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Abstract: An enhanced buildup of [Ca
2+

]i occurs during short-term facilitation (STF) at the crayfish neuromuscular junc-

tion (NMJ). As a model system, this NMJ allows discrete postsynaptic quantal events to be counted and characterized in 

relation to STF. Providing 10 pulses, at 20 and 40Hz, we monitored postsynaptic quantal events over a discrete region of a 

nerve terminal with a focal macropatch electrode. Characteristics of quantal events were clustered into groups by peak 

amplitude and time to the peak amplitude. Since the synapses at this NMJ have varied spacing of active zones, number of 

active zones and synaptic size, the graded nature of synaptic recruitment is likely one means of titrating synaptic efficacy 

for the graded depolarization on the non-spiking muscle fiber. Synapses in this preparation would appear to have a "quan-

tal signature" that can be used for quantifying their activity which is useful in estimating the overall number of active 

sites. We use mixture modeling to estimate n (number of active sites) and p (probability of vesicle fusion) from the quan-

tal characteristics. In a preparation that was stimulated at 40Hz, synapses were recruited (increase in n) and the number 

active synapses increased in p. In a different preparation, p increased as the stimulation was changed from 20 to 40Hz, but 

n did not show a substantial increase; however, during the STF train, p increases slightly. This study provides a novel ap-

proach in determining subsets of the single evoked quanta to better estimate n and p which describe synaptic function. 

INTRODUCTION 

 For nervous systems to function properly at various lev-
els of excitation and inhibition, the efficacy of synapses is 
finely regulated and able to adjust in response to changing 
circumstances and requirements. However, unregulated vari-
ation in synaptic input when needing to relay a specific 
amount of information would provide an inappropriate signal 
for target cells to integrate. Due to the relative inaccessibility 
of postsynaptic dendrites and complexity of the central nerv-
ous system in general, most of our understanding in synaptic 
properties at a quantal level has been gained by studying 
accessible and relatively simple preparations, such as neu-
romuscular junctions (NMJ) [1-4]. Historically, the frog neu-
romuscular junction was used, but in physiological condi-
tions the electrical events, due to nerve stimulation, produce 
action potentials that are conducted along the muscle. Fur-
ther studies with lowered extracellular calcium or Ach-
receptor blockers allowed more detailed studies to be made 
on the quantal nature of synaptic transmission [5]. Neuro-
muscular preparations in many invertebrates also serve as 
good models to investigate mechanisms underlying synaptic 
transmission since the postsynaptic evoked events are graded 
and do not spike, much like the dendrites of neurons in the 
vertebrate CNS. The advantage of NMJs is that the sites of 
release are able to be directly monitored without worrying 
about distortion due to electrical cable properties when 
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recording in a cell body within a CNS preparation. NMJs 
within crayfish were investigated particularly for these pur-
poses [6-19]. 

 Since synaptic strength is defined as the effectiveness  
of neurotransmission between pre- and post-synaptic cells, 
both pre- and post-synaptic factors can influence synaptic 
strength. Short-term plasticity of synapses, such as short-
term facilitation (STF) which is a form of memory at a syn-
aptic level, allows the gain of the system to be readily regu-
lated without changing the hard wiring. In order to character-
ize transmission during STF, indexing the probability (p) and 
number of release sites (n) is valuable [10, 20, 21]; however, 
to measure n and p over time when the basal amount of re-
lease is changing is a difficult task by conventional methods 
[5, 22, 23]. 

 Classically, the analysis of quantal release and estimation 
of p comes from the average probability of release over time, 
but since each quantal occurrence is counted as an event re-
gardless of its size or shape of the postsynaptic response, this 
masks truly distinct synaptic sites. The traditional counting 
method would deem any two quantal events as identical in 
probability and site for release, even if the two currents (or 
potentials) appear distinctly different in their characteristics. 
Since differences in size or shape of the quanta are likely 
indicators that different synaptic sites are active, this can be 
useful information in determining if there is a change in the 
overall number of active sites during experimental manipula-
tion [23]. Given that many synapses have been serially re-
constructed for the crayfish opener excitatory NMJ, the na-
ture of synaptic size and its synaptic complexity are becom-
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ing well known [7, 10, 11, 24-26]. Direct structure-function 
studies of discrete regions of motor nerve terminals have 
revealed that there can be many synapses, each with multiple 
active zones. Physiological measures of quantal synaptic 
currents and field potentials along with estimation of n & p 
for low frequency stimulation (1Hz) reveals n=1 despite 
quite large variations in the size and shape of single evoked 
synaptic currents. The physiological and structural data 
would indicate that multiple sites are being utilized for vesi-
cle fusion. In addition, the standardized approach of obtain-
ing n and p from methods of directly counting quantal events 
[5] and determining their distribution of occurrence underes-
timates the functional number of sites. For these reasons, in 
an earlier study, we devised a means that incorporates differ-
ences in characteristics in the single quantal responses to 
estimate n and p for quantal subsets [23, 27, 28]. We now 
extend this analysis to the quantal responses during STF to 
estimate discrete ns and to assign a p to each given site. This 
type of analysis is a significant improvement over traditional 
analysis in determining the quantal parameters of release 
with multiple sites of release.  

