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Abstract: This paper introduces and analyses the data mining in the management of students' sports grades. We use the 

decision tree in analysis of grades and investigate attribute selection measure including data cleaning. We take sports 

course score of some university for example and produce decision tree using ID3 algorithm which gives the detailed cal-

culation process. Because the original algorithm lacks termination condition, we propose an improved algorithm which 

can help us to find the latency factor which impacts the sports grades. 
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1. INTRODUCTION 

With the rapid development of higher education, sports 
grade analysis as an important guarantee for the scientific 
management constitutes the main part of the sports educa-
tional assessment. The research on application of data min-
ing in management of students' grades wants to talk how to 
get the useful uncovered information from the large amounts 
of data with the data mining and grade management [1-5]. It 
introduces and analyses the data mining in the management 
of students' grades. It uses the decision tree in analysis of 
grades. It describes the function, status and deficiency of the 
management of students' grades. It tells us how to employ 
the decision tree in management of students' grades. It im-
proves the ID3 arithmetic to analyze the students' grades so 
that we could find the latency factor which impacts the 
grades. If we find out the factors, we can offer the decision-
making information to teachers. It also advances the quality 
of teaching [6-10]. The sports grade analysis helps teachers 
to improve the teaching quality and provides decisions for 
school leaders. 

The decision tree-based classification model is widely 
used as its unique advantage. Firstly, the structure of the de-
cision tree method is simple and it generates rules easy to 
understand. Secondly, the high efficiency of the decision tree 
model is more appropriate for the case of a large amount of 
data in the training set. Furthermore the computation of the 
decision tree algorithm is relatively not large. The decision 
tree method usually does not require knowledge of the train-
ing data, and specializes in the treatment of non-numeric 
data. Finally, the decision tree method has high classification 
accuracy, and it is to identify common characteristics of li-
brary objects, and classify them in accordance with the clas-
sification model.  

The original decision tree algorithm uses the top-down 
recursive way [11, 12]. Comparison of property values is  
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done in the internal nodes of the decision tree and according 
to the different property values judge down branches from 
the node. We get conclusion from the decision tree leaf node. 
Therefore, a path from the root to the leaf node corresponds 
to a conjunctive rules, the entire decision tree corresponds to 
a set of disjunctive expressions rules. The decision tree gen-
eration algorithm is divided into two steps [13-15]. The first 
step is the generation of the tree, and at the beginning all the 
data is in the root node, then do the recursive data slice. Tree 
pruning is to remove some of the noise or abnormal data. 
Conditions of decision tree to stop splitting is that a node 
data belongs to the same category and there are not attributes 
used to split the data. 

In the next section, we introduce construction of decision 
tree. In Section 3 we introduce attribute selection measure. In 
Section 4, we do empirical research based on ID3 algorithm 
and propose an improved algorithm. In Section 5 we con-
clude the paper and give some remarks. 

2. CONSTRUCTION OF DECISION TREE USING ID3 

The growing step of the decision tree is shown in Fig. 

(1). Decision tree generation algorithm is described as 

follows. The name of the algorithm is 

_ _Generate decision tree  which produce a decision tree by 

given training data (Fig 1). The input is training samples 

which is represented with discrete values. Candidate attribute 

set is attribute. The output is a decision tree. 

Step 1. Set up node N. If samples is in a same class C 

then return N as lead node and label it with C. 

Step 2. If attribute_list is empty, then return N as leaf 

node and label it with the most common class in the samples. 

Step 3. Choose _test attribute  with information gain in 

the attribute_list, and label N as _test attribute . 

Step 4. While each i
a  in every _test attribute  do the 

following operation. 
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Step 5. Node N produces a branch which meets the 

condition of _
i

test attribute a=  

Step 6. Suppose i
s  is sample set of _

i
test attribute a=  

in the samples. If i
s  is empty, then plus a leaf and label it as 

the most common class. Otherwise plus a node which was 

returned by 

_ _ ( , _ _ )
i

Generate decision tree s attribute list test attribute  

Input training set

Classification algorithm learning

Input test set to verify

 

Fig. (1). Growing step of the decision tree. 

3. AN IMPROVED ALGORITHM 

3.1. Attribute Selection Measure 

Suppose S  is data sample set of s number and class 

label attribute has m  different values ( 1, 2, , )
i
C i m= . 

Suppose 
i
S  is the number of sample of class 

i
C  in S . For 

a given sample classification the demanded expectation 

information is given by formula 1. 

1 2 2

1

( , , , ) log ( 1,2, , , )
m

j j mj ij ij

i

I s s K s p p i K n
=

= =      (1) 

1 2

1 2

1

( )
( ) ( , , , )

V
j j mj

j j mj

j

S S S
E A I S S K S

S=

+ + +
=      (2) 

i
p  is probability that random sample belongs to i

C  and is 

estimated by /
i
s s . Suppose attribute A has V different 

values 1 2( , , , )
V

a a a . We can use attribute A to classify S 

into V number of subset 1 2( , , )
V

S S S . Suppose ijS  is the 

number of class i
C

 in subset jS . The expected information 

of subset is shown in formula 2. 1 2( )j j mjS S S

S

+ + +  is the 

weight of the j-th subset. For a given subset jS  formula 3 

sets up. 

