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Abstract: Static stiffness is an important indicator of the performance of a rolling guide, having direct influence on the 
stiffness and precision of computer numerically controlled (CNC) machine tools. After preloading the rolling guide, an 
outward elastic deformation is generated at the carriage skirt, which leads to a decrease in the static stiffness of the rolling 
guide. Therefore, there would be relatively large errors between the numerical results and the experimental results when 
the carriage is considered as a rigid body. In this paper, an analytical method for estimating the vertical stiffness of rolling 
guide was proposed, which took into account the elastic deformation in the carriage skirt. The contact elastic deformation 
model under loads was given using Hertz’s contact theory, from which the numerical results for the vertical stiffness of 
the surface of the rolling guide was calculated when the elastic deformation in the carriage skirt was ignored. The 
calculation method for the carriage skirt deformation was given using the finite element method, from which the 
numerical relationship between the deformation and the contact force was obtained after fitting adjustment. An analytical 
model was therefore established and took into account the elastic contact deformation and the carriage skirt deformation, 
and a universal calculation method was proposed for vertical stiffness. Experimental results show that compared to those 
not involving the deformation, the numerical results for vertical stiffness involving the carriage skirt deformation matched 
more closely with the experimental results, with relative errors no greater than 6.5%. 
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1. INTRODUCTION 

 With the wide application of roller guides in all kinds of 
high-speed and high precision equipment, the static stiffness 
of roller guide has received more attention than ever in the 
academic world. Researchers around the world have 
conducted a series of studies on the accurate measurement of 
the static stiffness of roller guide since the 1990s. 
 Sun et al. [1,2] were the first to calculate the static 
stiffness of a vertically preloaded linear rolling guide using 
Hertz's contact theory. Shimizu [3] also analyzed the static 
stiffness of the linear rolling guide system. These studies 
were all conducted under the assumption that both the 
carriage and groove were rigid bodies, and only the elastic 
contact between the groove and rolling ball was taken into 
account, while the influence of carriage or guide deformation 
on vertical stiffness was ignored, resulting in a much smaller 
measured stiffness than the calculated stiffness. Therefore, 
scholars have turned to study the carriage skirt deformation, 
considering it an important factor in reducing the vertical 
static stiffness. 
 The configuration of a carriage is usually irregular, and it 
is difficult to assess its skirt deformation by calculation or 
direct measurement, which makes it difficult to calculate the 
corresponding vertical stiffness. Liu et al. [4] simplified the 
carriage into approximation mechanical models of two linear 
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angular springs, and calculated the rotational elasticity 
coefficient of those two angular springs using the finite 
element software, which eventually derived the stiffness of 
the carriage. Chen et al. [5] built a rolling guide vertical 
stiffness model that took into account the carriage skirt 
deformation based on the Hertz’s contact theory and the 
elastic beam theory. In order to overcome the problems of 
the traditional rigid model, Ohta [6] built a flexible model 
that incorporates the flexibility of the carriage and the groove, 
and calculated the carriage and the groove flexible 
deformations using finite element analysis, which resulted in 
relative errors of 9 to 21% between the calculated stiffness 
and the measured stiffness. 
 Since the sizes of applied force vary, the contact area and 
direction of the contact force between the rolling ball and 
groove is not fixed. Therefore, iterative calculation was used 
based on the Hertz’s theory and the finite element method 
[6]. However, when the number of iterations is very large, 
the calculation process is very complex since the boundary 
condition needs to be modified at each iteration, and that it is 
difficult to select the initial value. 
 Therefore, in this paper, a convenient and accurate 
calculation method for the vertical stiffness of a rolling guide 
was proposed. A force model for the carriage was built in the 
finite element software that calculated the deformations of 
the carriage under different preload stresses, fitting the 
preload stress with deformation. Also, a mathematical model 
between the rolling ball and rolling groove was built based 
on a combination of the Hertz’s contact theory and the fitting 
equation. In addition, experiments were conducted on the 
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vertical stiffness of the rolling guide, which verified the 
accuracy of the model built. Furthermore, the variation of 
deformation was analyzed after comparing the changes in 
carriage skirt deformation with the changes in preload 
stresses. 