 This work was presented previously in abstract form 
[29]. 

MATERIALS AND METHODOLOGY 

General 

 All experiments were performed using the first and sec-
ond walking legs of freshly obtained crayfish, Procambarus 
clarkii, measuring 6-8 cm in body length (Atchafalaya Bio-
logical Supply Co., Raceland, LA). The animals were housed 
individually in an aquatic facility and fed dried fish food. 
Dissected preparations were maintained in crayfish saline, a 
modified Van Harreveld's solution [30]. Crayfish were in-
duced to autotomize the first or second walking leg by force-
fully pinching at the merus segment.  

Physiology 

 To elicit an evoked response, the excitatory axon was 
selectively stimulated by placing a branch of the leg nerve 
(from the merus segment) into a suction electrode connected 
to a Grass stimulator [31]. STF was induced by giving a train 
of pulses at 10 second intervals at 20 or 40Hz to the excita-
tory nerve. Intracellular EPSP and field EPSP (fEPSP) re-
cordings were performed by standard procedures [8, 15, 30, 
32]. The fEPSPs were recorded by placing a focal recording 
electrode directly over a visualized varicosity on the nerve 
terminal. A vital fluorescent dye, 4-[4-(diethylamino) styryl]-
N-methylpyridinium iodide (4-Di-2-Asp; Molecular Probes, 
Eugene, OR), was used to visualize the varicosities [7, 33]. 
All chemicals were obtained from Sigma chemical company 
(St. Louis, MO). Electrical signals were recorded on-line to a 
PowerLab/4s interface (ADInstruments, Australia).  

 Direct counts of the number of evoked quantal events in 
evoked release were used as an index of synaptic function. If 
only a single event occurred after the spike, it was counted as 
one; when double events occurred, they were counted as two, 
and so on. In this study, 1000 trials of 10 pulses each were 
collected and recorded. An acquisition rate of 20kHz was 
used. The quantal events were individually examined to see 
whether they were single, double or more events. Mean 
quantal content (m) was determined by directly counting the 

events [8]. For determining characteristics in the shape of 
quantal events, only discrete single events were used. In 
some cases, an event might ride on top of another event or 
start with very short synaptic delay and thus would lead to 
errors in separating out the signal of the action potential 
spike, produced by the nerve terminal in the recording, from 
the quantal event. Since multiple events could be counted as 
“events”, they were used to determine mean quantal content 
but could not be used for assessment in the shape of the 
quantal event due to uncertainty in the true shape of the sin-
gle event. Only distinct single events were processed for 
determining clusters of similar quantal properties. 

Computational Analysis 

 The data points for the single evoked quanta were copied 
from the full traces and placed into individual columns 
within an Excel spreadsheet. The data points for each quanta 
were bracketed by the beginning of the quantal rise until the 
event returned to baseline. The files were transferred to text 
files. The routines herein are implemented in a statistical 
language called “S” using the freeware software “R” (R De-
velopment Core Team, 2005; see footnote). “R” is main-
tained by a consortium of statisticians and others, and may 
be downloaded at http://www.r-project.org/. We computed 
the time to the peak amplitude and peak amplitude for each 
single quanta within 500 traces for one experiment at 40Hz. 
In another experiment, 241 traces for 20Hz and 200 traces 
for 40Hz train stimulations. Each stimulation train consisted 
of 10 stimulation pulses at the given frequency. To deter-
mine the number of active sites and the firing rate for each 
site (n and p) over the course of the ten pulses, we employed 
normal mixture models similarly to Viele et al. [23]. A nor-
mal mixture model attempts to cluster observations into 
separate normal (Gaussian) distributions. Mixture models are 
commonly used in model-based clustering [34]. As with 
Viele et al. [23], we selected the number of normal distribu-
tions required based on Bayesian Information Criteria (BIC, 
[35]). This is a Bayesian procedure which consistently esti-
mates the correct number of components, meaning that as the 
sample size increases BIC will choose the true underlying 
number of components. Instead of a p-value measuring “sta-
tistical significance”, BIC can be calibrated by “posterior 
probabilities” which measures the relative likelihood the data 
reflect each possible number of components. For more in-
formation, see Kass and Raftery [35] or Gelman et al. [36]. 
In our context, differing components indicate differing active 
sites (in theory they could also mean the same site is having 
a different pattern of firing). 

 We performed the mixture analysis on the square root of 
the product of time to peak and peak amplitude. While at 
first this may seem an odd choice, it is justified in the litera-
ture. Previously, Viele et al. [23] clustered the square root of 
the area under the curve (AUC) measures, with the square 
root justified by the intuitive notion that area is measured in 
squared units, and the statistical justification that the square 
root transformation produced better fits. Note here the AUC 
values were difficult to compute because the small amount 
of time between pulses made the baseline computation diffi-
cult. While this issue also affects peak amplitude, in the 
AUC any baseline error is multiplied over the length of the 
trace. Viele et al. [28] demonstrated that AUC and the prod-
uct of peak amplitude and rise time were highly correlated 
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(in that paper =0.96). Thus, our response of interest is 
sqrt(RP), where R is the time to peak amplitude and P is the 
peak amplitude. Note that mixture models are invariant to 
affine transformations of the data, thus the units are irrele-
vant to the number of components estimated. 

