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Abstract:

In children treated for brain tumors, important deficits in cognitive development have been described. The reduction of Intelligence Quotient (IQ)
is  correlated  with  multiple  conditions  such  as  tumor  location,  obstructive  hydrocephalus,  surgical  intervention,  and  above  all,  the  use  of
radiotherapy, especially in young children. Demyelinization represents the most striking microscopic alteration following radiation: cerebral white
matter’s loss and failure to white matter development could partly account for changes in IQ score.

Recently,  combined  chemo-radiotherapeutic  approaches  and  the  improvement  of  radiotherapy  techniques  have  enabled  the  reduction  of
neurocognitive symptoms and improved the standard of life of childhood brain tumor survivors.
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1. INTRODUCTION

Tumors of the Central Nervous System (CNS) are the most
incident form among solid tumors in childhood, accounting for
20% of all pediatric malignancies [1, 2]. The brain tumors are
present in two different stages of children and adolescents’ life:
in the first decade of life (value of 2.2-2.5 cases per 100 000
children/yr) with a major incidence of CNS embryonal tumors
and  ependymomas  located  in  the  posterior  fossa;  and  the
greatest  number  of  cases  have  been  reported  in  the  late
adolescence  and  early  adulthood,  with  a  major  incidence  of
glial tumors, especially in the supratentorial compartment [3 -
5].  Surgical  resection  and  focal  or  Craniospinal  Irradiation
(CSI),  followed or  not  by  systemic  chemotherapy  have  been
necessary for the majority of children who have survived brain
tumors [6, 7].

Due  to  the  increased  aggressiveness  of  therapy  and,  in
particular, of the use of radiotherapy, the survival of children
treated for cancer continues to improve. Nevertheless,  recent
studies have shown that the treatment of brain tumors exposed
the children to increased risk of reduction of quality life and
cognitive  development,  which  are  described  particularly
following  the  treatment  for  posterior  fossa  tumors.
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Variables associated with increased risk of neurocognitive
impairment include tumor location, obstructive hydrocephalus,
surgical  complications,  treatment  with  cranial  radiation,
radiotherapy  dose,  the  quantity  of  cerebral  parenchyma  that
receives  treatment,  and  younger  age  at  diagnosis  [8].
Nevertheless,  recently,  the  improvement  of  radiotherapy
techniques has reduced the risk of neurocognitive sequelae [1,
9, 10].

2. NEUROCOGNITIVE LATE EFFECTS

The delayed effects on neurocognitive abilities in children
treated for brain tumors are frequent and debilitating.

The  Intelligence  Quotient  (IQ)  measure  is  generally
adopted  to  evidence  the  neurocognitive  effects,  with  a  mean
score of 100 and standard deviations of 15 or 16. A reduction
in  IQ  frequently  determines  a  decrease  in  basic  academic
achievement  [9  -  12].  A  few  studies  conducted  to  examine
visual perceptual abilities in children affected by brain tumors
reported potential difficulties in perceptual-motor, fine motor
coordination, and visual-constructive abilities [13, 14].

Deficits in visual-motor and visual-spatial skills [15] and
perceptual- organizational skills have also been reported [16].
A cross-sectional study demonstrated an altered performance in
all  neurocognitive  measures  of  memory,  attention,  intellect,
and  academic  achievement  [17].  Moreover,  Hirsch  et  al.
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compared a series of children irradiated for medulloblastoma in
the whole CNS with a series of children treated with surgery
alone for a cerebellar astrocytoma [18].

Global IQ exceeded 90 in 2 and 62%, respectively, writing
and  reading  were  altered  in  82  and  37%,  and  behavior  was
affected  in  93  and  59%.  School  performance  was  severely
compromised  in  75  and  27%,  respectively.  In  general,  these
studies underline at the young age when radiotherapy should be
done, and the high dose of radiotherapy and the increased time
from  radiotherapy  are  the  elements  that,  similarly  to  IQ,
determine  the  most  severe  core  deficits  in  the  core  areas  of
attention, memory, and academic achievement.