2. THE CONTACT MODEL UNDER ELASTIC 
DEFORMATION 

2.1. The Distance Between Groove Curvature Centers 

 The distance between the curvature center at carriage 
groove and center at guide groove is the key to solving the 
contact force and contact angle in the contact theory. When 
an external force FV is applied, the changes of distance 
between groove curvature centers, contact force and contact 
angle are shown in Fig. (1). d0 is defined as the diameter of 
the rolling ball, α0 is the initial contact angle between the 
rolling ball and the groove, Oci and Ori refer to the ith 
curvature center of the carriage groove and guide groove, 
respectively. rc and rr refer to the curvature radius of the 
carriage groove and the guide groove, respectively. The 
theoretical distance s0 between Oci and Ori is: 

s0 = rr + rc ! d0   (1) 

 In order to increase the stiffness of the rolling guide and 
eliminate the gap, internal load is needed to apply to the 
rotating body in advance, which is called preload. Preloaded 
guide is usually needed for occasions that need high 
stiffness, high precision, and large loads. Interference fit is 
generated between preloaded rolling ball and the groove, 
which is defined as ! 0 : 

! 0 = d " d0   (2) 

 In which d refers to the diameter of the preloaded rolling 
ball. When Equation (2) is substituted into Equation (1): 

s0 = rr + rc ! d0 +" 0 = m0 +" 0   (3) 

 In which m0 = rr + rc ! d . The contact force generated at 
the ith groove and the jth rolling ball on the groove is marked 
as Qij, and the Hertz contact deformation generated between 
the jth rolling ball at the ith groove and the carriage groove is 
marked as δcij, and the Hertz contact deformation generated 
between this rolling ball and the guide groove is marked as 
δrij. 

 The carriage skirt has a tendency to expand outwardly 
under the vertical force; therefore not only Hertz contact 
deformation would be generated at the carriage groove, but 
also the elastic deformation would be generated under the 
contact force. The deformation at the y direction of the ith 
carriage groove is marked as yci, and that at the z direction is 
marked as zci. When an external force FV is applied as shown 
in Fig. (2), the curvature center of the carriage groove would 
change, which is marked as O’ci. ! i is the contact angle 
between the rolling ball and the ith groove. Si is defined as 
the distance between the changed curvature center O’ci and 
Ori. According to Fig. (2). 

 
si = s0 cos! 0 " yci( )2 + s0 sin! 0 + zci ! v( )2   (4) 

where v refers to the deflection of the carriage in the 
direction of load. The plus and minus marks are relevant to 
the positions of the groove – the plus mark represents the 
upper groove, and the minus mark represents the bottom 
groove. The contact angle ! i  can be obtained from Equation 

 
Fig. (1). Illustration of the forces applied to the guide rail. 
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(5) as follows: 

cos! i =
s0 cos! 0 " yci

si
  (5) 

 
Fig. (2). Change in the position of the curvature center under a 
loaded state. 

2.2. Deformation Under the Hertz Contact 

 There are several presumptions when using Hertz’s 
contact theory to conduct the calculation: (1) the deformation 
generated at the contact area can be ignored compared to the 
radius of the rolling ball; (2) the influence of the 
manufacturing error and roughness of the groove and rolling 
ball on the load distribution of the contact force could be 
ignored; (3) the change in contact angle resulted from the 
deformation generated in the contact area can be ignored. 
The Hertz deformation δij is composed of the deformation δcij 
generated from the carriage groove and rolling ball, and the 
deformation δrij generated from the guide groove and rolling 
ball, as shown in Equation (6): 

! ij = ! cij +! rij = si "m0   (6) 

 According to the Hertz’s theory, the deformation δ 
generated at the point contact between the rolling ball and 
the groove is: 
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where Q refers to the normal pressure applied on the rolling 
ball, and E1 and v1 refer to the elastic modulus of the rolling 
ball material and the Poisson's ratio. E2 and v2 refer to the 
elastic modulus of the groove material and the Poisson’s 
ratio. The values of K and µ are relevant to the auxiliary 
angle cosτ, and Σρ refers to the sum of the principal 
curvatures of the point contact. Equation (7) could be 
simplified as follows: 

! = C "Q2/3   (8) 

 C is called the elastic deformation coefficient between 
the rolling ball and the groove. 
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 For the rolling guide, the four principal curvatures of the 
point contact between the rolling ball and the groove are: 

