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Abstract: Guanine-based purines have been traditionally studied as modulators of intracellular processes, mainly G-
protein activity. However, more recently, several studies have shown that they exert a variety of extracellular effects not 
related to G-proteins, including trophic effects on neural cells, modulation of glutamatergic activity, behavioral effects 
and anticonvulsant activity. In this article, the putative effects of the guanine-based purines against seizures and neurotox-
icity are reviewed. Current evidence suggests that guanine-based purines, especially guanosine, seem to be endogenous 
anticonvulsant substances, perhaps in a similar way to the adenine-based purines. Although studies addressing the mecha-
nism of action of guanine-based purines are still lacking, their anticonvulsant activity is probably related to the modula-
tion of several glutamatergic parameters, especially the astrocytic glutamate uptake. These findings point to the guanine-
based purines as potential new targets for the development of novel drugs for neuroprotection and management of epi-
lepsy. 

Keywords: Guanine-based purines, seizures, epilepsy, adenine-based purines, guanosine, purines, neuroprotection, glutamate. 

1. INTRODUCTION 

The purinergic system usually relates to the adenine-
based purines, including the nucleotides adenosine 5'-
triphosphate (ATP), adenosine 5'-diphosphate (ADP) and 
adenosine 5'-monophoshate (AMP), and the nucleoside 
adenosine. Adenine-based purines exert several biological 
roles, including the pivotal role on energy metabolism. Ex-
tracellular adenosine and ATP are usually considered the 
major endogenous effectors of the purinergic system, acting 
on P1 and P2 receptors, respectively [1]. However, guanine-
based purines, namely the nucleotides guanosine 5'-
triphosphate (GTP), guanosine 5'-diphosphate (GDP) and 
guanosine 5'-monophosphate (GMP) and the nucleoside 
guanosine also are a relevant component of the purinergic 
system.  

Traditionally, guanine-based purines have been studied 
as intracellular modulators of signal transduction processes, 
modulating the activity of G-proteins [2]. Nevertheless, more 
recently, guanine-based purines have been shown to exert 
relevant extracellular effects, including those related to the 
modulation of the glutamatergic system [3-12]. Although the 
exact mechanism underlying these extracellular effects re-
mains unclear, it does not seem to involve a direct modula-
tion of G-proteins [12]. Guanine-based purines were shown 
to inhibit the binding of glutamate and analogs [3,6,7,13], to 
be neuroprotective under excitotoxic conditions [14-16], as 
well as anticonvulsant against seizures induced by glutama-
tergic agents [10,11,17-20]. Notably, the effects of guanine-
based purines on animal models of seizures were one of the  
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first direct and reliable evidences of an in vivo modulation of 
the glutamatergic system by those substances [6,11].  

In this article, the putative effects of the guanine-based 
purines in seizures and neurotoxicity are briefly reviewed, 
with emphasis on their potential role in neuroprotection and 
epilepsy management.  

2. GUANINE-BASED PURINERGIC SYSTEM 

2.1. Historical Overview 

In 1971, the first evidence for a more complex class of 
signaling pathway emerged establishing that the sensor and 
intracellular effector are separate proteins that communicate 
through proteins called guanine nucleotide-dependent regula-
tory proteins, GTP binding proteins or G-proteins [21]. G-
proteins alternate between active GTP-bound and inactive 
GDP-bound forms. Activation is catalyzed by receptors and 
deactivation by an intrinsic property of G-proteins, its 
GTPase activity. G-proteins couple cell surface receptors to 
cellular effectors, modulating cell responses to external 
stimuli: the interaction of agonists with their receptors trig-
gers the binding of GTP to G-proteins, forming an active 
complex G-protein/GTP, which simultaneously modulates 
the activity of effector systems and decreases the agonist 
binding to specific receptors [2].  

Recently, it has become increasingly recognized that 
guanine-based purines have also important extracellular sig-
nalling effects, including in vitro inhibitory effects on the 
activity of the glutamatergic system, trophic effects on neu-
ral cells, neuroprotection against ischemic insults, effects on 
learning and memory, modulation of pain pathways, anti-
convulsant effects and other behavioral alterations [reviewed 
in ref. 12]. Before reviewing the putative aspects of guanine-
based purines on seizures and epilepsy animal models, we 
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will summarize some aspects related to the synthesis and 
metabolism of the main constituents of the guanine-based 
purinergic system. 

2.2. Synthesis and Metabolism of Guanine-Based Purines 

Extracellular purine nucleosides and nucleotides are 
ubiquitous intercellular messengers, which may affect sev-
eral biological functions, largely acting as neurotransmitters 
or neuromodulators [1,16]. Several lines of evidence indicate 
that guanine-based purines, mainly the nucleotide GTP and 
the nucleoside guanosine, act as intercellular signalling 
molecules, as well as their counterparts ATP and adenosine 
[16,22]. In the nervous system guanine-based purines medi-
ate both immediate effects, such as neurotransmission, and 
trophic effects which induce changes in cell metabolism, 
structure and function. 

Adenine- and guanine-based purines share some meta-
bolic steps (i.e., nucleoside transporters and ecto-
nucleotidases). Therefore, it is tempting to propose that gua-
nine- and adenine-based purines may respond similarly in 
certain conditions. Astrocytes are the main sources of ex-
tracellular adenine- and guanine-based purines in the central 
nervous system (CNS) [22]. They are largely involved in 
several brain functions in physiological conditions, partici-
pating in neuronal development, synaptic activity, homeo-
static control of the extracellular environment and also in 
processes related to brain injuries, by arresting and repairing 
further neural damage [23,24]. Additionally, growing evi-
dence indicates that purines are widely involved in the mo-
lecular mechanisms underlying the multiple functions of 
astrocytes, either exerting their influence on key intracellular 
activities (energy metabolism and nucleic acid synthesis) or 
activating a variety of membrane receptors [25]. Cultured 
astrocytes release guanine-based purines, a process that is 
importantly augmented after hypoxic and low glucose insults 
[22]. Interestingly, the release of guanine-based purines 
seems to be larger than that observed for adenine-based 
purines [22]. Actually, guanine-based purines are released in 
amounts about 3-fold greater that their adenine-based coun-
terparts and the amounts of guanine-based purines, espe-
cially guanosine, is further augmented when the cells are 
exposed to a brief period of hypoxia/hypoglycemia [22]. 
Notably, purine nucleosides and nucleotides are extensively 
released from degenerating cells, particularly under hypoxic 
and ischemic conditions. This latter is particularly relevant in 
the CNS, where purines may depress neurotransmission, thus 
reducing excitotoxic neuronal damages [26], and may regu-
late the responses of nervous tissue to injury.  