2.1. Principal Risk Factors for Cognitive Impairment

The  nature  and  severity  of  the  intellectual  outcomes  of
children  with  malignant  brain  tumors  may  be  related  to
multiple  factors  (Table  1).

Table 1. Principal risk factors for cognitive impairment in
children with brain tumors.

RISK FACTORS REFERENCES
Tumor-related risk factors

Location
Hydrocephalus

[19,20,21]

Patient-related risk factors
Age at diagnosis

Neurofibromatosis type 1

[22,23,24]

Treatment-related factors
Surgical complications

Irradiation
Doses of irradiation

Volume of irradiation

[25,26][24][18,27][25,28]

2.1.1. Tumour Location

is  a  crucial  factor  that  causes  selective  site-dependent
deficits.  Furthermore,  some  locations  are  at  greater
neurodevelopmental  risk  than  others:  a  major  cognitive
impairment  is  evidenced  in  supratentorial  tumors  than
infratentorial tumors, even when whole-brain radiation is not
performed [29]. Besides, Ellenberg et al. have confirmed that
greater cognitive impairment is related to hemispheric tumors.

Left hemispheric lesions are related to verbal or language-
based deficits while lesions in the right hemisphere determine
visual  perceptual  deficits  [30].  Although  fourth  ventricle
tumors  are  related  to  significant  declines  of  IQ,  the  major
reduction of IQ is present in hemispheric tumors than that of
the third or fourth ventricle.

2.1.2. Obstructive Hydrocephalus

also plays a role in long-term outcomes for childhood brain
tumors survivors. It can be the cause of the persistent headache
and  rapid  neurological  deterioration  if  a  lumbar  puncture  is
performed [31 - 34].

The role of intracranial hypertension in children with brain
tumors has been studied mainly in children with posterior fossa
tumors  and  it  has  been  found  that,  since  both  children  with
medulloblastomas and astrocytomas suffer from hypertension
but only the former are intellectually deficient, the deficits are

caused not by hypertension but by the combination of radio-
and chemotherapy [18, 35]. It is important to add that the main
factor responsible for the mental deterioration in hydrocephalic
children is the level of intracranial pressure and, above all, the
duration  of  the  pressure  on  the  fibers  of  the  white  matter
(which causes a deficit in information processing) and of the
frontal lobes, which are particularly vulnerable because of their
internal complexity [35].

2.1.3. Surgical Intervention

Unless it causes direct or indirect complications, does not
add any further damage to those already existing and secondary
to the lesion site.  Although the adoption of computer-guided
neurosurgical techniques enhances the success of the operation,
the choice of  some anatomical  approaches rather  than others
may lead to selective deficits [36]. For example, the prolonged
retraction  of  the  frontal  lobes  to  reach  tumors  located
elsewhere  (e.g.,  craniopharyngiomas)  cause  complex  deficits
because of the internal complexity of these lobes [37].

Moreover, particular care must be taken when approaching
posterior  fossa  tumors:  the  incision  or  destruction  of  the
cerebellar  vermis  causes  complex  alterations  in  social  and
communicative behavior that may even reach to the extent of
autism [20].

2.1.4. Radiotherapy

Many  studies  have  focused  on  the  sequelae  on
neuropsychologic  functioning  in  pediatric  brain  tumor
survivors  [38].  In  one  study  of  56  childhood  brain  tumor
survivors  in  whom  22  received  radiation  therapy,  68%  of
survivors who received radiation treatment were characterized
by IQ scores less than 90, compared with 18% who were not
treated with radiotherapy [19].