 For the data from each of the 10 pulses, we fit normal 
mixture models of 1, 2, 3, and 4 components using the EM 
algorithm [37]. We then computed the BIC value for each of 
the four fits (BIC is a combination of the likelihood with a 
penalty term based on the number of parameters). These BIC 
values were then converted to posterior probabilities [35] 
and the model with the highest posterior probability was 
chosen. Thus, for each of the ten pulses, we chose one of 1, 
2, 3, or 4 components. 

 For the best fitting model, we also recorded the fitted 
mean and variance of the normal distribution components 
and the estimated probability of firing. These best fits were 
then compared across the ten pulses to look for recruitment 
or changes in the active sites during STF. 

RESULTS 

 The EPSP responses obtained by intracellular recordings 
show a marked facilitation at 40Hz stimulation within the 10 
pulse stimulus train (Fig. 1, see A1 panel). The average of 20 
trials shown here replicates the general trend of single trains 
(Fig. 1B). There are differences in the degree of facilitation 
depending on the region of the opener muscle that is being 
monitored [7, 38]. In this study, the terminals from central 
muscle fibers were used. It has been established that the ma-
jority of the facilitation during the STF is due to presynaptic 
components, primarily by enhanced calcium build up [39-
42]. This build up of residual [Ca

2+
]i enhances vesicular fu-

sion and as expected mean quantal content [30]. To index the 
degree of enhancement, we calculated mean quantal content 
(m) by counting the discrete number of evoked quantal re-
sponses for each stimulus pulse within the 10 pulse train for 
each trial. Fig. (2) shows a representative trail of the individ-

ual fEPSP responses of a preparation stimulated at 40Hz 
with 10 pulse trains depicting the discrete quantal events 
recorded with a focal macropatch electrode over an indenti-
fied region of the nerve terminal (Fig. A1). In some pulses, 
single evoked quantal events are observed while in others, 
the failure of evoking a response or even two quantal events 
is observable. The probability of multiquantal responses is 
relatively low during the initial part of the stimulus train but 
increases toward the tenth pulse. However, the range in the 
area and peak amplitudes of the single quantal events from 
the earlier pulses covers the same range as what are deemed 
as single events for the tenth pulse, so we are confident in 
what is deemed a single or a doublet is accurate. In addition, 
the probability of vesicular fusion is still not extremely high 
for the tenth pulse so probabilistically one should not expect 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). (A) A schematic of the opener muscle in the crayfish 

walking leg showing the EPSP in response to a train of ten stimula-

tion pulses given at 40Hz. (B) The EPSP responses recorded intra-

cellular from the central muscle fibers and the response shows a 

marked facilitation that occurs throughout the stimulation train. 

Arrows indicate each stimulation in the 10 pulse train.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). (A1) Recordings of individual evoked quantal events are 

obtained by use of a focal macropatch electrode placed over visual-

ized varicosity on a muscle fiber. (A2) The quantal responses (fo-

cal EPSP or fEPSP) from evoked release are monitored. The  

*shows the extracellular spike (action potential) preceding the 

quantal response. Two quanta are recorded here with a short la-

tency between responses. (B1) Individual fEPSP responses depict 

the discrete quantal events. The 10 stimulation pulses are shown by 

arrows. The events 6 and 8 show single evoked quantal events. 

Failure to evoke an event is noted for the other pulses. (B2) The 

inset shows the enlarged time scale within the dotted box in trace 

B1. (C) The average field potential (fEPSPs) from 500 stimulation 

trails recorded over a single varicosity mimics the whole muscle 

EPSPs in facilitation of responses. The stimulus artifacts and the 

extracellular spikes were removed (blanks in the traces B and C) 

for ease is observing the evoked quantal events. The time scale bar 

shown in C is the same for the trace shown in B1. 
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too many multiple events. The inset in Fig. (2A2) is a multi-
quantal event with higher resolution. A 10 pulse series of 
stimuli are demarcated by the arrows in Fig. (2B1). The 
magnified region of the trace shown in Fig. (2B1) is depicted 
in Fig. (2B2) for clarity to demonstrate that multiple evoked 
events and failures in evoking a response can be resolved. 
The number of events associated for each pulse within the 10 
pulse data set and m for each pulse are shown in Table 1. 
With the discrete counts, one can model various release 
probabilities (i.e., Binomial or Poisson). However, consider-
ing simultaneous estimation of n and p by discrete counts 
alone is notoriously unreliable and we had relatively low 
firing rates for many pulses we utilized functionals of the 
traces (e.g. peak amplitude, rise time, etc.) to estimate n and 
p. (see [23, 43, 44]; Olkin et al. [44] provides an example on 
how changing a single data point by 1 can change estimates 
of n by 100).  