1 2 2

1

( , , , ) log ( 1,2, , , )
m

j j mj ij ij

i

I s s K s p p i K n
=

= =     (3) 

ij

ij

j

s
p

s
=  is the probability that samples of j

s  belongs 

to class i
C . If we branch in A, the information gain is shown 

in formula 4[14]. 

1 2( ) ( , , , ) ( )
m

Gain A I s s s E A=          (4) 

3.2. The Improved Algorithm 

The improved algorithm is as follows. Function 

_ _Generate decision tree  (training samples, candidate 

attribute attribute_list) 

{ Set up node N; 

If samples are in the same class C then 

Return N as leaf node and label it with C; 

Record statistical data meeting the conditions on the leaf 
node; 

If attribute_list is empty then 

Return N as the leaf node and label it as the most 
common class of samples; 

Record statistical data meeting the conditions on the leaf 
node; 

Suppose GainMax=max(Gain1, Gain2, … , Gainn) 

If GainMax< threshold  

Return N as the leaf node and label it as the most 
common class of samples; 

Choose attribute with the highest information gain of 
attribute_list; 

Label N as test_attribute; 

For each i
a  of test_attribute, produce a branch from 

node N meeting the condition of test_attribute= i
a ; 

Suppose i
s  sample set of samples meeting the condition 

of test_attribute= i
a ; 

If i
s  is empty then Record statistical data meeting the 

conditions on the leaf node; 

Add a leaf and label it as the most common class of 

samples; 
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Else add a node returned by _ _Generate decision tree  

( i
s , attribute_list_test_attribute); 

} 

4. EMPIRICAL RESEARCH 

4.1. Data Cleaning 

This paper takes sports course score of some university 
for example. Examination score of the students is shown in 
Table 1. 

Data in Table 1 is not suitable for classification, so we 
firstly do data cleaning. According to the general course, 
basic course, professional basic course and specialized 
course, classify the course into A, B, C, D. Score is divided 
into three categories outstanding, medium, general. Paper 
difficulty is is divided into three categories 1, 2, 3. Such as  

Update ks set ci_pi=’outstanding’ where ci_pj>=’85’ 

Update ks set ci_pi=’ medium’ where ci_pj>=’75’and 
ci_pj<’85’ 

Update ks set ci_pi=’general’ where ci_pj>=’60’and 
ci_pj<’75’  

Update ks set sjnd=’high’ where sjnd=’1’ 

Update ks set sjnd=’ medium’ where sjnd=’2’ 

Update ks set sjnd=’low’ where sjnd=’3’ 

4.2. Result of ID3 Algorithm  

Table 2 is training set of student test scores situation 

information after data cleaning. We classify the samples into 

three categories. 1 "outstanding"C = , 2
"medium"C = , 

3 "general"C = , 
1
300,s =

2
1950s = ,

3
880s = , 3130s = . Ac-

cording to formula 1,we obtain 
1 2 3( , , ) (300,1950,880)I s s s =  

(300 / 3130)=
2/ log (300 / 3130)  

2 2(1950 / 3130) log (1950 / 3130) (880 / 3130) log (880 / 3130)

1.256003= . 

Entropy of every attribute is calculated as follows. Firstly 

calculate whether re-learning. For yes, 11
210s = , 

21
950s = , 

31
580s = .  

11 21 31( , , ) (210,950,580)I s s s =  

2 2

2

(210 /1740) log (210 /1740) (950 /1740) log (950 /1740)

(580 /1740) log (580 /1740) 1.074901

=

=

 

For no, 
12

90s = , 
22

1000s = , 
32

300s = . 

12 22 32( , , ) (90,1000,300)I s s s =

2 2

2

(90 /1390) log (90 /1390) (1000 /1390) log (1000 /1390)

(300 /1390) log (300 /1390) 1.373186.

=

=

 

IF samples are classified according to whether re-

learning, the expected information is  

11(" - ") (1740 / 3130) (E whether re learning I s= 21 31, , )s s
 

12 22 32(1390 / 3130) ( , , )I s s s+

 

0.555911 1.074901 0.444089 1.373186 1.240721= + = .  

So the information gain is  

1 2 3(" - ") ( , , )

(" - ") 0.015282

Gain whether re learning I s s s

E whether re learning

=

=

. 

Secondly calculate course type, when it is A, 

11 21 31
110, 200, 580s s s= = = . 

11 21 31

2

2 2

( , , ) (110,200,580)

(110 / 890) log (110 / 890)

(200 / 890) log (200 / 890) (580 / 890) log (580 / 890)

I s s s =

=
 

1.259382= . 

For course type B, 
12 22 32

100, 400, 0s s s= = = . 

