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Abstract: Metal magnetic memory (MMM) signals can reflect stress concentration and cracks on the surface of 
ferromagnetic components, but the traditional criteria used to distinguish the locations of these stress concentrations and 
cracks are not sufficiently accurate. In this study, 22 indices were extracted from the original MMM signals, and the 
diagnosis results of 4 kernel functions of support vector machine (SVM) were compared. Of these 4, the radial basis 
function (RBF) kernel performed the best in the simulations, with a diagnostic accuracy of 94.03%. Using the principles 
of adaptive genetic algorithms (AGA), a combined AGA-SVM diagnosis model was created, resulting in an improvement 
in accuracy to 95.52%, using the same training and test sets as those used in the simulation of SVM with an RBF kernel. 
The results show that AGA-SVM can accurately distinguish stress concentrations and cracks from normal points, enabling 
them to be located more accurately. 
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1. INTRODUCTION 

 Oil and gas pipelines are important channels of energy 
delivery in many countries. However, these pipelines are 
often damaged during transportation or general use that lead 
corrosion or crack defects. Therefore, there are a large 
number of non-destructive testing (NDT) methods such as 
magnetic particle testing (MPT), magnetic flux leakage 
(MFL), eddy current testing (ECT), magneto-acoustic 
emission (MAE), magnetic Barkhausen noise (MBN), and 
metal magnetic memory (MMM) to detect pipeline defects 
[1]. 
 Among these methods, MFL, MBN, and MMM are vital 
magnetic NDT methods. MFL and MBN are active magnetic 
test methods, which require the application of a strong 
artificial field to magnetize the test objects. In MMM, unlike 
MFL and MBN, the geomagnetic field is applied as the 
stimulus source instead of an external magnetic field. 
 Thus, MMM testing is a new highly effective passive 
magnetic flux leakage NDT technique, with low 
requirements in terms of both testing equipment and 
operational complexity, and thereby meeting desirable 
engineering requirements. MMM techniques measure the 
self-magnetic flux leakage (SMFL) signal of a ferromagnetic 
material. These materials generate SMFL signals in their 
stress concentration zones under the combined effect of the 
geomagnetic field and their operational load [2-5]. 
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 MMM techniques can be used to assess stress 
concentration or the location of defects by detecting the 
changes in the surface SMFL signal of a ferromagnetic 
component. This technique is therefore widely used to detect 
areas of stress concentration and different kinds of 
microscopic and macroscopic cracks caused by stress 
concentration. According to experimental studies, two 
primary criteria are used in MMM testing to identify the 
stress concentration and crack locations: the tangential 
component of the SMFL signal, H

p
(x) , which reaches its 

maximum value; and the normal component of the SMFL 
signal, H

p
(y) , which passes through zero and changes its 

polarity [6, 7]. 
 However, it has been reported that these two criteria are 
not sufficient to distinguish between the three statuses of 
pipelines: normal, stress concentration, and cracks [8]. 
Therefore, it is necessary to find an improved method that 
can be used to diagnose defects and areas of stress 
concentration. This paper describes a series of experiments 
in which pipelines with prefabricated cracks were tested 
using MMM. The MMM signals obtained from the 
experiments were analyzed, and a mathematical model based 
on support vector machine (SVM) and adaptive genetic 
algorithm (AGA) was proposed to diagnose the cracks and 
stress concentration points in selected test specimens. 

2. EXPERIMENTAL DETAILS 

 Experimental data were obtained from a series of MMM 
testing experiments using an MFL-4032 magnetic flux 
leakage/magnetic memory detector, which was researched 
and developed by our project team and Xiamen Eddysun 
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Company. The experiments used metal pipe constructed of 
ferromagnetic material with a wall thickness of 2.3 mm. The 
trace metal composition and mechanical properties are listed 
in Tables 1 and 2, respectively. Fifteen samples were 
prepared, each of which was 400 mm long and 50 mm wide. 
Each sample contained five prefabricated cracks of different 
sizes, making a total of 75 cracks to be detected. The cracks 
were numbered in advance according to a predesigned 
ordering scheme. A schematic diagram of a sample is shown 
in Fig. (1). For each sample, the start and end locations were 
marked with a detection line and the cracks were inserted at 
distances of 15, 75, 135, 195, and 255 mm from the starting 
point. 
 The experiments were conducted as follows. 
(1) Prepare the test objects, including processing 

samples, determining the sizes of the cracks, 
prefabricating the crack defects in the samples and 
eliminating the stress in the processed samples. 

(2) Choose test instruments and equipment. For these 
experiments, an RGM-4100 electronic tensile testing 
machine and an MFL-4032 magnetic flux leakage/ 
magnetic memory detector were chosen. 

(3) Compute the loads according to the operational 
conditions of the test objects. 

(4) Stretch the samples one by one with the computed 
loads, test the samples and collect the MMM signals. 

(5) Analyze the signals and extract data for the indices. 

 
Fig. (1). Schematic diagram of sample with prefabricated cracks. 