The presence of adenine- and guanine-based purines and 
their metabolites in human and animal cerebrospinal fluid 
(CSF) has been well described [27-30]. Astrocytes, as well 
as neurons, are responsible for both nucleoside metabolism 
and uptake of the nucleosides adenosine and guanosine [31]. 
Following their release, essentially from astrocytes, the ex-
tracellular levels of the various purine nucleotides and nu-
cleosides are regulated by the activities of cell surface-
located enzymes, which have the same function of the corre-
sponding intracellular enzymes [32]. The enzymes involved 
in extracellular nucleotide hydrolysis include membrane-
bound ecto-nucleotidases, ecto-nucleotidases released from 
membranes and the naturally occurring soluble nucleoti-

dases. These enzymes, in association with ecto-5’-
nucleotidase, hydrolyze extracellular nucleotides in a step-
wise fashion down to nucleosides and are crucial for physio-
logical modulation of CNS functions, as well as for the 
purine-induced neuroprotection [33]. Several such enzymes 
(ectonucleotidases) comprise the ecto-nucleoside triphospha-
tase (E-NTPase) family. E-NTPases include the ecto-ATPase 
that preferentially converts ATP into ADP; the ecto-ATP 
diphosphohydrolase (ectoapyrase) that hydrolyses either 
ATP or ADP, and the ecto-5’-nucleotidase that catalyses the 
hydrolysis of AMP to adenosine [34,35]. Nevertheless, the 
selectivity for adenine-based purines is not complete, as 
these enzymes also hydrolyse all purine and pyrimidine nu-
cleotides, including guanine-based purines. In regard to the 
nucleosides, adenosine is deaminated by adenosine 
deaminase (ADA) and guanosine is converted to guanine by 
guanase. These soluble nucleotidases are also present and 
active in rat CSF [36,37], where they hydrolyze all guanine 
and adenine nucleotides with the following order of catalytic 
efficiency: GDP > ADP = ATP = GTP > AMP = GMP [30]. 
Interestingly, at high concentrations, GDP hydrolysis rate is 
greater than that of ADP, perhaps favoring the accumulation 
of GMP and guanosine. In fact, these enzymes can be re-
leased to the extracellular space (CSF) from choroid plexus, 
endothelial cells or even microglia and play an important 
regulatory role of the purinergic system under physiological 
and pathological conditions [34,35]. Notably, in cultured 
astrocytes, inhibition of ecto-5'-nucleotidase activity signifi-
cantly impaired accumulation of extracellular guanosine, 
indicating that, similar to extracellular adenosine, it is to 
some extent derived from the extracellular metabolism of 
guanine nucleotides [38].  

Nucleosides are also removed from the extracellular 
space into neurons and glia by transporter systems. Uptake 
of purine and pyrimidine nucleosides by astrocytes is also 
important for nucleic acid synthesis and synthesis of AMP, 
ADP, and ATP from adenosine and GTP from guanosine 
[39]. Peng et al. [40] has identified two equilibrative nucleo-
side transporters in astrocytes (ENT1 and ENT2), together 
with the concentrative nucleoside transporter (CNT2) respon-
sible for nucleoside uptake. Interestingly, an equilibrative 
nucleoside transporter (ENT1) was also recently identified in 
the rat brain endothelial cells and choroid plexus epithelial 
cells, indicating a more ubiquitous distribution of the purine 
nucleoside transmembrane transport system [41]. 

Growing evidence suggests that guanine-based purines 
interact at the level of signal-transduction pathways with 
other transmitters, for example, glutamate and GABA [42]. 
It is commonly accepted that purines production in the brain 
is closely related to the release of neurotransmitters and that 
K+-induced depolarization evokes the release of endogenous 
neurotransmitters which, in turn, promote purine outflow 
[43,44]. Released nucleotides and nucleosides are considered 
to act as retrograde synaptic transmitters, modulating the 
release of several putative neurotransmitters, including glu-
tamate and GABA. However, to date, little is known about 
the potential influence of guanine-based purines on neuronal 
function and synaptic plasticity and new studies are war-
ranted. 

Regarding the CNS guanosine bioavailability, a single in-
tracerebroventricular (i.c.v.) administration of GMP in mice 
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causes a large increase in the CSF levels of GMP, guanosine 
and oxypurines (hypoxanthine, xanthine and uric acid) [45]. 
We also observed that intraperitoneal (i.p.) administration of 
GMP in anticonvulsant doses produced a 3-fold increase of 
CSF levels of guanosine in rats, not affecting GMP levels 
[46]. Intracerebroventricular administration of guanosine did 
not affect GMP and hypoxanthine CSF levels, in spite of 
causing a significant increase in guanosine, xanthine and uric 
acid CSF levels [45]. Intrathecal (i.t.) administration of 
guanosine produced a significant increase in guanosine, 
inosine, xanthine and uric acid CSF levels [47]. Notably, the 
significant increase of CSF concentration of oxypurines after 
i.c.v. or i.t. injection of guanosine probably indicates an in 
vivo degradation. Additionally, animals treated with oral 
guanosine in anticonvulsant doses presented a 2-fold in-
crease in CSF concentration of guanosine as compared to 
control [19]. Intraperitoneal or oral administration of high-
dose guanosine (up to 120 mg.kg-1) produced a 6.8 or 7.8-
fold increase in guanosine CSF levels, respectively [48]. 
Importantly, guanosine CSF levels remained increased up to 
360 min after a single i.p. administration of guanosine in rats 
[49]. However, systemic guanosine did not affect the CSF 
levels of inosine, oxypurines and adenine-based purines [48]. 
Notably, a previous study has demonstrated that an i.p. ad-
ministration of guanosine increased the amounts of both 
guanosine and guanine in the spinal cord, with a peak around 
30 min [50]. Considering that extracellular guanine also ex-
erts several biological effects [51,52], it is tempting to pro-
pose that some biological effects of guanosine may be regu-
lated by its conversion to guanine by a membrane located 
purine nucleoside phosphorylase.  