 The rise in m over the pulse train is almost linear as 
shown with a linear least squares fit for one preparation ex-
amined at 40Hz (Fig. 3). In another preparation, m was cal-
culated for each pulse at 20 and 40Hz stimulation trains (Fig. 

4) and again a linear increase in m is observed for each 
stimulation frequency. This linearity may well change for 
different stimulation paradigms; however, with higher stimu-
lation frequency the stimulus artifacts become mingled with 
the evoked responses which presents difficulty in obtaining 
measurements. Since the characteristics of each quantal 
event are used for further analysis, a good signal to noise 
ratio is required. The measures of the quantal events are il-
lustrated on a single response in Fig. (5). The peak amplitude 
and rise time to peak were determined for each event that 
was deemed as a single event by direct observation. Once 
these measures were obtained, we proceeded with the vari-
ous comparisons to examine novel quantal shapes that ap-
peared to be recruited throughout STF. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Synaptic efficacy determined by m from direct counts 

throughout STF. The curve was fitted by a linear least squares fit. 

This preparation was stimulated at 20 and 40Hz. The linear least 

squares fit and the R2 values are: 20Hz is 0.85 and 40Hz is 0.95. 

 
 Table 2 shows the BIC values (in the left half of the ta-
ble) for each pulse of the 1, 2, 3, or 4 potential fusion sites 
for the preparation depicted in Fig. (3) (40Hz alone). These 
BIC values have also been converted to Bayesian posterior 

Table 1. The discrete quantal counts for each pulse determined by direct observation. Mean quantal content (m) provides an index 

of presynaptic efficacy. All distributions in Fig. (3) at 40Hz were best fit by a poisson distribution so n and p are un-

realistic to determine 

Quanta 0 1 2 3 4 5 6 m 

1st pulse 980 17 2 1 0 0 0 0.024 

2nd pulse 946 51 3 0 0 0 0 0.057 

3rd pulse 905 89 3 2 1 0 0 0.105 

4th pulse 833 162 2 2 1 0 0 0.176 

5th pulse 767 212 19 2 0 0 0 0.256 

6th pulse 679 298 19 3 1 0 0 0.349 

7th pulse 608 359 29 3 0 0 1 0.432 

8th pulse 568 390 38 3 0 0 1 0.481 

9th pulse 508 441 47 4 0 0 0 0.547 

10th pulse 455 469 66 5 2 1 2 0.641 

 

 

 

 

 

 

 

 

 

Fig. (3). Synaptic efficacy determined by m from direct counts 

throughout STF. The curve was fitted by a linear least squares fit 

and the R2 value is reported. This preparation was stimulated only 

at 40Hz. 
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probabilities (in the right half of the table). Note BIC values 
are measured on the log scale, and thus their absolute differ-
ence, not relative difference, is important. Furthermore, BIC 
values are only comparable within each pulse, not across 
pulses as different pulses represent different datasets. For 
more information see [23, 35]. Values in bold indicate the 
best fit (the fit with the highest BIC and thus the highest pos-
terior probability). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5). The characteristic measures obtained from each quantal 

event are illustrated on this single response. The peak amplitude 

(PA) and the time to peak (TP) are shown. The stimulus artifact 

(SA) is followed by the extracellular spike (*) of the nerve terminal. 

 

 Table 3 summarizes the best fits for each of the ten 
pulses (preparation stimulated at 40Hz alone). For each fitted 
component, we report the mean μ (the fitted average value of 
sqrt(RP)), the standard deviation , and the firing rate p (here 
p refers to the probability a stimulus results in a firing at that 
site for the specific pulse, thus the probabilities do not add to 
1, instead they add to the overall firing rate for that pulse). 
Note the probability of firing is low for the first pulse and 
increases dramatically for higher pulses.  

 Fig. (6) shows the fits for these models. Each “pane” in 

Fig. (6) shows a histogram of the observed firings for one of 

the ten pulses. The individual estimated normal distributions 
are shown as either red, green, or blue curves. Finally, the 

black curve is the sum of the colored curves and provides the 

overall mixture fit to the histogram. As can be seen in the 
figure, all the mixture fits provide reasonable approximations 

to the observed histograms, including the multiple observed 

peaks for the data in some pulses. 

 The consistencies in Table 3 from pulse to pulse provide 

evidence concerning which sites are active at any given time. 
There is a site, active for pulses 1-8, with mean in the 0.45-

0.60 range for sqrt(RP). The standard deviation for the re-

sults from this site is also consistent, ranging from 0.071-
0.105. Note that the probability this site fires increases from 

a low 0.044 in pulse 1 to 0.408 in pulse 8. A second site ap-

pears to be recruited with a mean in the 0.728-0.817 range 
for sqrt(RP) for pulses 1-8. Finally, a third site is present for 

pulses 4-9 with a mean greater than 1. However, note this 

third site contains small probability and is typically repre-
sented by a small number of firings in each case (for exam-

ple, probabilities of 0.01 correspond to 5 out of 500 traces). 

