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Abstract: Extended finite element method (XFEM) is the most effective numerical method to solve discrete mechanical 
problem. Crack growth problem of two-dimension finite length rectangle panel is researched based on Abaqus XFEM 
frame. Stress intensity factor is obtained respectively by theoretical calculation and XFEM simulation, which proves 
reliability of XFEM and the software. 
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1. INTRODUCTION 

 Fatigue and fracture problems have long been concerned 
in solid mechanics and science of material strength. In 
sheets, shells and other thin-walled structures especially, 
material defect and stress concentration can usually trigger 
structural fracture failure. Griffith [1] first proposed the 
extension condition of crack instability from the perspective 
of energy balance. Subsequently, Irwin put forward the 
concept of plastic dissipated power at the crack tip area [2], 
as well as the further concept of stress intensity factor [3]. In 
1968, Rice and other scholars proposed the path-independent 
J-integral [4]. That same year, Hutchinson et al. established 
the famous HRR singularity field, which laid an important 
theoretical framework for elastic-plastic fracture mechanics 
[5, 6]. However, later elaborated numerical computation 
revealed [7, 8] that the stress-strain field at crack tip could 
hardly be represented by the HRR field. Considering such a 
situation, Li Yaochen and Wang Ziqiang [9] established the 
basic equations for the high-order field of elastoplasticity at 
crack tip, and produced the second-order field of plane 
strain, in 1986. The extended finite element method was 
proposed by Belytschko and Black [10] to reflect the 
existence of cracks in the form of additional function while 
solving crack problems. Moes has modified this method and 
named it XFEM [11]. Fang Xiujun et al. have implemented 
the functions of XFEM at software merchants using the 
method of presupposed joints, with Abaqus as the platform 
[12]. Based on the basic theory of extended finite element, 
this paper begins with a description of the stress field at 
crack tip through numerical computation, and then performs 
a simulation through finite element software to get separate 
stress intensity factors. 
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2. BASIC THEORY OF EXTENDED FINITE 
ELEMENT 

2.1. Description of Extended Finite Element 

 Partition of unity method (PUM) is defined in accord 
with moving least square method (MLSM). For any function 

, the partial approximation function at point  is 
defined as: 

  (1) 

where, is the primary function,  is the 
corresponding coefficient. 

  (2) 

where, is the node of x within the compactly supported 
domain, is the function value of at point , is 
the weigh function with compact support properties. 

 Let achieve the minimum, then: 
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 To get 

  (4) 
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 Substitute the above expression for Formula (1) to get: 
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  (7) 

where, 

  (8) 

 Construct the shape function of approximate description
by LSM, then write out the shape function 

at point x according to Formula (6): 

  (9) 

where, is the shape function of partition of unity,

is the extended function. 

 Extended finite element is based on PUM. In order for 
any function to achieve the best approximation, the 
undermined parameters  are introduced, then: 

  (10) 

 In XFEM, the unknown field is given more accurate 
description by adding extenders near the standard field, 
which are expressed as the following: 

  (11) 

where, is the shape function of standard finite element, 

 is the degree of freedom on standard node basis. 

 is the extender used to modify the unknown field’s 
properties. 
 According to Formula (10), the above expression can be 
rewritten as: 

  (12) 

 In Expression (12), the extended function is required 
to possess some of properties of real solutions of the 
unknown field when being constructed, so as to 
improve the rate of convergence. In practical application, 

 is typically selected based on the solution space of real 
solutions, whereas generally keeps consistent with

. Provided that is a vector field, then degrees of 

freedom on node basis, and , represent vectors 
accordingly. 
 With regard to the crack problem, the above expression 
can be rewritten as: 

  (13) 

where, is the shape function of standard finite element; 
is the degree of freedom on standard node basis; is the 

degree of freedom on modified node basis related to strong 
discontinuous function; is the degree of freedom on 
modified node basis related to elastic asymptotic crack tip 
function; is the set of all nodes within the grids; is the 

set of nodes within the unit incised by the crack; is the set 
of nodes within the unit in which the crack tip exists; 

is a step function, which is used to reflect the 
displacement jumps at both sides of the crack surface; 

is the field function of asymptotic displacement of 
crack tip, which is used to reflect the singular stress and 
singular strain of crack tip, and which can be resolved and 
constructed in light of the crack tip displacement field of 
planar mixed-mode crack in linear elastic fracture 
mechanics. 

2.2. Theory of Stress Intensity Factor 

 In linear elastic fracture mechanics, the magnitudes of 
strain field and displacement field at crack tip can be denoted 
by stress intensity factor. The stress intensity factor is a 
function about geometrical shape, length of crack and 
external load, which represents the degree of deformation 
and load born at crack tip, and which can be used to measure 
the tendency of or power for crack extension. The methods 
to compute stress intensity factor mainly include analytical 
method and numerical method. While the analytical method 
includes complex function method, weight function method 
and integral transformation method, the numerical method 
includes finite element method and more. In extended finite 
element, mutually interactive integrals are generally adopted 
to solve the stress intensity factor. 

 The stress field near crack tip can generally be expressed 
as: 

  (14) 

 The stress intensity factor may be defined by the stress 
field near crack tip as: 

  (15) 

where and may also be defined, using complex 

function , as: 
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where, the origin of complex variable z must be selected at 
the crack tip. 