3. METHODS 

3.1. Indices and Data Set 

 Analysis determined that the 15 samples contained 42 
stress concentration points. In addition to the 75 
prefabricated crack points, 150 normal points were chosen 
randomly for comparison purposes. An accurate diagnosis 
model was established by producing additional indices based 

on the original signals, including 22 indices, such as the peak 
value, peak-to-peak value, and waviness width, thereby 
obtaining a new data matrix with dimensions 267 × 22 . The 
classifications of all the data in the matrix were marked as 0 
(normal points, NPs), 1 (stress concentration points, SCPs), 
or 2 (crack points, CPs). 
 Then, all the samples were randomly divided into 
training and testing sets. The training set contained 75 NPs, 
21 SCPs, and 37 CPs, while the testing set contained 75 NPs, 
21 SCPs, and 38 CPs. 

3.2. Support Vector Machine 

 SVM has been widely applied since its initial 
development by Vapnik et al. [9]. The classical SVM is a 
classification learning algorithm for solving two-category 
problems. It is used for structural health monitoring, damage 
detection, and the classification of different engineering 
structures and machineries [10-12]. The core theory of SVM 
is to build the maximum interval hyperplane (as shown in 
Fig. 2). Given a linearly separable training sample 

 S = ((x1, y1),,(xl , yl )) , the mathematical model is the 
hyperplane (w,b)  that solves the optimization problem 

 

min 1
2
w 2 = 1

2
< w ⋅w >

s.t. yi (< w ⋅xi > +b) ≥1,
i = 1,,l

  (1) 

where w is a weight vector and the training goal of the 
classifier. A calculation enables the hyperplane (w,b)  to be 

found, with a maximum interval of 1
||w ||

. As soon as these 

two quantities are obtained, the SVM classifier is 
determined. It is then possible to classify a new unknown 
sample by inserting it into the classifier, which produces the 
classification as its output. 

3.3. Classification Algorithm 

 SVM can only be used to solve two-category problems, 
so multi-category problems required a new algorithm, which 
was designed using the following steps. 
 Step 1: Establishing classifiers. Use the data with the 
classifications 0 and 1 in the training set to establish 
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Table 1. Trace metal composition of the pipeline steel. 
 

Chemical Comp. C S Mn V Si P Nb Ti 

Content (%) 0.04-0.06 ≤0.010 1.24-1.30 0.015-0.03 ≤0.40 ≤0.020 0.04-0.05 0.006-0.008 

 
Table 2. Mechanical properties of the pipeline steel. 
 

Properties Elastic Modulus (GPa) Tensile Strength (MPa) Compressive Strength (MPa) Yield Strength (MPa) Poisson’s Ratio 

Content 200 520 496 420 0.26 
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classifier 1, those with 0 and 2 to establish classifier 2, and 
those with 1 and 2 to establish classifier 3. 

H1
H

H2

margin=2/||w||

 
Fig. (2). Maximum interval hyperplanes. 

 Step 2: Testing. Insert all the input variable data 
belonging to the testing set into the three classifiers to obtain 
three classifications for every sample. 
 Step 3: Classifying. Of the three classifications that were 
obtained for every sample, select the highest classification to 
be its real classification. For example, a sample found to be 
classified as 1, 2, 2 by the three classifiers would be 
classified as 2, that is to say, the sample would be considered 
to be a crack. 

4. RESULTS AND DISCUSSION 

4.1. Comparison of the Kernel Functions 

 SVM has a number of different kernel functions, 
including linear kernel or dot product (linear), quadratic 
kernel (quadratic), polynomial kernel (polynomial), and 
radial basis function (RBF). A simulation was conducted to 
compare the accuracy of these four functions, with results of 
93.28%, 91.79%, 91.79%, and 94.03% diagnosis accuracy, 
respectively, confirming RBF as the most accurate kernel 
function. Therefore, RBF was selected for more detailed 
attention. 
 Diagnosis results for RBF SVM are mainly determined 
by two factors: a penalty factor (denoted by C), and a 
parameter of the Gaussian kernel function (denoted by σ) 

K(x, y) = e−σ ||x−y||
2

  (2) 

 Different combinations of C and σ may influence the 
accuracy of the diagnosis differently. The effects of C and σ 
on the accuracy of the diagnosis were analyzed, and the 
results are shown in Fig. (3), with C ranging from 10 to 100 
in steps of 10, and σ ranging from 1 to 16. The best result, 
94.03% accuracy, was achieved with C = 100 and σ = 9. 
Table 3 lists the results for all three classifications: NPs, 
SCPs, and CPs. 
 Fig. (3) enables three conclusions to be drawn. First, the 
same value of C can result in a big difference in the 
predicted accuracy. Second, generally speaking, the greater 
the value of σ, the higher the accuracy. Third, a change in the 
value of C does not markedly influence the diagnosis 
accuracy. However, a prediction accuracy higher than 
94.03% may be possible, because there are many 
combinations of C and σ that were not investigated. 
 Table 3 shows that most NPs and CPs can be 
distinguished easily but that it is more difficult to 
differentiate CSPs from NPs. 