2.3. Effects of Guanine-Based Purines Against Seizures 
and Toxicity in Animals 

Glutamate is the major excitatory neurotransmitter in the 
mammalian CNS, participating in plastic processes involved 

in learning and memory [53], development and aging [54] 
and environmental adaptation [55]. However, glutamate may 
also be a potent neurotoxin and overstimulation of the glu-
tamatergic system (by exogenous or endogenous stimuli), 
which occurs when extracellular glutamate levels increase 
over the physiological range, has been implicated in the 
pathogenesis of various acute and chronic CNS disorders 
[56-58]. Consequently, the equilibrium between the physio-
logical and pathological glutamatergic tonus is essential for 
brain function and its disruption is related with the patho-
genesis of various CNS disorders including the epilepsies 
[56,59-61]. 

It is now clearly shown that glutamatergic excitotoxicity 
is prevented by astrocytic glutamate uptake, a process re-
sponsible for maintaining the extracellular glutamate levels 
below toxic levels [23,58,61]. Since adenosine decreases 
glutamate release and guanosine increases glutamate uptake 
(and persists for longer periods of time extracellularly), both 
purine nucleosides may act in concert to reduce the impact of 
glutamate-induced excitability. This issue might be espe-
cially important in the endogenous and exogenous modula-
tion of glutamate-related seizures. Glutamate undoubtedly 
plays a pivotal role on epilepsy and probably in other CNS 
disorders precipitating seizure activity [56-58,62,63]. How-
ever, the cellular and molecular mechanisms involved in the 
generation and maintenance of seizures and toxicity are not 
fully understood.  

Guanine nucleotides, intracerebroventricularly adminis-
tered, had long been shown to prevent seizures induced by 
quinolinic acid, a toxin that overstimulates the glutamatergic 
neurotransmission [6]. This effect was compatible with the 
antagonistic properties of guanine nucleotides on glutamate 
receptors being studied in our group [3]. However, after fur-
ther exploring the interaction of guanine nucleotides with 
glutamate, we observed that besides the administration of 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. (1). Panel A: Schematic model of the sources and different enzymes pathways of extracellular guanine-based purines. ABPs = adenine-
based purines; E-NTPDases = ecto-nucleotide-diphosphohydrolase; PNP = purine nucleoside phosphorylase; HGPRT = hypoxanthine-
guanine phosphoribosyltransferase. Panel B: Schematic representation of the guanine-based purinergic system. Once released from astro-
cytes, guanine-based purines may interact with its specific receptors on neurons and astrocytes, exerting trophic effects and modulating neu-
rotransmitters release and uptake. “?” is referred to the potential existence of specific receptors for guanine-based purines; MAPkinase = 
Mitogen-activated protein kinase; NT = nucleoside transporters; GUO = guanosine; GUA = guanine; GLU = glutamate; GBPs = guanine-
based purines. 
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GMP, guanosine also prevented seizures induced by quino-
linic acid [11]. Later we showed that a single i.c.v. admini-
stration of GTP and GDP was also protective against sei-
zures induced by quinolinic acid in mice [18]. Notably, we 
also observed that single and chronic oral administrations of 
guanosine were also effective in the same seizure model 
[10]. Importantly, quinolinic acid is a direct NMDA agonist, 
but also stimulates glutamate release and inhibits its uptake 
[64]. Additional studies also provided evidence that 
guanosine and GMP administered intracerebroventricularly, 
intraperitonially or orally dose-dependently protected against 
seizures induced by the other glutamatergic agents such as 
kainic acid and -dendrotoxin in adult and young rodents 
[17,19,20,46,65,66]. The fact that chronic oral exposure to 
guanine-based purines produced anticonvulsant effects indi-
cates that these substances are orally active in the long term 
and points to a future target for new antiepileptic drugs in 
adults and children. Of note, chronically administered GMP 
had also been shown to be neuroprotective against quinolinic 
acid-induced striatal neuronal cell death in rats [15], 
strengthening the notion that the guanine-based purinergic 
system may be a valuable target for the treatment of neu-
rodegenerative disorders. Table 1 summarizes the main stud-
ies addressing the effects of guanine-based purines on sei-
zures and toxicity induced by glutamate and its analogs in 
vitro and in vivo.  

Guanine-based purines, mainly GMP and guanosine, 
have usually presented similar neuroprotective profile in 
several in vivo and in vitro protocols [10,11,18-20,64]. How-
ever, most effects of nucleotides (mainly GMP) seemed to be 
due to their conversion to guanosine. Specifically for sei-
zures, an acute i.c.v. administration of the ecto-5’-
nucleotidase (enzyme that converts GMP to guanosine) in-
hibitor AOPCP prevented the anticonvulsant effects of GMP 
against quinolinic acid in rats, without affecting the effect of 
guanosine [46]. Moreover, we demonstrated that anticonvul-
sant effects of i.c.v. GTP and GDP seemed to be mediated by 
their conversion to guanosine, since their poorly hydrolys-
able analogs GTP S, GppNHp and GDP S were not capable 
of preventing seizures induced by quinolinic acid in mice 
[18]. Of note, a recent study demonstrated that GMP-induced 
antinociception was also prevented by AOPCP, corroborat-
ing with anticonvulsant effects [45]. 