12 22 32

2

2

( , , ) (100,400,0)

(100 / 500) log (100 / 500)

(400 / 500) log (400 / 500) 0

I s s s =

=
 

0.721928= . 

For course type C, 
13 23 33

0, 550, 0s s s= = = . 

13 23 33

2

2

( , , ) (0,550,0)

(0 / 550) log (0 / 550)

(550 / 500) log (550 / 500) 0

I s s s =

=
 

1.168009= . 

Table 1. Examination score of the students. 

Course Code Whether Re-Learning Paper Difficulty Whether Required Course Score 

110101290 no high yes 89 

H200104088 no middle yes 75 

H2001 16090 yes middle no 80 

H120101160 yes high yes 65 

120101288 yes middle yes 70 

H200152069 no low no 90 
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For course type D, 
14 24 34

90, 800, 300s s s= = = . 

14 24 34

2

2 2

( , , ) (90,800,300)

(90 /1190) log (90 /1190)

(800 /1190) log (800 /1190) (300 /1190) log (300 /1190)

I s s s =

=

1.168009= . 

11 21 31

12 22 32

(" ") (890 / 3130) ( , , )

(500 / 3130) ( , , )

E course type I s s s

I s s s

=

+

 

13 23 33

14 24 34

(550 / 3130) ( , , )

(1190 / 3130) ( , , )

0.91749.

I s s s

I s s s

+

+

=

 

(" ") 1.256003 0.91749 0.338513Gain course type = = . 

Thirdly calculate paper difficulty. For high, 

11 21 31
110, 900, 280s s s= = = . 

11 21 31

2

2 2

( , , ) (110,900,280)

(110 /1290) log (110 /1290)

(900 /1290) log (900 /1290) (280 /1290) log (280 /1290)

I s s s =

=

1.14385= . 

For medium, 
12 22 32

190, 700, 300s s s= = = . 

12 22 32

2

2 2

( , , ) (190,700,300)

(190 /1190) log (190 /1190)

(700 /1190) log (700 /1190) (300 /1190) log (300 /1190)

I s s s =

=

1.374086= . 

For low, 
13 23 33

0, 350, 300s s s= = = . 

13 23 33

2 2

2

( , , ) (0,350,300)

(0 / 650) log (0 / 650) (350 / 650) log (350 / 650)

(300 / 650) log (300 / 650) 0.995727.

I s s s =

=

=

 

11 21 31

12 22 32

(" ") (1290 / 3130) ( , , )

(1190 / 3130) ( , , )

E paper difficulty I s s s

I s s s

=

+

13 23 33(650 / 3130) ( , , ) 1.200512.I s s s+ =  

(" ")

1.256003 1.200512 0.55497.

Gain paper difficulty =

=

 

Fourthly calculate whether required course. For yes, 

11 21 31
210, 850, 600s s s= = =  

11 21 31

2

2 2

( , , ) (210,850,600)

(210 /1660) log (210 /1660)

(850 /1660) log (850 /1660) (600 /1660) log (600 /1660)

I s s s =

=

1.220681.=  

For no, 
12 22 32

90, 1100, 280s s s= = =  

12 22 32

2

2 2

( , , ) (90,1100,280)

(90 /1470) log (90 /1470)

(1100 /1470) log (1100 /1470) (280 /1470) log (280 /1470)

I s s s =

=

1.015442.=  

11 21 31

12 22 32

(" ") (1660 / 3130) ( , , )

(1470 / 3130) ( , , )

1.220681.

E whether required I s s s

I s s s

=

+

=

 

(" ")

1.256003 1.220681 0.035322.

Gain whether required =

=

 

4.3. Result of Improved Algorithm 

The original algorithm lacks termination condition. There 
are only two records for a sub-tree to be classified which is 
shown in Table 3. 

All Gains calculated are 0.00, and GainMax=0.00 which 
does not conform to recursive termination condition of the 

Table 2. Training set of student test scores. 

Course Type Whether Re-Learning Paper Difficulty Whether Required Score Statistical Data 

D no medium no outstanding 90 

B yes medium yes outstanding 100 

A yes high yes medium 200 

D no low no medium 350 

C yes medium yes general 300 

A yes high no medium 250 

B no high no medium 300 

A yes high yes outstanding 110 

D yes medium yes medium 500 

D no low yes general 300 

A yes high no general 280 

B no high yes medium 150 

C no medium no medium 200 

RETRACTED A
RTIC

LE



Application Research of Decision Tree Algorithm in Sports Grade Analysis The Open Mechanical Engineering Journal, 2015, Volume 9      1101 

original algorithm in Table 3. The tree obtained is not 
reasonable, so we adopt the improved algorithm and decision 
tree using improved algorithm is shown in Fig. (2).  

CONCLUSION 

In this paper we study construction of decision tree and 
attribute selection measure. Because the original algorithm 
lacks termination condition, we propose an improved algo-
rithm. We take course score of some university for example 
and we could find the latency factor which impacts the 
grades. 
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