 It is quite unclear why the first site becomes inactive in 
pulses 9 and 10. It is also difficult to justify why the increas-

ing probabilities of site 1 firing for pulses 1-8 suddenly drops 

to 0. Also, note that site 2 suddenly has a big jump in prob-
ability of firing going from pulse 8 to pulse 9, and a slight 

jump in standard deviation, possibly indicating the fitted 

results for sites 1 and 2 have combined (if two sites produce 
very similar patterns of firing, the mixture model will not be 

able to discriminate them). Finally, site 1 has an increasing 

trend in the mean. It is possible that the mean for site 1 in-
creases to the point that in pulses 9 and 10, it is not possible 

to distinguish separate firing patterns for sites 1 and 2. 

 Similarly, it is unclear in pulse 10 why the 3
rd

 site is any 

less active than it was in pulses 4-9. With such a low firing 

rate, it is possible that we simply did not observe a sufficient 
number or size of firing for the algorithm to detect. 

Table 2. Bayesian information criteria values and estimated posterior probability for each of 1, 2, 3, and 4 component models fit-

ted separately to the data from each pulse. Bold entries indicate the best fit for that pulse 

Pulse BIC1 BIC2 BIC3 BIC4 Pr(1) Pr(2) Pr(3) Pr(4) 

1 12.46 14.66 8.62 10.77 0.097 0.883 0.000 0.018 

2 28.30 30.54 28.53 23.47 0.086 0.805 0.108 0.000 

3 85.69 92.45 85.40 82.42 0.000 0.998 0.000 0.000 

4 94.49 104.30 104.96 100.81 0.000 0.338 0.652 0.010 

5 72.09 82.52 84.55 78.69 0.000 0.116 0.882 0.000 

6 47.44 75.30 76.77 69.64 0.000 0.187 0.813 0.000 

7 100.05 99.31 103.08 94.85 0.045 0.022 0.933 0.000 

8 61.83 78.32 80.60 76.86 0.000 0.091 0.887 0.021 

9 54.07 66.43 58.16 56.34 0.000 1.000 0.000 0.000 

10 59.15 58.36 53.47 52.06 0.686 0.311 0.000 0.000 
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Table 3. Estimated means (μ), standard deviations ( ), and firing rates (relative to the total number of stimulations) for each nor-

mal density component (1, 2, or 3 indicating first, second, or third component) from the best fitting model for each pulse. 

The 1, 2, or 3 then relates to each potential release site. The results have been aligned in columns to indicate apparent 

similarity between the estimated components from pulse to pulse 

 μ1  1  p1 μ2 2 p2 μ3 3 p3 

Pulse 1 0.444  0.088  0.044 0.782 0.010 0.004 - - - 

Pulse 2 0.465  0.089  0.099 0.728 0.181 0.015 - - - 

Pulse 3 0.454  0.071  0.189 0.615 0.146 0.081 - - - 

Pulse 4 0.486  0.080  0.296 0.710 0.069 0.094 1.030 0.044 0.012 

Pulse 5 0.496  0.089  0.293 0.718 0.134 0.231 1.145 0.301 0.012 

Pulse 6 0.524  0.091  0.262 0.753 0.144 0.334 1.652 0.169 0.008 

Pulse 7 0.580  0. 101  0.350 0.817 0.120 0.264 1.465 0.022 0.004 

Pulse 8 0.569  0.103  0.408 0.815 0.155 0.313 1.460 0.164 0.011 

Pulse 9 - - - 0.704 0.190 0.672 1.993 0.010 0.002 

Pulse 10 - - - 0.744 0.204 0.760 - - - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (6). Plots of the overall mixture fit and underlying fitted components for each of the ten pulses for 40hz (40hz only data).. Each histo-

gram shows the sqrt(RP) data (square root of rise time multiplied by peak amplitude) for the corresponding pulse. The black line indicates the 

overall mixture fits, while the colored lines represent the underlying mixture components (the colored lines sum to the black line). The col-

ored points indicate the estimated component membership of each data point. The y-axis “density” simply indicates the relative likelihoods of 

sqrt(RP) within each pulse. 
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Table 4. 20Hz data set for estimating BIC. Bayesian Information Criteria values and estimated posterior probability for each of 1, 

2, 3, and 4 component models fitted separately to the data from each pulse. For pulses 1-3, an insufficient number of fir-

ings were recorded. Bold entries indicate the best fit for that pulse 

Pulse BIC1 BIC2 BIC3 BIC4 Pr(1) Pr(2) Pr(3) Pr(4) 

1 NA        

2 NA        

3 NA        

4 -107.1 -104.8 -104.3 -103.0 0.917 0.082 0.001 0.000 

5 -110.4 -106.2 -108.5 -111.4 0.014 0.888 0.093 0.005 

6 -148.3 -149.5 -146.8 -147.8 0.136 0.040 0.602 0.223 

7 -148.8 -146.6 -145.9 -149.3 0.033 0.323 0.623 0.021 

8 -144.5 -140.4 -144.7 -148.0 0.016 0.971 0.013 0.001 

9 -155.6 -150.9 -155.0 -160.1 0.009 0.974 0.017 0.000 

10 -194.6 -192.7 -193.7 -198.2 0.098 0.657 0.243 0.003 

 