!11 = !12 =
2
d0

, !21 = " 1
fd0

, !22 = 0  

where f refers to the curvature ratio, the ratio of the groove 
curvature radius and the diameter of the rolling ball, from 
which the value of !" = "11 + "12 + "21 + "22  could be 
obtained. 
 In Equation (7), the values of K and µ are relevant to 
cosτ, and in terms of the contact between the rolling ball and 
the groove, there is an equation as follows: 

cos! =
"11 # "12 + "21 # "22

$"
 

 If the value of cosτ is known, the values of K and µ could 
be referenced from a corresponding table. 
 Since the material property of the carriage and the guide 
is the same, so is that of the groove configuration. It is 
considered that Cc=Cr. When Equations (6) and (8) are 
combined: 

Qij =
si !m0

2C
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#$

%
&'
2/3

  (9) 

2.3. The Force Balance Equation of the Slide 

 Balanced forces were applied to the slide in the vertical 
direction, which could be expressed in the balance equation: 

{
j=1

n

! Q1 j sin"1 j +Q2 j sin" 2 j

#Q3 j sin" 3 j #Q4 j sin" 4 j} = FV

 (10) 

where n refers to the number of rolling balls in one groove. 
For a guide receiving equal loads from four directions, the 
configuration is symmetric to the y-axis. Therefore: 
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Q1 j =Q2 j , Q3 j =Q4 j   (11) 

 When Equation (11) was substituted into Equation (10): 

2 Q1 j sin!1 j "Q3 j sin! 3 j{ }
j=1

n

# = FV  

 Thus, the static stiffness of the rolling guide surface 
could be expressed as: 

KV = dFV
dv

= d
dv
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 At this time Equations (4), (5), (9), and (12) could 
combine and form underdetermined nonlinear equations that 
included 7 equations and 11 unknown variables, which 
means that the number of unknowns in the model is larger 
than the number of equations, and that the equations are 
unsolvable. Therefore, the finite element analysis was 
needed and combined with the fitting method to solve the 
remaining 4 equations. 

3. THE CALCULATION METHOD FOR STIFFNESS 
THAT COMBINED THE FINITE ELEMENT 
METHOD 

3.1. The Finite Element Model of the Carriage 

 Accurate measurements of the deformation are required 
to learn the relationship between the carriage skirt 
deformation and the contact force. In this paper, the finite 
element method implemented in the ABAQUS software was 
utilized to calculate the deformation of carriage skirt. 
 Since the deformation only occurs at the y-z and the 
carriages are symmetric in the y-axis, we were only required 
to build an axisymmetric model of the cross sections of the 
carriages, which is shown in Fig. (3). 
 During the finite element analysis, if a concentrated load 
is applied to a point, the local stress would be too large and 
leads to convergence difficulties. Therefore, there is a need 
to establish the functional region of the contact force based 
on actual conditions. According to the Hertz’s theory, the 
area of the point contact is elliptical, and the force of the 
model can be expressed as: 

qic =
1

aicL1
Qij

j=1

n

!   (13) 

where L refers to the length of the carriage, aic refers to the 
major semi-axis of the contact ellipse that can be calculated 
through known parameters: 

aic =
6N(1!" 2 )
#r2E$%

Qij3   (14) 

 If there is no restriction to the model under external 
forces, the analysis would be invalid. Since the model is 
axisymmetric in configuration, boundary conditions must 
be applied to the symmetric boundary. Meanwhile, a 
small portion of the central region on the surface of the 
carriage is restricted to six degrees of freedom, as shown 
in Fig. (3). 

3.2. The Calculation Method for Stiffness 

 In this method, the non-linear equations were solved 
using the Levenberg-Marquardt method, which is a 
modification of the Gauss-Newton technique, and it is more 
efficient in solving non-linear equations than the Gauss-
Newton technique. 

 
Fig. (3). The finite model of the cross section of the carriage. 