4.2. Improvement of SVM Based on AGA 

 Achieving the best possible diagnosis result relies on 
finding the best possible combination of C and σ while the 
training set is being determined. However, as C > 0 and 
σ > 0, there are many possible values of C and σ, so adaptive 
genetic algorithm (AGA) was used to find the best 
combination of C and σ before running SVM. Genetic 
algorithm (GA) has been widely used as a stochastic 
optimization method for solving optimization problems; 
however, AGA is known to outperform GA [13-15]. The 
flow chart of the combined AGA-SVM method is shown in 
Fig. (4). 
 The steps of the AGA-SVM method are as follows. 
 Step 1: Generate a number of initial populations. Every 
individual value is expressed as a genetic code of the 
chromosome, which is translated into a binary number. 
 Step 2: Determine the fitness of every individual value 
using the strategy of roulette. Then, judge whether it 
conforms to the optimization criteria. If sufficient iterations 
have been completed, compare the results of all the 

    

 
Fig. (3). Accuracy for different values of C and σ. 
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generations, output the best individual result and its optimal 
solution, and end. Otherwise, move on to step 3. 

 
Fig. (4). Flow chart of AGA-SVM. 

 Step 3: Generate new populations according to a cross 
probability and a cross method. 
 Step 4: Generate new populations according to a 
variation probability and a variation method. 
 Step 5: Generate a new generation of populations with 
cross and variation, and run SVM to diagnose the 
populations. Return to step 2. 
 The method was programmed in MATLAB. The best 
result obtained was 95.52%, demonstrating the method’s 
superior performance compared with traditional RBF SVM, 
for which the best result was 94.03%. Fig. (5) shows the 
variation in the accuracy of the diagnosis with the number of 
generations using AGA-SVM. It was concluded that the 
results stabilize after the 15th generation, and that the best 
result is reached with the 1st generation. 

 
Fig. (5). Variation in the diagnosis accuracy with the number of 
generations using AGA-SVM. 

 The diagnostic capabilities of SVM and AGA-SVM were 
compared by selecting different training and test samples 
randomly, according to the method described in Section 3.1, 
and by performing 100 simulations. The results of the 
simulations are shown in Fig. (6). For every simulation, the 
accuracy obtained using AGA-SVM was higher than that 
obtained using SVM. Using AGA-SVM, the average and 
maximum accuracy values were improved from 92.71% and 
97.76% to 93.88% and 98.51%, respectively. A paired-
samples T-test was used to compare the diagnoses of SVM 
and AGA-SVM. The results were t = 9.36 and p = 2.66 × 10-

15, which indicates that the diagnosis accuracy of AGA-SVM 
is significantly higher than that of SVM. Based on these 
results, it can be concluded that the diagnostic capability of 
AGA-SVM is superior to that of SVM. 

 
Fig. (6). Comparison of diagnosis accuracy between SVM and 
AGA-SVM. 

CONCLUSION AND FUTURE WORK 

 The SFML signals of MMM are able to provide 
information about the pipeline’s status: normal, stress 
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Table 3. Diagnosis results for RBF SVM (number and percentage). 
 

Classification Judged as NP Judged as CSP Judged as CP The Total Result 

NP 74 (98.67%) 1 (1.33%) 0 (0.00%) 

126(94.03%) CSP 5 (23.81%) 16 (76.19%) 0 (0.00%) 

CP 2 (5.26%) 0 (0.00%) 36 (94.74%) 
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concentration, or crack, but the original signals are not able 
to clearly distinguish between these states. Analysis of the 
signals leads to the identification of selected indices, some of 
which have a high sensitivity. Although it is difficult to 
distinguish cracks from both normal and stress concentration 
points based on any particular index, a combination of 
indices can be used to diagnose the defects effectively. SVM 
is a perfect classifier for solving two-category problems; 
however, as this study has three categories, it was necessary 
to use a multi-category algorithm. Simulations of four kinds 
of kernel functions in SVM established the ability of RBF 
SVM to successfully diagnose pipeline cracks and it was 
further shown that these results could be improved by using 
a combination of SVM and AGA. 
 This paper presented a method for distinguishing cracks 
and stress concentrations from normal points, and proposed 
an effective means of diagnosing stress concentrations and 
cracks based on MMM signals. A new model, AGA-SVM, 
was developed, taking into account more indices extracted 
from the MMM signals, leading to a fast, simple, and 
accurate method of stress concentration and crack diagnosis. 
Simulation results revealed that while SVM is quite effective 
in diagnosing crack defects, AGA-SVM offers improved 
diagnostic ability. 
 AGA-SVM is capable of successfully diagnosing the 
stress concentrations and cracks in pipelines. However, 
because of the principle of AGA, the populations are 
generated randomly, which may cause the accuracy of the 
results to vary across different simulations. This may be 
addressed by using sufficiently large initial population and 
generation sizes, to ensure that the best result is stable, but 
this would prolong the running time. Therefore, obtaining 
diagnoses of an acceptable accuracy within a running time of 
reasonable duration is an important consideration for future 
work. 
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