Table 5. Estimates of n and p for the pulses within the 20Hz train. Estimated means (μ), standard deviations ( ), and firing rates 

(relative to the total number of stimulations) for each normal density component (1, 2, or 3 indicating first, second, or 

third component) from the best fitting model for each pulse. The results have been aligned in columns to indicate apparent 

similarity between the estimated components from pulse to pulse 

 μ1  1  p1 μ2 2 p2 μ3 3 p3 

Pulse 1 - - - - - - - - - 

Pulse 2 - - - - - - - - - 

Pulse 3 - - - - - - - - - 

Pulse 4 86.45 10.64 0.095 - - - - - - 

Pulse 5 76.74 18.61 0.066 193.94 31.34 0.017 - - - 

Pulse 6 72.45 16.59 0.082 141.65 45.56 0.019 119.91 1.05 0.020 

Pulse 7 85.92 8.52 0.042 143.28 23.36 0.039 62.66 3.24 0.039 

Pulse 8 68.40 12.17 0.079 136.89 29.29 0.038 - - - 

Pulse 9 74.10 14.03 0.103 146.92 18.58 0.026 - - - 

Pulse 10 86.61 17.95 0.137 161.23 18.31 0.025 - - - 

 
 For the preparation which was stimulated at 20 and 40Hz 
(Fig. 4), a similar analysis was performed for estimating the 
BIC values for each pulse of the potential fusion sites. These 
BIC values have been converted to Bayesian posterior prob-
abilities for the 20Hz and 40Hz data (Table 4 and 6). The 
best fit parameters for each of the ten pulses (for the prepara-
tion stimulated at 20Hz and then at 40Hz) are shown in Ta-
bles 5 and 7. For each fitted components, we followed the 
same procedure as presented for the other preparation only 
stimulated at 40Hz with a mean μ, the standard deviation , 
and the firing rate p (here p refers to the probability a stimu-
lus results in a firing at that site for the specific pulse). As 
with the other preparation, the probability of firing is low for 
the first pulse and increases dramatically slightly for higher 
pulses at both 20 and 40Hz stimulations. The graphs in Figs. 
(7) (20Hz) and (8) (40Hz) show the fits for the best fit mod-
els as in Fig. (6). In this particular preparation at 20Hz, there 

were not enough quantal events for the first 3 pulses in the 
train to obtain any best fit model; even when the stimulation 
was turned up to 40Hz the initial pulses did not proved 
enough single events to fit well into any particular distribu-
tion. The model does predict that n was best described by 3 
sites for the middle pulses within the train for 20Hz stimula-
tion but then dropped back to 2 sites for later pulses; how-
ever, the p values are higher for the 2 sites than the earlier 
pulses within the train. A similar phenomenon was observed 
for the 40Hz with n changing slightly but p increasing 
slightly for each n with the increasing number of pulses 
within the stimulation train.  

DISCUSSION 

 In this study, we have shown that there is an effect on 
synaptic efficacy during STF by enhancement of presynaptic 
fusion of vesicles, and the underlying nature for the increase 
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Table 6. 40Hz data set for estimating BIC. Bayesian Information Criteria values and estimated posterior probability for each of 1, 

2, 3, and 4 component models fitted separately to the data from each pulse. For pulses 1-4, an insufficient number of fir-

ings were recorded. Bold entries indicate the best fit for that pulse 

Pulse BIC1 BIC2 BIC3 BIC4 Pr(1) Pr(2) Pr(3) Pr(4) 

1 NA        

2 NA        

3 NA        

4 NA        

5 -120.1 -116.4 -113.1 -113.2 0.001 0.018 0.516 0.465 

6 -189.6 -190.4 -195.1 -200.2 0.687 0.310 0.003 0.000 

7 -169.4 -168.4 -172.5 -175.6 0.274 0.714 0.012 0.001 

8 -162.0 -160.1 -160.9 -165.7 0.100 0.606 0.292 0.002 

9 -203.2 -198.9 -199.2 -202.6 0.008 0.549 0.430 0.014 

10 -213.6 -209.0 -211.9 -215.8 0.010 0.936 0.053 0.001 

 

Table 7. Estimates of n and p for the pulses within the 40Hz train. Estimated means (μ), standard deviations ( ), and firing rates 

