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Abstract: Gas flow through nanoscale conduits shows distinctly different physics compared to flow at the macroscale. 

One of the first manifestations of this is the appearance of wall slip. Here we consider the oscillatory flow of an incom-

pressible Newtonian gas through a circular nanotube, with first order wall slip due to rarefaction. It was found that the ma-

jor effect of wall slip at lower oscillation frequencies is to alter the instantaneous velocity profiles from Poiseuille-like to 

more plug-like, with an overall enhancement to the fluid velocity magnitude. However, at higher frequencies the en-

hancement to velocity magnitude due to wall slip is greatly diminished, and rarefaction introduces a region of backflow 

near the centerline of the nanotube. These flow characteristics may have important implications for the design of various 

practical applications of unsteady gas flow through nanoscale conduits, from fuel cell membranes to gas-powered 

nanomachines constructed from carbon nanotubes. 

INTRODUCTION 

 Non-steady gas flow through nanotubes is important in 
fuel cell applications, and can occur during the synthesis of 
carbon nanotubes. At the nanoscale, when conduit dimen-
sions approach the mean free path of the gas (i.e., Knudsen 
number Kn  1), the physics of fluid flow deviates dramati-
cally from the better understood macroscopic case [1]. The 
first manifestation of this occurs in the near-wall Knudsen 
layer region, where a non-zero wall slip velocity is observed. 
At leading order, gas flow in this regime can be modeled 
using the continuum Navier-Stokes equation in the bulk 
fluid, coupled to a first order wall-slip boundary condition at 
the wall. In this paper, I consider theoretically the problem of 
oscillatory gas flow induced by a time-periodic sinusoidal 
pressure gradient through a nanotube with circular cross-
section. An analytical solution is obtained using the first-
order slip boundary condition, and results discussed relative 
to the macroscopic no-slip case. The effects of oscillation 
frequency and Knudsen number (via the dimensionless mean 
free path) are separately examined and discussed. 

GOVERNING EQUATIONS AND ANALYTICAL SO-
LUTION 

Statement of the Problem 

 The macroscopic problem of oscillatory pipe flow with 
no-slip boundary conditions has been considered elsewhere 
(see, for instance, Ref. [2]). We may define the geometry as 
an infinitely long straight tube with circular cross-section 
and radius R. The gas is modeled as an incompressible, iso-
thermal Newtonian fluid with constant density  and dy-
namic viscosity μ, a valid assumption for Mach numbers Ma 
< 0.3. The gas is subjected to a periodic pressure gradient in 
the axial direction of the form: 

 
where P is a constant indicating the magnitude of the pres-
sure gradient. We seek the steady-state solution after tran- 
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sients have decayed away, and neglect body forces such as 
gravity. We further assume that the flow is unidirectional, 

, and that all -derivatives vanish due to axi-
symmetry. The continuity equation then simplifies to: 

 

which implies that the one non-zero velocity component is 
only a function of r and t, . The simplified form 
of the r-component of the Navier-Stokes equation: 

 

indicates that the pressure will only vary axially and with 

time, . 

 The z-component of the Navier-Stokes equation yields 
the main governing equation for : 

 

 The appropriate boundary condition for O(Kn) wall slip 
will be introduced later. To obtain a general solution to this 
differential equation, we use the complex notation: 

 

where only the real part has physical significance. The com-
plex notation suggests a velocity distribution of the follow-
ing form: 

 

where f(r) is an unknown function to be determined. Substi-
tution of this form into the governing equation yields an or-
dinary differential equation for f(r): 

 

 This is recognized as an inhomogeneous Bessel’s equa-
tion of the zeroth order. The particular solution producing 
the term on the right hand side is found to be simply: 
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 The general solution to the homogeneous Bessel equation 
is the following linear combination: 

 

where  is the Bessel function of the first kind and zeroth 
order: 

 

and  is the Bessel function of the second kind and zeroth 
order: 

 

 The constant   0.5772 is known as the Euler-
Máscheroni constant. The Bessel function of the second kind 

 has a logarithmic singularity at r = 0, so to 
enforce the condition that the velocity remain bounded at the 
center of the nanotube we set . Thus, the velocity so-
lution to within an integration constant is: 

 

First-Order Wall Slip Boundary Condition 

 There is a region near the tube wall in which the gas is 
out of equilibrium, called the Knudsen layer. The Knudsen 
layer has a thickness on the order of the mean free path of 
the gas. When the relevant dimensions of a flow conduit 
approach the length scale of the Knudsen layer thickness, 
typically at the nanoscale, interesting behavior emerges. The 
transition between macroscopic and nanoscale flow regimes 
is best expressed in terms of the dimensionless Knudsen 
number, defined as Kn = /L where  is the mean free path 
of the gas and L is the characteristic length of the control 
volume. The mean free path  can be thought of as the aver-
age distance a gas molecule travels between molecular colli-
sions. Thus, when the frequency of molecular collisions with 
the wall approaches the frequency of intermolecular gas col-
lisions, the fluid ceases to behave as a continuum. For refer-
ence, the mean free path of air at standard temperature and 
pressure is 0 = 49 nm. Various theoretical estimates of the 
mean free path exist, depending on the collision model as-
sumed [1]. 