Although the behavioral effects of guanosine in prevent-
ing quinolinic acid-induced seizures have been well de-
scribed [10,11,17,18], little is known about its electrophysi-
ological effects in the brain. Recently, we performed the first 
study addressing this issue based on epidural electroencepha-
logram (EEG) recordings of rats [67]. In addition to clear 
EEG changes occurring during the seizure events, we found 
that quinolinic acid disrupted a prominent basal theta (4-10 
Hz) activity during peri-ictal periods and promoted a relative 
increase in the power level at the gamma band; guanosine, 
when successfully preventing seizures, counteracted this 
effect following quinolinic acid administration. Interestingly, 
we observed that MK-801, a known NMDA-antagonist used 
as a positive control, presented different spectral effects 
when compared to guanosine in rats protected against quino-
linic acid-induced seizures, producing large gamma oscilla-
tions following quinolinic acid administration [67]. Addi-
tionally, the combined pre-treatment with both guanosine 
and MK-801 in this model led to qualitatively different re-

sults than the observed when each drug was administered 
alone [67]. Considering these recent evidences, we suggest 
that a diverse mechanism of action between both drugs 
(guanosine versus MK-801 or perhaps other NMDA antago-
nists) exists and that guanosine might be related to a lower 
incidence of cognitive side effects than NMDA antagonists 
in the clinical setting. 

It is well known that guanine-based purines, mainly 
guanosine, are protective against quinolinic acid-induced 
seizures in a dose-dependent manner [11,18]. However, it 
still remains puzzling why these substances are not effective, 
even in high doses, in preventing quinolinic acid-induced 
seizures in 100% of the cases. In previous studies, we have 
found that the most effective doses of guanine-based purines 
accounts for nearly 50% of protection in the quinolinic acid-
induced seizures model [10,11,18,67]. Importantly, Torres et 
al. [67] observed that this somewhat partial anticonvulsant 
effect does not seem to be related to individual differences 
among animals, suggesting that dynamic variables within 
rats are probably determining whether guanine-based purines 
will successfully prevent seizures or not. Importantly, this 
study has demonstrated that protected and non-protected 
animals under guanosine treatment can be distinguished 
electrophysiologically, even before the beginning of the mo-
tor seizures. Accordingly, we found that the level of theta 
power greatly decreased in animals displaying seizures under 
guanosine treatment, both before and after the seizure event, 
similarly to what we observed in vehicle pretreated rats. On 
the other hand, animals successfully protected by guanosine 
exhibited a higher level of theta power than animals display-
ing seizures. It is possible that these variables are related to 
pharmacokinetic and pharmacodynamic factors, although it 
could also be related to the current internal state of the brain. 

Besides epilepsy and general seizure behavior, brain 
ischemia is responsible for significant morbidity and mortal-
ity and significant resources have also been dedicated to de-
veloping new neuroprotective strategies. Since adenine-
based purines have been demonstrated to play a role in en-
dogenous neurodegenerative and neuroprotective processes 
[68], guanine-based purines could also be investigated for 
possible therapeutic manipulations. As stated above (section 
2.2), using primary cultures of astrocytes prepared from the 
rodent cerebral hemispheres, it was shown that they sponta-
neously release guanine-based purines even in basal condi-
tions. Interestingly, the amount of guanine-based purines 
(especially guanosine) released over a 3-hour period was 
greater than that of adenine-based purines [22]. Moreover, 
the exposure of these cultures to hypoxia/low glucose levels 
resulted in sustained increase in the release of guanine- and 
adenine-based purines over basal values up to 90 minutes 
after the insult. Notably, the release of purines was not re-
lated to an artifact of diminished cell viability [22]. These 
effects in an in vitro ischemia/stroke model are consistent 
with the hypothesis that these compounds may exert pivotal 
modulatory effects on synaptic transmission and more sus-
tained trophic effects.  

Guanine-based purines have also recently been shown to 
play a role in the Lesch-Nyhan syndrome [69] and perhaps in 
several other neurodegenerative diseases [70,71]. The ration-
ale for this hypothesis is based on clinical and biochemical 
characterization of some neurological disorders such as 
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Table 1. Summary of Main Experimental Studies Investigating the Guanine-Based Purines on Seizures and Glutamatergic Toxicity 

In Vitro Studies 

Inhibit kainic acid binding Souza and Ramirez, 1991[3]; Paz et al., 1994[7]; Ramos et al., 

1997[9] 

Prevent cell responses to excitatory amino acids Burgos et al., 1998[4]; 2000[5] 

Inhibit glutamate and its analogs binding Rubin et al., 1997[52]; Baron et al., 1989[6] 

Prevent NMDA-induced excitotoxicity  Baron et al., 1989[6]; Molz et al., 2008[100]; Caciagli et al., 
2000[38] 

Stimulate glutamate uptake by astrocytes  Frizzo et al., 2001[107]; 2003[102]; Gottfried et al., 2002[112] 

Stimulate the glutamate uptake by synaptic vesicles  Tasca et al., 2004[8] 

Stimulate glutamate uptake in brain slices Frizzo et al., 2002[14]; 2005[110]; Thomazi et al., 2004[113] 

Prevent the decrease of glutamate uptake induced by hypoxic-ischemic insult  Moretto et al., 2005[114] 

Prevent quinolinic acid-induced release of glutamate on synaptosomes Tavares et al., 2005[65] 

Prevent neural apoptosis  Di Iorio et al., 2004[70]; Pettifer et al., 2004[71] 

Preserve neural viability in mouse spinal cord cultures during chemical hypoxia Litsky et al., 1999[123] 

Protect glial cells against glucose deprivation and mitochondrial inhibition Jurkowitz et al., 1998[124] 

Reduce apoptosis and stimulates neurogenesis in rats with parkinsonism Su et al., 2009[52] 

Reduce apoptosis and inflammation in rats with acute spinal cord injury Jiang et al., 2007[134] 

In Vivo Studies 

Prevent quinolinic acid-induced seizures in mice Schmidt et al., 2000[11]; 2005[18]; Lara et al., 2001[10] 