Moreover, in an important neuropsychological evaluation,
by Grill et al., 31 children, aged 5-15 years, who were treated
with radiotherapy for Posterior Fossa (PF) tumors and who had
no therapy for at least 1 years, were analyzed retrospectively.
Three  different  subgroups,  with  11,  11,  and  9  patients  were
created according to the CSI doses: 0 Gy [ i.e., PF irradiation
only], 25 Gy, and 35 Gy, respectively. In all these cases, long-
term cognitive impairment was present in most of the patients,
even after PF irradiation only. A relationship between the dose
of irradiation and the full-scale IQ (FSIQ) is demonstrated by
the mean FSIQ scores at 84.5 (SD 5 14.0), 76.9 (SD 5 16.6),
and  63.7  (SD  5  15.4)  for  0  Gy,  25  Gy,  and  35  Gy  of  CSI,
respectively  [28].  Hence,  the  radiotherapy  and  the  dose  of
irradiation are among the principal risk factors for an impaired
intellectual  outcome;  actually,  different  studies  underline  a
decrease  in  the  dose  of  neuraxis’  irradiation  as  an  important
strategy to  reduce the  incidence of  long term neurocognitive
deficits.  Two  independent  studies,  with  22  and  36  children,
respectively,  have  clearly  shown  the  benefit  on  cognition  of
lowering  the  CSI  from  35  to  25  Gy  in  children  with
medulloblastoma  [18,  27].

Lowering the CSI by 10 Gy increased the mean full-scale
IQ  of  10  points.  Consequently,  it  is  now widely  accepted  to
treat  standard-risk  medulloblastoma  (defined  as  little  or  no
gross evidence of tumor as shown by postoperative MRI and
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absence of metastatic disease with reduced irradiation despite
the  slightly  higher  trend  for  relapse  observed  in  randomized
trials.

2.1.5. Very Young Children

Are more  vulnerable  to  the  effects  of  the  tumor,  surgery
radiotherapy,  and  chemotherapy  [39  -  43].  Therefore,  the
impact  of  the  patient’s  age  at  treatment  and  the  level  of
radiation dose exposure on cognitive performance has been the
focus  of  examination  in  several  studies.  Jannoun and  Bloom
[44] provided neurocognitive follow-up 3–20 years following
irradiation in 62 children with a variety of brain tumors. The
patient’s  age at  the time of  treatment  was the most  powerful
determinant of ultimate IQ with those younger than 5 years at
diagnosis  being  at  greater  risk  (mean  IQ=72),  those  of  6–11
years were at intermediate risk (mean IQ=93) and those older
than  11  years  functioning  solidly  in  the  normal  range  (mean
IQ=107).  Although  not  statistically  significant,  children
presenting with hydrocephalus had a 10-point decrement in IQ
compared to those with normal pressure.

A  retrospective  study  of  the  Pediatric  Oncology  Group
about  average-risk  (AR)  patients  randomly  assigned  to
different therapeutic groups found that patients who received
reduced dose CSI (23.4 Gy) and patients older than 8.8 years at
the  time  of  treatment  presented  higher  cognitive  functioning
than  patients  who  received  standard-dose  CSI  (36  Gy)  and
patients who were younger at time of treatment [11]. Anyway,
in a subsequent prospective study, even the AR patients treated
with a reduced-dose CSI (23.4 Gy) and adjuvant chemotherapy
experienced a reduction of 4.3 IQ points/yr over 3 years from
treatment [16]. Palmer et al., in a longitudinal design, reported
in a group of 44 children a mean decline of  2.6 IQ points/yr
following treatment with CSI (24.3 to 39.6 Gy) [45]. Patients
older than 8 years of age and patients irradiated with a dose of
CSI  <35.2  Gy  demonstrated  higher  cognitive  functioning  in
comparison  to  patients  younger  or  submitted  to  higher  CSI
doses.  Moreover,  they  reported,  in  50  patients  treated  with
conventional-dose (35 to 40 Gy) CSI, the patterns of change in
intellectual  function  over  a  period  of  7  years  from  the
diagnosis:  the  reduction  in  IQ  was  2.2  points/yr  [45].

Differently from younger patients, in whom the decline in
IQ was more immediate, a late reduction in IQ was evidenced
in patients treated at an older age. Collectively, these studies
suggest  that  survivors  who  have  received  radiation  therapy
experience greater intellectual deficits than those who were not
treated with radiation therapy, in particular at a younger age.

