Ref [18] proposes 
an adaptive fuzzy control theory and H∞ combination. Ref 
[19] and Ref [20] put forward neural network adaptive  
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compensation control scheme based on the existing 
modeling error of robotic system and the control method 
achieved good control effects. 
 Aimed at the robotic manipulators with model error and 
interference, the tracking control scheme based on neural 
network has been designed based on H∞ theory. The control 
method can transform a nonlinear dynamic model into an 
affine nonlinear system. Thus, the advantage of the RBF 
network can be used, the uncertainty of the system can be 
adaptively learned and compensated by neural network 
controller. So the approximation errors which are treated as 
external disturbances are eliminated by the robust controller. 
The controller can ensure the good robustness of the system 
and good stability of closed-loop system. Simulation results 
show that the proposed control strategy is able to achieve 
higher control precision and has important engineering 
applications’ value. 

2. DYNAMICS MODEL OF ROBOTIC 
MANIPULATORS 

 N-degree-of-freedom revolute-joint robotic manipulators 
dynamic model is considered as follows [21-27]: 

 M (q)!!q +C(q, !q) !q +G(q)+ d = !   (1) 

where 

q !Rn  are the joint positions of robotic manipulators;  !q !R
n  

are the joint velocities of robotic manipulators; 

 !!q !R
n  are the joint acceleration vectors of robotic 

manipulators; 

M (q) !Rn"n is the inertia matrix (symmetric and positive 
definite) of robotic manipulators; 

 C(q, !q) !Rn"n  is the centripetal-Coriolis matrix of robotic 
manipulators; 



498    The Open Mechanical Engineering Journal, 2014, Volume 8 Wenhui et al. 

G(q) !Rn  is the gravity forces of robotic manipulators.; d  is 
the external disturbance; 

! is the control input torque vector of robotic manipulators. 

 The rigid robotic manipulators dynamics (1) has the 
following properties [28-33]: 

1) The inertia matrix M (q)  is uniformly bounded, and 
satisfies Mm !|| M (q) ||! MM . Mm and MM > 0  are all 
constants. 

2) The inertia and centripetal-coriolis matrices satisfy 

 X
T !M (q) ! 2C(q, !q)[ ] X = 0 , !X "Rn . Where M (q) is 

the time derivative of the inertia matrix. 

3. DESIGN OF NEURAL NETWORK ROBUST 
CONTROLLER BASED ON H∞ THEORY FOR 
ROBOTIC MANIPULATORS 
 The robotic manipulators system (1) is considered, based 
on which the controller can be designed as follows: 

 ! = M̂ (q)!!qd + Ĉ(q, !q) !qd + Ĝ(q) + u   (2) 
where 
u is compensation item;  

M̂ (q) !Rn"n is estimated value of the inertia matrix for robotic 
manipulators; 

 Ĉ(q, !q) !Rn"n  is estimated value of the centripetal-Coriolis 
matrix for robotic manipulators; 

Ĝ(q) !Rn  is estimated value of the gravity forces for robotic 
manipulators; 
 The equation (2) is put into (1), the paper can reach the 
error equation of closed-loop system as follows: 

 u = M (q)!!e + C(q, !q) !e + f (q, !q)   (3) 

 f (q, !q) =
"M (q)!!qd + "C(q, !q) !qd + "G(q) + d   (4) 

e = q ! qd   (5) 

Where, 

 
!M (q) = M (q) ! M̂ (q) ;  

 
!C(q, "q) = C(q, "q) ! Ĉ(q, "q) ;  

 
!G(q) = G(q) ! Ĝ(q) . 

 Firstly, the state variables x  is defined as follows: 

x = (x1, x2 )
T

 
x1, x2 are designed further as follows: 

 

x1 = e

x2 = !e +!e
"
#
$

  (6) 

Then, the equation (7) can be rewritten as 

 

M (q) !x2 = !C(q, !q)x2 + w ! f (q, !q) + u

w = M" !e + C"e
#
$
%

  (7) 

 For the uncertainties of the system f (q, !q) : because the 
RBF neutral network that belongs to local generalization 
network can greatly accelerate the learning velocity and 
avoid local minimum value, so neural network is used to 
approach the unknown uncertainty f (! ) . 

