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Abstract: A theoretical algorithm by united Lagrangian-Eulerian method for the problem in dealing with viscous fluid 
and a circular cylindrical shell is presented. In this approach, each material is described in its preferred reference frame. 
Fluid flows are given in Eulerian coordinates whereas the elastic circular cylindrical shell is treated in a Lagrangian 
framework. The fluid velocity in a two-dimensional uniform elastic circular cylindrical shell filled with viscous fluid is 
studied under the assumption of low Reynolds number. The coupling between the viscous fluid and the elastic circular 
cylindrical shell shows kinematic conditions at the shell surface. Also, the radial velocity and axial velocity of the fluid 
are discussed with the help of graphs. 
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1. INTRODUCTION 

 This paper deals with the mathematical analysis of 
problem for viscous fluid and a circular cylindrical shell by a 
new theoretical method. These phenomena are of major 
importance for aerospace, ocean engineering, mechanical or 
biomedical applications, etc. and thus have been studied by 
many authors over the past few years [1-4]. The situation has 
mainly been analysed by numerical methods [5, 6]. Our 
focus is the velocity of the fluid when the elastic circular 
cylindrical shell filled with viscous fluid vibrates. 
 Typically, the viscous fluid and a circular cylindrical 
shell are given in different coordinate systems making a 
common solution. Fluid flows are given in Eulerian 
coordinates whereas the circular cylindrical shell is treated in 
a Lagrangian framework. United Lagrangian-Eulerian 
method is used to present the flow velocity of a viscous and 
incompressible fluid in a circular cylindrical shell. It is a new 
method of where fluid and circular cylindrical shell 
equations are given in their preferred reference frames. 
Coupling between the fluid and the circular cylindrical shell 
domains represents kinematic conditions at the shell surface. 
The two-dimensional problem is that of an elastic circular 
cylindrical shell in which waves of lateral displacement are 
propagated. 

2. BASIC EQUATIONS FOR VISCOUS FLUID 

 In this study, the analysis of the fluid velocity of an 
incompressible viscous fluid in a complete circular 
cylindrical shell of radius R is conducted. The shell is 
horizontal. In order to describe the geometry of the shell, a  
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cylindrical coordinates system (O;r,! ,z)  is considered, 
where O  is the origin placed at the centre of the shell, r  is 
the radial and z  is the axial coordinate. The displacement 
field of the middle surface of the shell is given by the 
following components: ur , u!  and uz ; in the radial, 
circumferential and axial directions, respectively. 

 In cylindrical coordinates system, the Navier-Stokes 
equations of incompressible viscous fluid can be expressed 
as 
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where µ  is the coefficient of viscosity, !  is the mass 
density of the fluid, p  is the pressure, vr , v! and vz  are the 
projections of the velocity vector, Fr , F!  and Fz  are the 
projections of the unit mass force vector, t  is time. In 
equations (1), the operators are defined as 
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 The Navier-Stokes equations of incompressible viscous 
fluid are almost equal to the Stokes equations under the 
assumption of low Reynolds number. The Stokes equations 
can be written as 
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 The continuity equation for the viscous fluid can be 
described as 

1
r
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3. UNITED LAGRANGIAN-EULERIAN METHOD 

 The fixed point m  on the shell surface coincides with the 
space point M at t = 0  whereas m  coincides with the space 
point M !  at t > 0 . Adhesion condition for viscous fluid can 
be simplified as [7] 

V = !u
!t

  (4) 

where u is the displacement vector of the fixed point m , V  
is velocity vector of space point M ! . 
 Dynamic condition is 

Z = p3 ! p3
'   (5) 

where p3  and p3
'  are the pressures in different directions at 

the space point M ! , Z  is the force vector. In the cylindrical 
coordinate, Vm  can be expressed as 

Vm = vm + ur
!vm
!r

+ u"
!v"
r!"