2.1.6. Sex

Some studies have hypothesized that females are at higher
risk for cognitive deficits due to radiotherapy. Panwala et al.
reported  that  female  survivors  were  more  affected  when
compared  to  males  in  terms  of  the  living  skills  domain  of
adaptive  functioning  as  well  as  of  processing  speed.  Those
deficits can negatively impact on daily living skills [46].

2.2. Pathophysiology of Late CNS Damage

It  is  asserted  that  the  number  of  neurons  cannot  be
expended after  the  6th  month of  fetal  life.  During the  first  3

years  of  life  and  to  some  extent  up  to  6  years,  cerebral
development  includes  cellular  and  axonal  hypertrophy
combined with a multiplication of dendrites and interneuronal
connections [47].

The development of myelin normally continues after birth
until  the  first  30  years  of  life  and,  while  the  cerebral
hemispheres  are  about  50%  myelin,  patterns  of  myelination
differ across brain regions [48]. The brain stem and cerebellar
areas  myelinate  first,  followed  by  the  cerebral  hemispheres
and,  finally,  the  anterior  portions  of  the  frontal  lobes.
Myelination of brain regions appears to parallel their functional
maturation  [49].  The  inter-relatedness  of  cognitive  functions
and the brain regions that support these functions are reflected
in the rich connections between myelinated axons in different
brain areas.

Demyelination  represents  the  most  striking  microscopic
alteration  following  radiation  and  is  responsible  for  white-
matter necrosis. Pathogenesis is still unclear. It could be related
to alterations of the microvasculature (affecting the endothelial
cells), or of the oligodendrocytes that produce myelin.

Radiotherapy  produces  damage  through  the  reduction  of
brain stem/precursor cells, located in the subgranular zone of
the  hippocampus  dentate  gyrus  (with  vascular  damage  or
astrocytes  activation)  or  in  the  subventricular  zone  of  the
anterior  lateral  ventricles  [50,  51].

It is important to underline that all early manifestations of
radiation related-damage determine long-term structural harm
and consequent permanent cognitive impairment.

Among  the  alterations,  there  are  oligodendrocytes  or
microvessels  damage,  loss  of  white  matter  wholeness,
inflammation, and loss of cellular physiology. All these events
lead  to  cognitive  impairment,  which,  after  6  months,  can  be
considered  definitive.  The  dose  at  which  radiation  produces
cognitive  impairment  is  lower  than  that  at  which  there  is
radionecrosis  [52].

Two  major  clinical  syndromes  have  been  described
following  radiation,  both  in  children  and  in  adults:

(1). Cerebral radionecrosis whose risk has been estimated
to 5% at 55 Gy fractionated, 15% at 60 Gy, and 20% at 65 Gy
[53].

(2).  Necrotizing  leukoencephalopathy  and  mineralizing
micro-angiopathy. The clinical course of leukoencephalopathy
is  gradual,  characterized  by  decreased  alertness  and,
eventually,  the  intellectual  decline  [54  -  56].
Neuropathologically,  multiple  necrotic  lesions  in  the  white
matter near the ventricular characterize leukoencephalopathy.
In  mineralizing  microangiopathy,  neocalcifications  are  also
detectable, especially in the basal ganglia. Several studies have
identified  the  entity  of  the  toxicity  on  white  matter  and
evaluated the relationship between neurotoxicity and cognitive
impairments related to childhood brain tumors.

It  has  been  evidenced,  comparing  patients  treated  for
medulloblastoma  with  age-matched  controls  with  low-grade
tumors  of  the  posterior  fossa  treated  only  with  surgery,  that
survivors of medulloblastoma presented a significantly smaller
volume  of  cerebral  white  matter,  an  equal  volume  of  grey
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matter,  and  a  greater  volume  of  cerebrospinal  fluid  [57].  As
expected,  patients  who  survived  medulloblastoma  presented
very low IQ scores, and this evidence is statistically correlated
with volumes of cerebral white matter loss [10].