Prevent quinolinic acid-induced seizures in young rats de Oliveira et al., 2004[17] 

Prevent quinolinic acid-induced seizures in adult rats Soares et al., 2004[46] 

Prevent quinolinic acid-induced neural death Malcon et al., 1997[15] 

Prevent seizures induced by several glutamatergic agents in rodents Lara et al., 2001[10]; Vinadé et al., 2003[20] 

Electrophysiological effects of guanosine against quinolinic acid-induced seizures 

in rats 

Torres et al., 2010[67] 

Induce transitory amnesia in rats  Roesler et al., 2000[77]; Saute et al., 2006[79] 

Induce transitory amnesia in mice  Vinadé et al., 2003[10]; Vinadé et al., 2004[78] 

Prevent the facilitatory effect of glutamate on memory in rats Rubin et al., 1996[76] 

Chronic treatment is anxiolytic in mice Vinadé et al., 2003[20]  

Attenuate hyperlocomotion induced by MK-801 Tort et al., 2004[80] 

Prevent MK-801-induced hyperalgesia Schmidt et al., 2009[83] 

Prevent in vivo decrease of astrocytic glutamate uptake induced by quinolinic acid Vinadé et al., 2005[19] 

Improve locomotor function and remyelination in rats submitted to a spinal cord 
injury model  

Jiang et al., 2003[135]; 2007[134] 

Produce antinociceptive effects against glutamatergic pain models in rodents Schmidt et al., 2008[45]; 2009[47,49]; 2010[48] 

Improve motor behavior in rats with parkinsonism Su et al., 2009[52] 

Neuroprotective effects against stroke  Chang et al., 2008[136] 

 

Lesch-Nyhan syndrome and the neurobiological conse-
quences of the hypoxanthine phosphoribosyltransferase 
(HPRT) deficiency. Conceivably, diminished reutilization of 

free guanine bases due to absent or reduced HPRT activity 
and relatively high guanase activity in the brain could lead to 
deficient endogenous pools of guanosine associated with 
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glutamatergic synapses. These issues demonstrated the po-
tential roles that guanine-based purines play in neurodevel-
opment and as neuromodulators. Nevertheless, these findings 
remain to be further investigated but strongly suggest gua-
nine-based purines as potential drug targets in the experi-
mental therapy of neuroinflammatory and neurodegenerative 
diseases.  

Considering that purines, their metabolites and the solu-
ble nucleotidases responsible for their hydrolysis are de-
tected in the human and animal CSF and blood serum 
[27,29,36,72,73], and their potential role on an “endogenous 
neuroprotection system”, it is possible that these parameters 
may be new putative markers of CNS injury. We have dem-
onstrated that pentylenetetrazol-induced seizures promote an 
increase in CSF nucleotidases activity represented by further 
hydrolysis of GDP and ADP and an increase in concentra-
tion of guanosine and inosine (probably related to quick deg-
radation of adenosine to inosine) 30 minutes after the insult 
[74]. Increases of GDP/ADP hydrolysis and levels of nu-
cleosides guanosine/inosine after pentylenetetrazol-induced 
seizures presented a somewhat similar profile to other well-
known brain injury markers (S100 -protein and neuron-
specific enolase - NSE). This temporal similarity suggests 
that those compounds could become biochemical brain 
markers to evaluate neural injury.  

2.4. Behavioral Effects of Guanine-Based Purines 

It has been well demonstrated for several glutamate an-
tagonists, mainly NMDA-receptor antagonists, that they may 
induce amnesia and severe locomotor deficits in animals 
[75]. It is well documented that glutamate plays a key role on 
memory mechanisms [53], and previous studies demon-
strated that GMP was able to reverse the facilitatory effect of 
post-training intra-hippocampal glutamate administration on 
inhibitory avoidance task performance in rats [76]. Further 
studies demonstrated that GMP and guanosine are capable to 
modulate memory processes since pretraining administration 
of both guanine-based purines impaired retention of inhibi-
tory avoidance responses in rats [20,77]. The guanine-based 
purine effects on memory were reproduced with anticonvul-
sant doses after acute/chronic i.p./oral administration and 
adenosine-receptor antagonists failed to prevent these effects 
[78]. Furthermore, the amnesic effect related to the pretreat-
ment with GMP also depended on its conversion to 
guanosine [79]. These findings suggest an amnesic effect of 
guanosine on inhibitory avoidance in rodents, in a pattern 
compatible with inhibition of glutamatergic activity and in-
dependent of adenosine A1 and A2A receptors.  

Most studies have indicated that guanosine per se does 
not affect spontaneous locomotion in rodents [9,20,80]. Ad-
ditionally, no obvious motor disturbance or sedative effects 
were observed since acute or chronic administration of gua-
nine-based purines did not alter rotarod and open field per-
formance, as evidenced with other glutamate antagonists 
such as MK-801 [9,20]. Interestingly, NMDA-receptor an-
tagonists have been related to significant locomotor distur-
bances [81]. Recent evidence suggest that NMDA receptor 
antagonism may be associated with glutamatergic activation 
of non-NMDA glutamatergic receptors induced by increased 
glutamate release, which appears to be closely related to 
those behavioral alterations [82]. Therefore, despite of reduc-

ing glutamatergic effects at NMDA receptors, NMDA-
receptor antagonists may stimulate non-NMDA receptors by 
increasing the release of glutamate. Interestingly, guanosine 
produced an approximately 60% attenuation of hyperloco-
motion induced by MK-801 (a non-competitive NMDA-
receptor antagonist), whereas it did not affect the hyperlo-
comotion induced by the indirect dopamine agonist am-
phetamine or by the non-selective adenosine-receptor an-
tagonist caffeine [80]. Additionally, we have recently ob-
served that MK-801 induces paradoxical hyperalgesia in the 
rat tail-flick paradigm, a behavior effect significantly corre-
lated with increased CSF levels of the excitatory amino acids 
glutamate and aspartate [83]. Notably, guanosine prevented 
both neurochemical and behavioral effects induced by MK-
801 [83]. The attenuation of some behavioral effects of MK-
801 by guanosine (locomotor and nociceptive effects) may 
be related to an increase of glutamate uptake by astrocytes 
promoted by guanosine, reducing glutamate levels at the 
synaptic cleft and leading to less activation of non-NMDA 
receptors [83,84]. 