 The following assumptions are made to further analyze 

control system [8]: 

3): An arbitrary small positive constant !dm is given. 

There is an optimal weight vector !* , so that the 
approximation error !  of neural network satisfies 

| ! |=| "*T#(x) $ f (% ) |< !dm . 

 Then, neural network controller is designed as follows 

f (! ) = "*T#(x) + $   (8) 

! NN = " *T#(x)   (9) 

Where, 

!NN  is neural network controller. 

 So 

 f̂ (q, !q) = !̂ T" (# )   (10) 

Where, 

 f̂ (q, !q)  is the estimate value; 

!̂  is the estimate of weight vector! ; 

! (" )  is Gaussian type of function, that is 

! j = exp("
||# " cj ||

2

$ j

2
)   (11) 

Where, 

c j  is the center of jth is basic function; 

! j is the center and the spread of jth is basic function. 

 In actual application, c j  and ! j  are predetermined by 

using the local training technique. || ! " cj ||  is a norm of the 
vector ! " cj . 

Where, 

 Approximation error ! can be taken as the system’s 
external disturbances. 
 Then, the equation (7) can be amended as affine 
nonlinear system form with model error and disturbances. 

  !

!x = f (x)+ g(x)!
z = h(")

"
#
$

  (12) 

Where, 

f (x) =
x2 !" x1

!M !1(Cx2 ! w ! u + # NN )

$

%
&
&

'

(
)
)

  (13) 
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g(x) =
0

!M !1

"

#
$

%

&
'   (14) 

where 

z = pe = px1  is evaluation signal, ! and p  are positive 
constants. 
 The following equation (15) is defined as performance, 
an indicator that reflects the system's interference 
suppression ability. 

J = sup
||! f ||"0

|| z ||2
|| ! f ||2

  (15) 

 In above equation, J  is the gain L2 of system (10). It can 
make the gain L2  less than the given value ! . 

 The compensation term u  as the control law can be 
designed as: 

u = !w ! x1 !
1
2" 2 x2 + #̂

T$(x)   (16) 

 Neural network weight matrices as the adaptive learning 
algorithm can be designed as: 

 
!̂! = "#x2$

T (x)   (17) 

where, 

! > 0 ; 

z = h(x) = px1 . 

The parameters meet the following equation: 

! "
1

2
p2 = #1  ( !1  represents given constant)  (18) 

 Then the gain J  can be less than the given value ! . 

 Theorem: (HJI inequality) A positive number ! > 0 is 
given, if there are positive-definite quasi-differentiable 
function V (x) ! 0 , that satisfies the following HJI 
inequality: 

 
!V !

1

2
" 2 || # f ||

2 $ || z ||2{ }  (!" f )   (19) 

 Then, the gain L2  of the above system equation (12) 
must be less than a given value ! , that is, J ! " . 

 Proof: The Lyapunov function is defined in the 
following equation: 

 
V =

1

2
x2

T Mx2 +
1

2
x1

T x1 +
1

2!
tr( !" T !" )   (20) 

Where, 

 !! = ! * " !̂  is estimation errors of the network weight. 

 Then 

 
!V =

1

2
x2

T !Mx2 + x2
T M!x2 + x1

T !x1 +
1

!
tr( "!" T "" )   (21) 

where 
 The equation (6) is put in the above equation (21), the 
following new expression can be obtained: 

 
!V = !" || x1 ||

2 +x2
T "#$(x) ! x2

T% !
1
2& 2 x2

T x2
 

 
+
1
!
tr( !"" T !" )   (22) 

where 

 
H = !V !

1

2
" 2 || #

f
||2 ! || z ||2{ }

 
 Then 

 
H = !" || x1 ||

2 +x2 !#$(x) ! x2
T% !

1
2& 2 x2

T x2
 

 
+
1

!
tr( !"" T !" ) #

1

2
$ 2 || % ||2 # || z ||2{ }   (23) 

 Further 

 
H ! "(# "

1

2
p2 ) || x1 ||

2 +x2
T !$% (x) +

1

&
tr( "̂$ T !$ )  

 = !µ || x1 ||
2 +x2

T !"#(x)! tr(#(x)x2
T !" )  

= !µ || x1 ||
2  ! 0   (24) 

 According to HJI, inequality can be obtained: 

 The gain L2  of the closed-loop system (10) must less than 
the given value ! . 