+ uz
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where Vm (m = r,! ,z)  are the projections of the velocity at 

the space point M ! . vm  (m = r,! ,z)  are the projections of 
the velocity at the space point M . Taking into account the 
minor deformation of the shell, the third item of Taylor 
expansions will not be considered. 
 Expression (4) can be written as 
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where Vr , V!  and Vz  can be obtained from equation (6). 

4. VELOCITY OF FLUID 

 In order to simplify the analysis,  only an infinite length 
circular cylindrical shell was considered. The waving surface 
of the circular cylindrical shell is is represented by: 

ur = bsin !z "#t( ) , uz = 0   (8) 

where ! = 2" / # , ! = c" , b  is the amplitude of the 
traveling wave, !  is the wavelength, c  is the velocity of the 
wave. 

 Considering the Reynolds number Re <<1, the Stokes 
equations in two dimensions can be written as 
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 The continuity equation of the incompressible viscous 
fluid can be described as 
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 The stream function !  satisfies the conditions 
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 The kinematic conditions can be written as 
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 Thus the following expressions for !  can be written 
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 Making use of equations (9), (10) and (11), expression 
for stream function !  can be written as 
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 The solution of the equation (13) is 
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where I0 n!r( ) , I1 n!r( )  are the Bessel functions of the 
first kind [8]. 

 The solutions of the Bessel equation x2y" + xy' +  

x2 ! v2( )y = 0  v ! 0( )  is v  order Bessel function. A special 
solution of Bessel function can be written as 
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 This is v  order Bessel function of the first kind. We get 
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 Substituting the equations (8) and (14) into (12), the 
following expressions can be written as 
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 Because of z  arbitrary, the following expressions can be 
written 
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 The solutions of the set of equations (15)-(18) are 
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 The following expressions for vr  and vz  can be written 
as 
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5. NUMERICAL RESULTS AND DISCUSSIONS 

 In this section, numerical examples are presented. The 
test circular cylindrical shell and fluid flow have the 
following characteristics: c = 8.5 m/s, ! = 6" rad/s, 
R = 0.005m. The results are shown in Figs. (1-6). 

 Figs. (1-3) illustrate the fluid velocity Vz from united 
Lagrangian-Eulerian method. Fig. (3) displays the variation 
of Vz  for several sets of values of the parameters 
! , c, R, r and z (see also Table 1). Moreover, Fig. (3) shows 
that fluid velocity Vz  increases with an increase in 
! , R and r . However, it decreases with an increase in c. 

 Figs. (4-6) illustrate the fluid velocity Vr . Fig. (6) shows 
that the fluid velocity Vr  and Vz  have the same rules (see 
also Table 1). However, the positive and negative values of 
fluid velocity Vr  are asymmetrical. 

 
Fig. (1). Fluid velocity Vz  at z = 0m. 

 
Fig. (2). Fluid velocity Vz  at r = 0.9R.  

 
Fig. (3). Fluid velocity Vz .  

 
Fig. (4). Fluid velocity Vr  at z = 0m. 
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Fig. (5). Fluid Velocity Vr  at r = 0.9R.  

 
Fig. (6). Fluid Velocity Vr .  

 It is seen that a stagnation point exists where V = 0   and 
the point r = 0  in the circular cylindrical shell. A maximum 
velocity would exist near the surface of the circular 
cylindrical shell and the fluid. The fluid velocity is 
independent of the coefficient of viscosity. This result 
qualitatively agrees with the conclusions of the reference [9]. 
 
 

Table 1. Sets of parametric values for Figs. (3, 6). 
 

 ω  
(rad/s) c (m/s) R (m) r (m) z (m) 

I 6π 8.5 0.005 0.0045 0 

II 8π 8.5 0.005 0.0045 0 

III 6π 20 0.005 0.0045 0 

IV 6π 8.5 0.007 0.0045 0 

V 6π 8.5 0.005 0.0025 0 

VI 6π 8.5 0.005 0.0045 0.5 
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