More recently, our group has demonstrated that guanine-
based purines produce consistent antinociceptive effects 
against several pain models, including those based on ther-
mal or chemical stimuli [45,47-49,84,85]. These antinocicep-
tive effects were investigated by using the nucleotide GMP 
and the nucleoside guanosine, but other guanine-based 
purines might cause such effects as well. Interestingly, we 
also demonstrated that GMP-induced antinociception was 
prevented by the ecto-5’-nucleotidase inhibitor , -
methyleneadenosine 5’-diphosphate (AOPCP), suggesting 
that its effects result from conversion to guanosine [45]. Our 
studies clearly demonstrated that i.c.v., i.t. or systemically 
(i.p.) administered guanosine produces significant inhibition 
of pain-related behavior induced by several algogens in mice 
[45,47-49,84,85]. Additionally, i.t. or i.p. guanosine prevents 
biting behavior induced by i.t. administration of glutamate 
and non-NMDA agonists, but it was not effective against 
NMDA [47,48]. We also demonstrate that these antinocicep-
tive effects may involve some adenosine receptors (A1 and 
A2A) and spinal cord glutamate uptake [48].  

The contribution of adenosine A1 and A2A receptors to 
the effects of guanosine has also been ruled out in some be-
havioral studies. The adenosine antagonist caffeine failed to 
inhibit the anticonvulsant effect of an acute orally admini-
stration of guanosine on quinolinic acid-induced seizures in 
mice [10] or the amnesic effect of guanosine in rats [77,78]. 
Conversely, more recently, we demonstrated that a pretreat-
ment with non-selective (Caffeine) and selective A1/A2A re-
ceptor antagonists (DPCPX and SCH58261) significantly 
affected guanosine-induced nociception [48]. Allopurinol-
induced antinociception, an event related to the accumulation 
of guanosine and adenosine in the CSF, was prevented by 
caffeine and DPCPX as well [85]. Therefore, at least for an-
tinociception, adenosine receptors seem to be relevant to 
guanine-based purine effects, but further work is warranted.  

2.5. Insights into the Mechanism of Action of Guanine-
Based Purines  

It has been classically demonstrated that by acting via G-
proteins, GTP is able to simultaneously inhibit binding of 
neurotransmitters (and their agonists) to metabotropic recep-
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tors and modulate adenylate cyclase activity [2,86]. How-
ever, we have demonstrated that the effects of guanine nu-
cleotides on kainic acid binding site and on adenylate cyclase 
activity could be dissociated [3]. In lysed membrane prepara-
tions, the guanine nucleotides GMP, GDP and GTP were 
able to inhibit the binding of kainic acid with the same effi-
ciency, whereas only GTP was able to stimulate cell mem-
brane adenylate cyclase activity. However, in vesicular 
preparations, all guanine nucleotides were still able to inhibit 
binding of kainic acid, whereas GTP lost the ability to stimu-
late adenylate cyclase activity. These findings strongly sug-
gested that the inhibition of kainic acid binding by guanine 
nucleotides was not dependent on a G-protein-mediated sys-
tem. This result corroborated studies from other groups, 
which had previously shown that the inhibitory effects of 
guanine nucleotides on the binding of glutamate or 
ionotropic glutamatergic ligands presented several inconsis-
tencies, when compared with studies on receptors known to 
be coupled to their second messengers through a G- protein 
[6,87-90]. Subsequent studies from our group supported the 
hypothesis that guanine nucleotides could antagonize the 
glutamatergic transmission by acting at extracellular sites 
located on the membrane surface [91-94].  

Searching for a relevance of the inhibitory action of ex-
tracellular guanine nucleotides on glutamate binding, several 
studies further investigated their putative effects on neural 
cell responses to glutamate and/or analogs [7,95-101]. It was 
observed that guanine nucleotides inhibited glutamate-
stimulated GFAP (glial fibrillary acidic protein) phosphory-
lation [96], glutamate (and analogs)-induced modulation of 
intracellular cAMP levels [97,98], kainate-stimulated lactate 
dehydrogenase (LDH) release [4], kainate-activated currents 
[94,101] and kainate-stimulated increase in Ca2+ influx [93]. 
Since most excitatory synapses in the CNS have glutamate 
as neurotransmitter, the potential modulatory action of gua-
nine nucleotides on the glutamatergic neurotransmission 
claimed attention to new investigations on their extracellular 
roles. 

Several studies have indicated that guanine-based 
purines, especially guanosine, may be neuroprotective en-
dogenous compounds released under excitotoxic conditions, 
preventing further toxicity to neural cells [reviewed in ref. 
12]. Considering that guanine-based purines seem to be es-
pecially effective after conversion to guanosine 
[45,65,79,102] and the fact that this nucleoside probably 
exerts only weak glutamate receptor antagonism, the hy-
pothesis of direct receptor interaction as the mechanism of 
neuroprotection and anticonvulsant action of guanine-based 
purines is unlikely, although this issue deserves further in-
vestigation [103,104].  