(relative to the total number of stimulations) for each normal density component (1, 2, or 3 indicating first, second, or 

third component) from the best fitting model for each pulse. The results have been aligned in columns to indicate apparent 

similarity between the estimated components from pulse to pulse 

 μ1  1  p1 μ2 2 p2 μ3 3 p3 

Pulse 1 - - - - - - - - - 

Pulse 2 - - - - - - - - - 

Pulse 3 - - - - - - - - - 

Pulse 4 - - - - - - - - - 

Pulse 5 63.47 9.16 0.095 147.25 4.48 0.010 98.65 1.69 0.020 

Pulse 6 77.39 32.29 0.190 - - - - - - 

Pulse 7 71.46 15.04 0.175 139.80 8.53 0.010 - - - 

Pulse 8 63.21 13.57 0.159 123.66 17.04 0.016 - - - 

Pulse 9 66.17 11.90 0.204 122.41 16.31 0.021 - - - 

Pulse 10 67.48 13.10 0.218 130.74 16.16 0.017 - - - 

 
appears to be due to both an increase in probability of release 
from low threshold release sites as well as a recruitment of 
new release sites. Understanding the subtleties of synaptic 
transmission related to the function and recruitment of syn-
aptic sites in close proximity is problematic due to the spatial 
resolutions and 3D nature of nerve terminals.  

 One would predict differences in the mechanisms of syn-
aptic plasticity during STF depending on the synaptic archi-
tecture. Many synapses in the vertebrate CNS and NMJs 
appear to have a grid of presynaptic dense bodies, which are 
presumed to be active zones (AZ), spread out on the synaptic 
surface [45]. Thus, with such a structure, it is feasible to as-
sume that each site has an equal probability of release during 
a given frequency of stimulation and either a tuning-up or  
-down the probability of the entire grid occurs during STF. 
Perhaps, there are exceptions for the AZs along the edge of 

the synapse due to the lack of overlapping calcium clouds 
from neighboring AZs. However, synapses at the crayfish 
NMJ show a varied structural complexity with various sizes 
of synapses, numbers of AZs, as well as spacing among AZs. 
Such complexity is observed in insects and crustaceans [7, 9, 
24] and has been vital to understanding synaptic plasticity to 
account for mutational effects in synaptically relevant issues 
in the Drosophila NMJ model [46]. 

 Since the synapses occur on all sides of the terminal and 
are not planar, optical imaging by use of vesicle associated 
uptake dyes, such as FM1-43, would not allow optical as-
sessment of multiple synapses simultaneously in these ter-
minals. However, a physiological measure that characterizes 
discrete synapses at a quantal level is one possibility to as-
sess multiple sites during STF as approached in this study. 
The variety in quantal responses has allowed us to 
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Fig. (7). Plots of the overall mixture fit and underlying fitted components for each of the ten pulses during 20Hz pulse train. Each histogram 

shows the sqrt(RP) data (square root of rise time multiplied by peak amplitude) for the corresponding pulse. The black line indicates the over-

all mixture fits, while the colored lines represent the underlying mixture components (the colored lines sum to the black line). The colored 

points indicate the estimated component membership of each data point. The y-axis “density” simply indicates the relative likelihoods of 

sqrt(RP) within each pulse. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (8). Plots of the overall mixture fit and underlying fitted components for each of the ten pulses during 40Hz pulse train. Each histogram 

shows the sqrt(RP) data (square root of rise time multiplied by peak amplitude) for the corresponding pulse. The black line indicates the over-

all mixture fits, while the colored lines represent the underlying mixture components (the colored lines sum to the black line). The colored 

points indicate the estimated component membership of each data point. The y-axis “density” simply indicates the relative likelihoods of 

sqrt(RP) within each pulse. 
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group the quantal parameters for assessment in probability of 
occurrence and if new groupings appeared during STF. The 
analysis indicates that the overall rate of observing a firing 
increases for each successive pulse. In the preparation stimu-
lated at 40Hz, only 3 active sites appear to have been used 
during the entire stimulus train. Sites 1 and 2 are active 
throughout pulses 1-8 (and site 1 is quite possibly active but 
not detectable in pulses 9-10), while site 3 is recruited at 
pulse 4. The results of the analysis also show that site 3 pro-
duces large values of sqrt(RP), but fires at a low rate. The 
other preparation, which was also stimulated for 10 pulses 
but at 20 and 40Hz, revealed that increasing the stimulation 
frequency increased the p more so than the n which ac-
counted for the increase in m throughout the pulse train. The 
p increased for site 1 as compared to site 2. Given that a 
varicosity at this crayfish NMJ contains on the order of 20 to 
40 synapses, it is surprising that n was not estimated to be 
higher during these pulse trains. Since there is such a linear 
increase in m within the pulse trains for both preparations 
(40Hz alone and for the one stimulated at 20 and then 40Hz), 
we would have expected the same in the estimated n and p 
values with this analysis. This suggests that the quantal 
counting method and the method presented herein are not 
directly comparable. Also, these results could suggest that 
quantal signatures are not likely to be present for discrete 
synapses by this means of analysis. We also expected that 
the results for the 40Hz stimulation among the two prepara-
tions would have produced more similar results in estimates 
for n and p among the pulses since both recordings were 
made from primary varicosities along the nerve terminal 
string of varicosities [10].  