 The calculation process is as follows: 
(1) Known variables: the curvature radius of the guide 

groove and carriage groove rc and rr, the diameter of 
the rolling ball d0, the deflection δ0 of the rolling ball, 
the initial contact angle α0 between the rolling ball 
and groove, the number of rolling ball n that is under 
the force in one groove, the Young's modulus E, the 
density ρ of the material of the groove, and the 
Poisson's ratio v, etc. Variables to be computed: the 
numerical distance between curvature center at 
carriage groove and center at guide groove s0; the 
actual distance m0; and the elastic coefficient C for 
the relative deformation and contact force. 

(2) A vertical force FV was given. 
(3) The contact angle and contact force (without 

considering the deformation of the carriage skirt) was 
calculated using Hertz’s theory. The non-linear 
equations were solved using the Levenberg-
Marquardt technique. At this time, the equations were 
given, from which the major axis of contact ellipse as 
well as the force of the contact area could be obtained 
that would be used as the boundary condition and 
initial load for finite element analysis. 

(4) The functional area of the contact force and boundary 
conditions were set in the finite element software, and 
that the deformation yci and zci at all directions of the 
carriage groove could be obtained using static 
analysis under the load. 

(5) The deformation values were substituted back to 
Equation (4), and the contact angle cosαi and contact 
force Qij under this deformation were calculated using 
Hertz’s theory. Steps (3) to (5) were repeated until at 
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least three sets of values of the deformation and 
contact force were obtained. 

(6) Polynomial interpolation fitting was used to obtain 4 
equations for the deformation and contact force at all 
directions, i.e., (yc1, yc3, zc1, zc3)=f (Q1j). 

(7) The 4 deformation equations obtained through the 
Equations (4), (5), (9), and (12), and step (6) were 
solved using the Levenberg-Marquardt method, from 
which the vertical deformation under the specific 
vertical force was obtained. 

(8) Different vertical forces were selected when step 2 to 
step 7 were repeated, from which the relation between 
vertical deformation and the force of the groove was 
obtained. 

(9) Based on the vertical deflection-force relation 
obtained in step 8, the vertical static stiffness was 
calculated using least squares method. 

4. METHODOLOGY AND RESULTS 

4.1. Experimental Setup for the Guide 

 In this work, a kind of guide rail with equal loads from 
four directions was used that was of relatively high stiffness 
and good performance, which was mostly used in all kinds 
of industrial machines and machine tools. This guide was 
made up of groove, carriage, block, rolling balls, and a cover 
plate. The rolling ball rolls on the 4 rolls made of the groove 
and carriage. Each roll of ball was in circular motions using 
the block and the cover plate. There are three levels of 
preloads for the guide rail, which are zero preload, light 
preload, and medium preload. Table 1 shows different kinds 
of parameters for the rail. 
Table 1. Parameters for the guide rail. 
 

Elastic modulus E (Gpa) 206 

Poisson’s ratio v 0.3 

Diameter of the rolling ball (mm) 7.938 

Density of the material !  (kg/m3) 7800 

The number of rolling balls in each groove 36 

Initial contact angle ! 0 (deg) 45 

Length of the carriage L (mm) 131 

Width of the carriage (mm) 100 

Number of grooves 4 

The number of rolling balls n under loads in each groove 15 

Deflection of the rolling balls (µm) 
4.4 (light preload) 

7 (medium preload) 

4.2. Measurement of the Vertical Stiffness 

 Fig. (4) shows the experimental apparatus used for 
measuring the vertical stiffness. Gantry side and top frames 
were fixed on the base using bolts. A set of linear rolling 
guide was fixed on the base using bolts, and corresponding 
carriages were fixed on the carriage. The load bolt and 

pressure sensor were set between the gantry top and the 
carriage. The displacement sensor for eddy current was fixed 
on the base using a magnetic stand, and its electric probe was 
in contact with the top surface of the carriage. The gantry 
framework applied vertical loads to the carriage using the 
load bolt. The displacement sensor was used to measure the 
deformation deflection of the carriage. If the deflection were 
measured directly, errors would occur as a result of the 
carriage skirt’s outward expansion, making the experimental 
results larger. 
 During the loading process, the main body of the sensor 
was fixed using a torque wrench, and the bolt at the end of 
the sensor was rotated in one direction using another wrench, 
realizing the loading on the carriage in an easy and 
convenient way. The loading force ranges from 0 to 5 KN, 
and values were recorded using the sensor at every 1 KN 
loaded, and averaged. Then, the relation between the load 
and the deformation deflection was obtained. 