Subsequently,  in  patients  treated  for  medulloblastoma,  a
longitudinal  study demonstrated a significant  decrease in the
volume of cerebral white matter, which was quicker in patients
who underwent 36 Gy CSI than in the group who underwent
23.4  Gy  CSI  [58].  Hence,  a  lesion  in  the  white  matter  (both
primary  lesion  site  and  the  secondary  result  of  radiation)
interrupts  or  damages  the  complex  information  transmission
network  connecting  the  various  brain  areas,  damaging  the
online consistency and speed of functioning of the system as a
whole [20, 54].

Moreover,  dose  de-escalation  demonstrates  good
outcomes,  transferring  less  radiation  to  the  brain,  and
consequently  reducing  cognitive  impairment.  Anyway,  this
evidence  is  not  always  valid.

The  posterior  fossa  boost  volume  can  also  affect  other
structures located outside the area of interest, such as temporal
lobes, cochlea, and parotid glands, compared to a boost limited
to the tumor bed (TB).

Moxon-Emre  et  al.  highlighted  how  patients  with
medulloblastoma  treated  with  reduced-dose  of  craniospinal
irradiation (CSR) and TB boost, experienced stable intelligence
beyond  their  initial  impairment  and  not  worse  survival.  In
contrast, patients treated with reduced-dose CSR and posterior
fossa (PF) boost, standard-dose CSR and PF boost, standard-
dose, and TB boost showed the same worse result. Therefore,
limiting  the  boost  volume  to  TB  is  important  to  reduce
cognitive  impairment  [59,  60].

About chemotherapy, Gibson et al. analyzed methotrexato-
related cognitive impairment.

This  drug  leads  to  activation  of  microglial,  consequent
astrocytes’  reactivity,  which  brings  about  the  disruption  of
oligodendrocytes  and  all  these  events  lead  to  cognitive
impairment  [51,  61].

In particular, oligodendrocytes damage causes white matter
damage  and  chemotherapy-cognitive  impairment.  Moreover,
chemotherapy  determines  a  syndrome  of  neurological
dysfunction,  defined  “chemotherapy-related  cognitive
impairment (CRCI)” or “chemobrain”, which is characterized
by  altered  cognitive  and  executive  functions,  in  particular:
change  in  memory,  attention,  information  processing,  and
capacity  of  organization  [51,  61].

Recently,  new  drug  treatments  (such  as  nerve  growth
factor) and combined chemo-radiotherapeutic approaches have
enabled to decrease doses of chemotherapy and/or CSI with a
lower  incidence  of  neurocognitive  sequelae  [61  -  63].
Moreover,  new  techniques  of  conformal  radiation,  which
permit  precise  delivery  of  radiotherapy  with  reduction  of
damage to the surrounding brain tissue, have been introduced.
In order to enhance the therapeutic window between efficacy
and toxicity, RT has undergone revolutionary changes in recent
years such as the development of intensity-modulated radiation
therapy (IMRT), volumetric modulated arc therapy (VMAT),

and  proton  beam  radiation  therapy  (PBRT).  These  new
technologic advances have allowed a modification of the type
of radiation used as well as the shape and intensity of a given
beam. These improvements participate in the enhancement of
dose  coverage  of  the  tumor  and  sparing  of  normal  tissues
relative  to  traditional  methods  such  as  three-dimensional
conformal  radiation  therapy  (3DCRT).  Results  from  recent
trials  are  encouraging  for  the  absence  of  significant  adverse
neurocognitive effects in preliminary data [64 - 66].

CONCLUSION

Neurosurgeons,  pediatric oncologists,  and radiotherapists
have been successful in improving cure rates for most types of
childhood brain tumors, including those of the posterior fossa.
Nevertheless,  the  risks  of  neurocognitive  impairment  remain
substantial,  especially  among  individuals  who  were  treated
aggressively and at a young age. It is fundamental that, in the
future, research should incorporate regular neuropsychological
testing,  new  treatment  modalities,  neuroimaging,  and
longitudinal designs to minimize long-term complications and
to  develop  new  interventions  to  prevent  the  long-term
neurotoxic  effects  experienced  by  children.
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