 The slip flow regime, as we will consider here, occurs in 
the approximate range of 10 3 < Kn < 10 1. Within this pa-
rameter range, the complex physics in the Knudsen layer can 
be well approximated by replacing the common no-slip 
boundary condition with a velocity slip at the wall. It has 
been known for quite some time that the flow of rarified gas 

results in slipping at the walls [3]. If s denotes the direction 
parallel to the wall, the slip velocity may be expressed as: 

 

where  is a length called the “coefficient of slip” and n is 
the normal direction. Maxwell estimated the magnitude of 
the coefficient of slip from the kinetic theory of gases to be 
[4]: 

 

where  represents the fraction of molecules that are ab-
sorbed by the surface due to wall roughness or due to a con-
densation-evaporation process. These molecules are then 
reemitted with velocities corresponding to those of quiescent 
gas at the temperature of the wall. The remaining fraction of 
molecules, 1  , are perfectly reflected by the wall and retain 
their original momentum. In non-isothermal systems there 
also exists an additional O(Kn

2
) slip term due to thermal 

gradient in the s-direction. 

Analytic Solution for Gas Velocity 

 Thus, for our cylindrical geometry, the appropriate slip 
boundary condition takes the form: 

 

 Making use of the following two Bessel function identi-
ties: 

 

 

we can enforce the wall slip boundary condition as: 

 

This yields the constant: 

 

For convenience we define the following two parameters: 

 

 
where  represents a dimensionless frequency of oscillation, 
and  represents the relative importance of rarefaction. In 
terms of these new parameters, the flow solution becomes: 
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where we have taken the real part to extract the physically 
meaningful velocity component. 

RESULTS AND DISCUSSION 

 Fig. (1) shows plots of the instantaneous velocity profile 
for different values of the two dimensionless parameters  
and . A number of interesting predictions are evident. At 
lower frequency and Knudsen number (  = 1,  = 0.1), the 
instantaneous velocity profiles look similar to the macro-
scopic Poiseuille flow. The gas flow is in phase with the im-
posed pressure gradient. At low frequency and higher Knud-
sen number (  = 1,  = 1), the flow appears more plug-like. 
Note that the magnitude of flow velocity is increased relative 
to the no-slip case, due to reduced flow resistance in the near 
wall region. At higher oscillation frequency, the instantane-
ous velocity profiles look quite different from the steady 
Poiseuille flow. At  = 5 and  = 1 the fluid towards the cen-
ter of the nanotube experiences a phase lag of /2 behind the 

imposed pressure gradient. Finally, at higher oscillation fre-
quency and higher relative rarefaction (  = 5,  = 1), we see 
that at t = 0,  the velocity at the center of the nanotube is 
remarkably predicted to be in the opposite direction of the 
bulk flow, a phenomenon that is not observed at comparable 
oscillation frequencies in the absence of wall slip. Addition-
ally, it is important to note that unlike the lower frequency 
case, here the presence of rarefaction-induced wall slip af-
fords no significant increase in the magnitude of the peak 
velocity. 

CONCLUSIONS 

 In this paper, I have considered the problem of oscilla-
tory gas flow through a circular nanotube subject to first-
order slip boundary conditions. Interestingly, it was found 
that at lower oscillation frequencies the effect of wall slip is 
to increase the magnitude of gas velocity, however at higher 
frequencies this effect of rarefaction is greatly attenuated. 
Such frequency response could have important implications 
for nanoscale devices that are driven by oscillatory gas flow, 
such as the nanoscale engine comprised of a carbon nanotube 
oscillator, motor, channel, and nozzle, considered by Kang 
and Hwang [5]. In applications such as these, where device 
efficiency depends on the pulsatile rate of gas flow through 

 

Fig. (1). Plot of the instantaneous gas velocity for different values of  and . The dimensionless times t correspond to: 0 (solid line), /2 

(dashed line),  (dash-dot), and 3 /2 (dotted line) in each subfigure. 
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nanoscale conduits, the device dimensions and operating 
parameters should be carefully chosen to minimize flow re-
sistance while possibly eliminating backflow in the center 
region as demonstrated in Fig. (1) (  = 5,  = 1) that could 
limit the forward stroke of pulsatile fluidic actuation or en-
ergy generation. 
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