 The dimension of stress intensity factor has such a very 
particular dimension as [force]·[length]-3/2, whose international 
unit and engineering unit are  and , 
respectively. 
 Formula (14) suggests the stress intensity factor is a 
parameter representing the magnitude of the singular stress field 
at crack tip, independent of coordinate (x, y). Generally 
speaking, the magnitude of K is related to the loading mode, 
magnitude of load, length and geometrical shape of crack. The 
status of stress near the crack tip is completely dependent on 
parameters of stress intensity factor. Once these parameters are 
decided, The stress field near the crack tip is entirely decided. 
Thus, for ideal linear elastic materials, Irwin [13] has proposed a 
norm on fracture of stress intensity factor: 

  (17) 

 Namely, for an I-shape crack, when the  value achieves 
the critical KC, the crack will start to extend. In the formula 
KC becomes the toughness of material fracture which is 
decided by tests and related to test temperature, thickness of 
board, rate of loading, and environment. Once these external 
factors are determined, KC becomes a constant independent 
of loading mode and sample geometry, also of sample size 
and crack size within a certain range. 

 Norm (17) on fracture was proposed against I-shape 
cracks at the very beginning. Under the condition of planar 
strain, the material of I-shape crack tip is situated in the state 
of triaxial extension: , . While 
under the condition of planar stress, the material at the 
frontier of crack tip is situated in the state of biaxial 
extension: , . Therefore, under the condition 

of planar strain, the crack is more prone to extending. 

3. STATIC CRACK SIMULATION 

 Based on the Abaqus simulation platform, this section is 
to validate the accuracy of the method in this paper by using 
XFEM to simulate static cracks and by contrasting the 
simulation result against the theoretical result. 

3.1. Single-Edge Crack 

 As shown in Fig. (1), the length of the board L=2m, the 
breadth of the board b=1m, with a crack on the left side 
whose length a=0.25m, under the action of tensile stress 

, the Poisson ratio and Young's modulus 
. The analytical solution to stress intensity 

factor is shown as Formula (14) [14]. 

 Fig. (2) is the stress diagram along x and y directions, 
which shows the stress value achieves maximum at the crack 
tip and diminishes where distant from it. Since the load and 
the model are longitudinally symmetric along the crack 
surface, the stress is symmetrically distributed about the 
crack surface. Computed by Formula (18), the stress 

intensity factor K1=42.04; computed by finite element 
software Abaqus, K1=41.61, which is slightly smaller by an 
error of . 

 
Fig. (1). Single-edge crack. 

 
Fig. (2). Stress diagram along x and y directions. 

  (18) 

3.2 .Double-Edge Crack 

 As shown in Fig. (3), the length of the board L=2m, the 
breadth of the board b=1m, with a crack on both left and 
right sides whose length a=0.25m, under the action of tensile 
stress , the Young's modulus  and 
Poisson ratio µ=0.3. The analytical solution to stress intensity 
factor is shown as Formula (15). 

 Fig. (4) is the stress diagram along x and y directions, 
which shows the stress value achieves maximum at the crack 
tip and diminishes where distant from it. Since the load and 
the model are longitudinally symmetric along the crack 
surface, the stress is symmetrically distributed about the 
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crack surface. Computed by Formula (19), the stress 
intensity factor K1=33.17; computed by finite element 
software Abaqus, on the left: K1=32.90, on the right: 
K1=31.99, which are both slightly smaller by a respective 
error of  and . 

 
Fig. (3). Double-edge crack. 

 
Fig. (4). Stress diagram along x and y directions. 

  (19) 

3.3. Central Crack 

 As shown in Fig. (5), the length of the board L =4m, the 
breadth of the board b=2m, the length of the central crack 
2a=0.4m which is posed at an angle of between the crack 
surface and the horizontal axis, under the action of tensile stress  

, the Young's modulus  and 
Poisson ratio . The analytical solution to stress intensity 
factor is shown as Formula (16) [14]. 

 Take , then the II-type stress intensity factor 
achieves the maximum, when the I-and II-type stress intensity 
factors are equal. Through Formula (20), the theoretical solution 
to stress intensity factor is ; through the finite 
element software, , , the errors being 
within 4%. 

 
Fig. (5). Central crack. 

 
Fig. (6). Stress diagram along x and y directions. 

  (20) 

 Fig. (6) reveals that, the stress is symmetrically 
distributed about the crack surface, and that the stress value 
achieves maximum at the crack tip and gradually diminishes 
where distant from it. The crack surface is a free edge, where 
the stress value reaches minimum. 

3.4. Two Collinear Cracks 

 As shown in Fig. (7), the length of the square board 
b=4m, the length of the central crack a=1m, the eccentric 
distance c=1m, under the action of tensile stress , 

the Young's modulus  and Poisson ratio 
. The analytical solution to stress intensity factor is 

shown as Formula (17). 

 Computed by Formula (21), , ; 
computed via the finite element software, , 

, both errors being within 3%, which 
demonstrates the reliability of XFEM and the software. Fig. 
(8) presents the stress diagram of the collinear cracks along x 
and y directions. The stress is symmetrically distributed 
about the crack surface, the stress value achieves maximum 
at points A and B of the crack tip and gradually diminishes 
where distant from it. The crack surface is a free edge, where 
the stress value reaches minimum. 
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Fig. (7). Co-linear crack. 

  (21) 

 

 
Fig. (8). Stress diagram along x and y directions. 

CONCLUSION 

 This paper first gives a brief introduction to the basic 
theory on extended finite element, and then uses XFEM for 
static crack simulation. In the section of static crack 

simulation, a numerical simulation of static crack has been 
performed with respect to single-edge crack, double-edge 
crack, central crack, and collinear cracks, respectively. The 
reliability of the method in this paper has been validated by 
comparing the stress intensity factor(s) obtained from 
simulation with the theoretical stress intensity factor(s). 
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