4. SIMULATIONS 

 In order to verify the validity of the control algorithm, a 
simulation example is put forward by the paper. 
 In this simulation, the following reality robotic 
manipulators parameters have been chosen as follows: 

m1 = 4.5kg ,  m2 = 8.5kg , r1 = 2.1m , r2 = 2.0m , 
J1 = J 2 = 7.5kg !m

2

. 
M (q) =  

(m1 + m2 )r1
2 + m2r2

2 + 2m2r1r2 cosq2 + J1 m2r2
2 + m2r1r2 cosq2

m2r2
2 + m2r1r2 cosq2 m2r2

2 + J 2

!

"
#
#

$

%
&
&

 C(q, !q) =  

 

!m2r1r2 sin(q2 ) !q2 !m2r1r2 sin(q2 )( !q1 + !q2 )

m2r1r2 sin(q2 ) !q1 0

"

#
$
$

%

&
'
'  

G(q) =  

(m1 + m2 )gr1 cosq1 + m2gr2 cos(q1 + q2 )

m2gr2 cos(q1 + q2 )

!

"
#
#

$

%
&
&  

 In this simulation, the following parameters are chosen as 
follows. 
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 External interferences are assumed as follows: 

d = [q1 0.3 sin t, q2 0.3 sin t ]
T

 
 Desired trajectory are assumed as follows: 

q1d = 1.5 + 0.5 (sin0.3t + sin0.2t)  

q2d = 1.5 + 0.5 (cos0.2t+cos0.4t)  

 Estimated values are assumed as follows:  

m̂1 = 5.1kg, m̂2 = 9.5kg ; 

 The simulation parameters are chosen respectively, 
! = 20, ! = 120, ! = 0.05.  

 The initial joints position and velocity of robotic 
manipulators are chosen as zero, the network initial weights 
are zero. The width of Gaussian function is 10. The center of 
Gaussian function is randomly selected within the input and 
output range. 
 The simulation results are shown in Figs. (1-5). Fig. (1) 
shows position tracking curves of robotic manipulators joint 
1, Fig. (2) shows position tracking curves of robotic 
manipulators of joint 2; Fig. (3) shows parameters 
uncertainty model and its neural network estimated value; 
Fig. (4) shows control torque curves for joint 1 of robotic 
manipulators; Fig. (5) shows control torque curves for joint 2 
of robot manipulators. 

 
Fig. (1). Position trajectory tracking curves of joint 1. 

 The Fig. (1) shows that the joints have an initial error and 
deviates from the actual path for less than 3s but regulates 
itself quickly to achieve the desired trajectory and is with 
high precision. The Fig. (2) shows that joint 2 is also has 
initial error and in about 2s it rapidly tracks the desired 
trajectory. The torque required for the whole control process 
is not large. It shows not only that the design of adaptive law 
is effective but also the radial basis function neural network 
has good generalization ability and fast learning speed. 
 Figs. (3, 4) show that control torque of robotic 
manipulators joints is not large. As can be seen from the 
Figs. (4, 5), that the neural network controller designed 
based on H∞ robust theory can effectively track the desired 
trajectory in a very short period of time, especially,  
 

 
Fig. (2). Position trajectory tracking curves of joint 2. 

 
Fig. (3). Uncertainty value and its NN estimated value. 

 
Fig. (4). Control input curves of joint 1. 

in the early period of the control process, because the robust 
controller compensates for the comparatively large 
approximation errors of neural network. The controller can 
improve control precision and speed up the error 
convergence velocity more effectively. 
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Fig. (5). Control input curves of joint 2. 

CONCLUSION 

 A neural network robust control algorithm based on 
Lyapunov theory for robotic manipulators was proposed by 
the paper. 
1) An adaptive neural network controller was designed 

to approach and estimate the upper bound of 
uncertainty of robotic manipulators; 

2) The robust controller based on H∞ theory was 
designed to eliminate the approximation errors and 
external interference. 

3) The adaptive laws on-line based on Lyapunov theory 
was designed to ensure online real-time weighted 
adjustment. 

4) The simulation could assure the stability of the whole 
system. L2 gain also must be less than the index ! . 

 Simulation results showed that the proposed control 
strategy could achieve higher control precision and has 
important engineering applications value. 
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