Guanosine occurs naturally in the brain and has been re-
ported to present numerous biological effects when adminis-
tered extracellularly, including trophic effects on neural cells 
(mainly astrocytes) [16,39] and modulation of glutamatergic 
activity [12]. Guanosine stimulates the release of adenine-
based purines from astrocytes, which may be responsible for 
some effects of guanine-based purines [105]. For example, 
the ability of guanine-based purines to stimulate proliferation 
of rat brain microglia in a concentration-dependent manner 
appears to be mediated by specific purinergic receptors that 
recognize adenine-based purines [105]. But this explanation 

is also incomplete, since many of the effects of guanine-
based purines persist in the presence of P1 and/or P2 purine 
receptor antagonists [45,99,106,107]. An alternative hy-
pothesis is that there are distinct receptors for guanine-based 
purines. Although those effects might be related to 
guanosine uptake into the intracellular compartment, a con-
sensus has emerged that at least some effects of guanosine 
involve its binding to a specific membrane protein [108,109], 
postulated to be a G protein-coupled receptor [16,108,109]. 
Moreover, several of the effects of guanosine may be medi-
ated through G-protein dependent signalling pathways in-
volving changes in the intracellular levels of cyclic nucleo-
tides or mitogen-activated protein kinase (MAPK) pathway 
raising the possibility that some of the effects of guanine-
based purines, particularly guanosine, involve activation of 
cell-surface receptors [26,106]. Indeed, the actual existence 
of its putative specific receptor has yet to be demonstrated. 
More certain is the fact that guanosine presents clear anti-
glutamatergic properties, as demonstrated in several in vivo 
and in vitro approaches [reviewed in ref. 12], which places it 
as a new potential neuroprotective strategy against glutama-
tergic excitotoxicity.  

The mechanism of action underlying the modulation of 
glutamatergic activity by guanosine, and perhaps other gua-
nine-based purines, is currently under research in our and 
other laboratories. It has been suggested that astrocytes are 
importantly involved, since guanosine has been shown to 
stimulate glutamate uptake by cultured astrocytes and brain 
slices [14,102,107,110]. Astrocytic glutamate uptake is a 
crucial process for the maintenance of extracellular gluta-
mate concentrations below toxic levels in physiological con-
ditions and under brain stress, thus supporting synapse ho-
meostasis (glutamate-glutamine cycle) [23]. Actually, this is 
the main mechanism of glutamate removal from the synaptic 
cleft [61]. Notably, both neuronal and astrocytic cell cultures 
are able to release guanosine under basal or ischemic condi-
tions [16,22,111] and kainate stimulates the release of 
guanosine [111]. In physiological conditions, the effects of 
guanosine on glutamate uptake in brain slices seem to be age 
(more in young animals) and structure (more in cortex) de-
pendent but, in excitotoxic conditions, guanosine seems to be 
more widely involved in modulating glutamate uptake 
[14,110,112,113]. In cultured primary astrocytes from corti-
ces of 1-day-old and adult rat brain cortical slices, guanosine 
was shown to increase the sodium-dependent uptake of glu-
tamate in a dose-dependent manner [107]. Importantly, 
adenosine affected neither the basal uptake nor the stimula-
tory effect of guanosine. Theophylline, a nonspecific P1 
(A1/A2A) adenosine-receptor antagonist, stimulated basal 
uptake of glutamate without affecting the stimulatory effect 
of guanosine. Finally, dipyridamole, a nucleoside transport 
inhibitor, also stimulated basal glutamate uptake, and this 
stimulatory effect was additive with that of guanosine. Thus, 
these findings suggest that the guanosine stimulatory effect 
on astrocytic uptake of glutamate is exerted from the ex-
tracellular side and is, at least partially, independent of the 
adenosinergic system [107].  

GMP and GTP mimicked the stimulatory effect of 
guanosine on glutamate uptake by astrocytic cells in culture 
[102]. However, a significant additive effect on uptake was 
not observed with the simultaneous addition of guanosine, 
GMP and GTP to the culture medium, compared with the 
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effect of each compound alone. These data were consistent 
with the possibility that only one compound was mediating 
the stimulatory effect on uptake or the three compounds 
were metabolically interconvertible with each other. Impor-
tantly, a poorly hydrolysable analogue of GTP did not stimu-
late the uptake of glutamate by cultured astrocytes and the 
effect of GMP was abolished when cultures were pretreated 
with AOPCP. Finally, guanosine failed to affect the astro-
cytic uptake of GABA [102]. Therefore, guanosine seems to 
be mediator of the stimulatory effect of guanine-based 
purines on the astrocytic uptake of glutamate, and this proc-
ess was independent of adenosine and relatively specific for 
glutamate [102]. As astrocytic uptake of glutamate is the 
most important mechanism for terminating its actions within 
the synapse, the stimulation of uptake by guanosine may be a 
relevant process in regulating glutamatergic neurotransmis-
sion, especially under excitotoxic conditions [23,58,61]. 

Oral administration of guanosine prevented the decrease 
of glutamate uptake by brain slices of rats submitted to qui-
nolinic acid seizure model [17,20]. Additionally, guanosine 
has been shown to prevent the decrease of glutamate uptake 
by hippocampal slices of neonatal rats exposed to a hypoxic-
ischemic insult in vivo [114]. Moreover, we demonstrated 
that in vitro and in vivo quinolinic acid stimulated synapto-
somal glutamate release and inhibited glutamate uptake by 
astrocytes, which could lead to increased extracellular glu-
tamate levels and seizures [64,115]. However, this neuro-
chemical effect was prevented by in vivo pretreatment with 
systemic guanosine or GMP [65]. Additionally, quinolinic 
acid stimulates glutamate uptake by synaptic vesicles, an 
effect prevented by glutamate antagonists and the guanine-
based purines guanosine and GMP [66]. Altogether these 
findings indicate that glutamate uptake modulation induced 
by guanosine might play a crucial role in the underlying 
mechanisms involved in the anticonvulsant effects of gua-
nine-based purines.  