 A potential error in these measures is a non-uniformity in 
size of vesicles that could produce varied size and shape of 
quantal responses for a given synapse; but since the synaptic 
vesicle diameters in the opener motor nerve terminal show 
little variation in size [47], we are fairly convinced that size 
does not account for the quantal variation observed. In addi-
tion, it is not likely that the rapidly recycling pool of vesicles 
did not have enough time to refill with glutamate in between 
pulse trains as this preparation can withstand being stimu-
lated at 5Hz continuously for up to an hour before showing 
reduced quantal responses with use of a blocker for the pre-
synaptic glutamate transporter [48]. In fact, the range in 
quantal responses for any given pulse appears to be main-
tained throughout the experimental paradigm used in this 
current study. Recently it was noted that Drosophila larvae, 
which are highly active crawlers, showed larger vesicles to 
appear after about 90 minutes of active crawling and that 
these vesicles were formed due to activity but became de-
pleted over time [49]. If this was the case for the stimulation 
paradigm used in our study, then we would expect to show 
increased variation over time in the quantal responses for the 
1

st
 evoked pluses, which is not the case. Since the variation 

seen for each pulse is fairly consistent over time, but more 
variation occurs among different pulses (i.e., the 4

th
 to the 

8
th

) within a given train, indicates stability in recruiting simi-
lar threshold synapses. Recently, studies have shown that  
with high frequency stimulation, vesicles can be endocytosed 
by a bulk process thus allowing a large number of vesicular 
fusion events to occur at the synapses but without distorting 
the synaptic area [50]. In high-output NMJs of the crayfish 
on the extensor muscle, we did not observe bulk endocytosis 

with prolonged stimulation in a recent study [51], so we 
would not expect to find bulk endocytosis during these rela-
tively short pulse trains for the low-output NMJs used in this 
current study. 

 Some variation in the probability of release over the 
pulse train could be induced due to glutamate-ergic autore-
ceptor presynaptic feedback [52]. However, this should not 
influence the characteristic quantal shape but the likelihood 
of occurrence (i.e. p). Such feedback regulation on the pre-
synaptic terminal could, in part, cause the plateau in the 
EPSP amplitudes from the underlying leveling off in the 
mean quantal content within long pulse trains, such as 20 or 
40 pulses, delivered at 40Hz.  

 One source of error in our study is the latency between 
two simultaneous events. The timing might be short enough 
to produce a large response that is multi-quantal. Such errors 
would likely occur in the later pulses of the stimulus train 
when the probability is enhanced. A means to possible ad-
dress this issue would be to reduce the [Ca

2+
]o or to decrease 

the bath temperature in order to shift the synapses to a lower 
probability. In our study, we essential changed the internal 
calcium by changing the stimulus frequency under the same 
external concentration. Such an approach was recently used 
to demonstrate in rat hippocampal neurons that the endocytic 
capacity is linked to the level of [Ca

2+
]i [53]. Thus, with an 

increase of p for fusion within the STF train, there also needs 
to be an increase in the p of endocytosis. Similar studies of 
interest would be to document at the crayfish NMJ because 
of the large synaptic size and the known varied synaptic 
complexity differences for high- and low-output terminals at 
the NMJs [6]. 

 In this study, we tested if a lateral shift occurs in n and p 
obtained at the beginning of the pulse train to the later stimu-
lus pulses within the train as [Ca

2+
]i is raised by starting off 

with 20Hz and then moving to 40Hz. Within the stimulus 
train of 10 pulses, there was an incremental increase in both 
n and p as the stimulus train increased for the same given 
stimuli within the train. In one recording the p increased sub-
stantially while n only varied by a value of 1 or 2. Currently, 
studies are underway to cause an earlier shift of n and p 
within the pulse train by raising [Ca

2+
]i through blocking the 

sodium-calcium exchanger (NCX) [54].  

 The phenomenon commonly observed in the amplitude 
of EPSPs reaching a plateau during STF has not been fully 
addressed, but the balance in the influx through voltage 
gated channels, extrusion of calcium by pumps and the NCX 
are candidates because of a rapid time frame (100s of msec) 
[55]. In the STF induced in this study, the plateau is sub-
maximal since a higher stimulation frequency results in yet 
higher amplitudes of EPSPs which reaches a new plateau. 
Thus, additional AZs would likely be recruited and the prob-
ability of the ones active at lower stimulation frequency 
would increase. When might all the AZs be recruited for a 
maximal n to be achieved? When this does happen, only the 
variation in the probability of each n will be increased for 
enhancing the gain of the system. However, if saturation in 
recruiting all the sites occurs at these NMJs is not known. 
With the analysis technique we present, it might be possible 
to address such issues. 
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  Presenting another means for examining the quantal na-
ture of synaptic transmission opens novel avenues for further 
investigating the mechanisms of synaptic function. Studies 
are currently underway in the lab with similar methodical 
approaches at the Drosophila NMJs in mutant strains related 
to synaptic function and glutamate receptor sensitivity.  

FOOTNOTE 

R: A language and environment for statistical computing. R 
Development Core Team R Foundation for Statistical Com-
puting, Vienna, Austria 2005;ISBN 3-900051-07-0; http:// 
www.R-project.org 
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