 
Fig. (4). Illustration of the experimental setup. 

4.3. Experimental Results 

 In Fig. (5), the solid lines represent the measured results 
for stiffness, whereas the dotted lines represent the numerical 
results for stiffness obtained without considering the elastic 
deformation of the carriage skirt. As shown in Fig. (5), the 
load and the vertical deflection generally reach a linear 
relationship within the loading range, and the vertical 
stiffness under medium preload is larger than that under light 
preload. Under the same load, the measured vertical 
deflection values are larger than the numerical values, which 
did not consider the deformation. 
Table 2. Comparison between the experimental and 

numerical results (not considering the deformation). 
 

Levels of Preload Light 
Preload 

Medium 
Preload 

Experimental results (N/µm ) 662.5 856.6 

Numerical results for stiffness when skirt 
deformation was considered (N/µm ) 849.6 1110.0 

Relative errors (%) 28.2 29.6 

 Table 2 shows the comparison of stiffness between the 
experimental and numerical results, and the measured values 
are 20% less. The relative errors between the numerical and 
experimental values almost reach 30%. 
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5. THEORETICAL CALCULATION AND EXPERI- 
MENTAL RESULTS 

5.1. Comparison Between Vertical Stiffness Results 

 In Fig. (5), the numerical results for stiffness when the 
elastic deformation of the carriage skirt was considered, were 
shown in dash lines. As shown in Table 3, the numerical 
results for stiffness were closer to the experimental results 
when the elastic deformation of the carriage skirt was 
considered, with relative errors less than 6.5%. 
Table 3. Comparison between experimental and numerical 

results (skirt deformation considered). 
 

Levels of Preload Light Preload Medium Preload 

Experimental results (N/µm ) 662.5 856.6 

Numerical results for stiffness 
when skirt deformation was 

considered (N/µm ) 
679.9 912.4 

Relative errors (%) 2.6 6.5 

 

(a) Light preload 

 
(b) Medium preload 

 
Fig. (5). Comparison between vertical stiffness values. 

 

5.2. Carriage Skirt Deformation 

 Fig. (6) shows the carriage deformation under 1 KN and 
3 KN preload. Under either a preload or a vertical load, the 
carriage deformed outward, and the deformations were 
smaller at the top, with increased tendency toward the 
bottom of the carriage. In order to make clear comparison 
between the deformations under different preloads and to 
further understand the rules of deformation, the relationship 
between point contact deformation and the applied load was 
computed when the load was raised from 0 to 5 KN, as 
shown in Fig. (7). 

(a) Light preload 1 KN      (b) Light preload 3 KN 

 
(c) Medium preload 1 KN      (d) Medium preload 3 KN 

 
Fig. (6). Clouds of deformation of the carriage. 

 The numerical results for deflection show that yc1, yc3, zc1, 
and zc3 increased when the preload was raised, and exhibited 
almost linear relationship with the vertical load. The point 
contact deformation was smaller under low preload compared to 
that under medium preload. Under the same load, yc3 had the 
largest deformation at the bottom groove, which decreased with 
increased load. The other three variables (yc1, zc1, and zc3) all 
increased with an increased load. yc1 and zc1 exhibited small 
variations when the load changed, and the curve becomes more 
linear. On the other hand, yc3 and zc3 exhibited greater variations 
with an increased load. Therefore, skirt deformation is a result 
of the combined effect of preload and vertical load, both of 
which should be considered in such studies in order to calculate 
more accurate results for static stiffness. 

CONCLUSION 

(1) In this paper, a theoretical model for vertical stiffness 
was established taking into account the deformation 
of carriage skirt, and the corresponding calculation 
method was reported; 

(2) The numerical results of stiffness that took into 
account the skirt deformation, were closer to the 
measured values compared to those that ignored the 
deformation, with relative errors no larger than 6.5%; 
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(a) Light preload 

 
(b) Medium preload 

 
Fig. (7). Illustration of the relation between groove deformation and 
load. 

(3) Under the preload and vertical load of the carriage, 
the skirt exhibited a tendency to deform outwardly, 
which increased from the top to the bottom. 
Therefore, only when the influence of both the 
preload and the vertical load on deformation is 
considered, can the static stiffness be estimated more 
accurately. 
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