In addition to their effects on neurotransmission, gua-
nine-based purines also have important trophic functions, 
affecting the development, structure or maintenance of neu-
ral cells [39]. Of note, guanosine has been shown to stimu-
late the release of neurotrophic factors, an event largely re-
lated to cell proliferation [16]. Some trophic effects of 
purines seem to be mediated via purinergic cell surface re-
ceptors, whereas others require uptake of purines by the tar-
get cells [39]. Guanosine and GTP, apparently through dif-
ferent mechanisms, are related to several trophic events, in-
cluding stimulation of astroblast growth [116], in vitro ax-
onal growth and proliferation of a wide range of cell types 
[117,118], and trophic effects on the CNS, including stimu-
lation of astrocyte proliferation, induction of synaptogenesis 
[119], synthesis and release of trophic factors such as nerve 
growth factor from astrocyte cultures, and differentiation of 
PC12 cells and hippocampal neurons in vitro 
[38,39,105,106,116,120,121]. Some of the trophic actions of 
guanine-based purines may be indirect, occurring as a result 
of stimulating the synthesis and release of trophic factors 
and/or enhancing the effects of these specific trophic factors. 
Another possibility is that some actions of guanosine could 
be mediated intracellularly after its uptake. However, with 
respect to a specific neurotrophic role for guanosine, its ex-
tracellular levels remained elevated for up to a week after 
focal brain injury [122]. Additionally, many trophic effects 

of guanine-based purines were not affected by the nucleoside 
uptake inhibitors, such as dipyridamole, indicating that they 
are triggered extracellularly [120]. 

The potential ability of exogenously administered gua-
nine-based purines to provide an alternative source of energy 
to ATP has been suggested as an explanatory hypothesis for 
their neuroprotective effects in the context of oxidative stress 
and cell damage [16,123]. For example, after exposure to 
rotenone, an inhibitor of the mitochondrial respiratory chain, 
and the induction of chemical hypoxia, guanosine was 
shown to preserve the viability of cultured astrocytes and 
neurons [123,124]. The ability of guanosine to maintain cel-
lular levels of ATP above a critical threshold under hypoxia 
may provide an explanation of the mechanism of their cell 
damage prevention. Indeed, the addition of a purine nucleo-
side phosphorylase inhibitor to the cultures, which would 
interfere with a pathway for the participation of purine nu-
cleosides in the production of ATP under anaerobic condi-
tions, attenuated their protective effect; this effect of purine 
nucleosides to preserve cell viability was especially dramatic 
with neurons. The data also suggested that neuronal protec-
tion by purine nucleosides is either dependent on or en-
hanced by the presence of glia [123]. 

3. CONCLUSIONS AND PERSPECTIVES 

This article reviews the evidences about the potential 
anticonvulsant activity displayed by some components of the 
guanine-based purinergic system, perhaps providing new 
targets for neuroprotection and epilepsy treatment in children 
and adults. Guanine-based purines seem to modify the ho-
meostasis of the glutamatergic system, modulating some 
glutamatergic parameters such as glutamate uptake by astro-
cytes and seizures induced by glutamatergic agents. Fur-
thermore, the profile of extracellular activity of the guanine-
based purines (endogenous compounds, orally active and no 
obvious CNS side effects except for transitory memory im-
pairment) makes this system a very interesting object for 
discovery of new pharmacological options to treat diseases 
related to overstimulation of glutamatergic system such as 
epilepsy and other neurodegenerative diseases.  

More specifically, to advance in guanine-based purine re-
search, further studies are necessary on their mechanisms of 
action, cloning of putative selective receptors and characteri-
zation of second messengers related to their extracellular 
effects. In fact, the investigation of the extracellular effects 
of guanine-based purines and their underlying mechanisms 
of action is still in its infancy and advance is urgently war-
ranted. This is especially true for the so called guanosine 
receptor characterization, which is pivotal for the proposal of 
a new neuromodulation pathway. Additional elucidation of 
the mechanism of action of guanosine and its membrane-
binding site is under current investigation in our laboratory.  

Furthermore, little information about potential side ef-
fects and systemic toxicity of these compounds is available. 
A recent study showed a minor toxic potential of guanosine 
in mice, displaying an absent mortality index and lack of 
changes in weight body gain or core temperature up to 72 h 
after guanosine systemic administration, even in high doses 
[48]. However, this study has demonstrated some indication 
of liver toxicity (elevated liver enzymes) induced by 
guanosine in doses higher than 240 mg.kg-1 [48]. Although 
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these effects were not observed at antinociceptive doses, 
future studies may focus on potential adverse effects of 
guanosine including those involved on liver metabolism. In 
fact, specific studies about the safety profile of these com-
pounds are pivotal for their future use in a clinical basis.  

Although it is early to propose the use of guanine-based 
purines for clinical research, an interesting approach to in-
vestigate their role clinically is the investigation of purine 
derivatives already used in humans. For example, we have 
demonstrated that allopurinol, a xanthine oxidase inhibitor, 
was an effective and well-tolerated adjuvant treatment for 
poorly responsive schizophrenia, refractory aggressive be-
havior and mania [125-129]. These results were confirmed 
by an independent group [130,131] and are hypothesized to 
be due to an indirect increase in extracellular purine levels 
(adenosine and guanosine) [12]. Notably, refractory epilepsy 
may also respond to allopurinol [132,133]. More recently, 
we have demonstrated that allopurinol produced dose-
dependent antinociceptive effects in several animal pain 
models [85]. The non-selective adenosine-receptor antago-
nist caffeine and the selective A1 adenosine-receptor antago-
nist, DPCPX, but not the selective A2A adenosine-receptor 
antagonist, SCH58261, completely prevented allopurinol-
induced antinociception. Allopurinol also caused an increase 
in CSF levels of purines, including the nucleosides adeno-
sine and guanosine, and decreased CSF levels of uric acid. 
Allopurinol-induced antinociception may be related to 
adenosine, and perhaps guanosine, accumulation. Consider-
ing that allopurinol is an old and extensively used compound 
and seems to be well tolerated with no obvious CNS toxic 
effects, allopurinol may be the first commercially available 
effective drug enhancing the effects of the purinergic sys-
tems for the treatment of human brain diseases, including 
chronic pain, psychiatric disorders and epilepsy. These find-
ings indicate that new studies addressing more selective xan-
thine oxidase inhibitors in neuroprotection could represent a 
fine approach to investigate the therapeutic potential of 
purine in a clinical setting.  

In conclusion, the role of the guanine-based purines as 
new targets for brain protection remains to be fully charac-
terized, but current evidence strongly suggests their potential 
for the treatment of brain diseases such as epilepsy. 
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