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Abstract: Traditionally, epilepsy has been considered to be a disorder of neuronal dysfunction. Based on this dogma, 

drug development efforts have largely focused on neurocentric model systems to screen for compounds that affect the 

function of neurons. Unfortunately, about 30% of all patients with epilepsy – or more than 20 million worldwide – are re-

fractory to classical neurocentric pharmacotherapy. The failure of neurocentric pharmacotherapy in epilepsy requires radi-

cal rethinking and the search for novel therapeutic targets. Research from recent years suggests that epilepsy is a disorder 

of astrocyte dysfunction. Astrocytes are key regulators of the brain’s own anticonvulsant adenosine. Thus, any dysfunc-

tion in astrocyte metabolism will drastically affect the brain’s ability to control excitability via adenosinergic neuromodu-

lation. This review will focus on the astrocyte-based enzyme adenosine kinase (ADK) as the key regulator of synaptic 

adenosine. Astrogliosis – a pathological hallmark of the epileptic brain – leads to overexpression of the adenosine-

removing enzyme ADK and therefore to adenosine deficiency. Evidence from transgenic animals demonstrates that over-

expression of ADK per se is sufficient to trigger seizures. Consequently, pharmacological inhibition of ADK is very ef-

fective in suppressing seizures that are refractory to classical antiepileptic drugs. The recent definition of ADK as rational 

target to predict and to prevent seizures in epilepsy has prompted the development of focal adenosine augmentation thera-

pies (AATs) that have been designed to selectively reconstitute adenosinergic signalling within an area of astrogliosis-

based adenosine-dysfunction. This therapeutic challenge has experimentally been met with polymeric or stem cell based 

brain implants to afford the focal delivery of adenosine. 
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INTRODUCTION 

Most clinically used antiepileptic drugs (AEDs) have 
been designed to affect neuronal function by directly affect-
ing neuronal ion channels, presynaptic release mechanisms, 
or neuronal receptor function [1, 2]. Many of these therapeu-
tic drug effects are based on solidly studied mechanisms. For 
example, the gabapentinoids gabapentin and pregabalin exert 
their anticonvulsant activity by binding to 2  subunits of 
voltage-gated calcium channels [3, 4], whereas mutations in 
those subunits lead to spontaneous seizures in mice [5, 6]. 
Despite solid characterization of AEDs and the addition of 
new compounds to the clinical armamentarium, it is esti-
mated that more than 30% of all patients with epilepsy re-
main refractory to treatment with neurocentric therapeutic 
strategies or suffer from intolerable side effects [2]. There-
fore, alternative treatment strategies have been explored (and 
shown to be efficient) that range from electrical stimulation 
[7, 8] to the ketogenic diet [9-12]. Recent findings suggest 
that these alternative treatments are at least in part based on 
mechanisms related to adenosine [12, 13]. Moreover, astro-
cytes, the key regulators of synaptic adenosine, appear to be 
crucially involved in seizure regulation. This review will 
first discuss the role of astrocyte dysfunction in general and 
then focus on adenosine and its regulation within the context 
of epilepsy, whereas other components of purinergic signal-
ling will be covered in different reviews of this issue. 
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AN ASTROCYTIC BASIS OF EPILEPSY 

Astrogliosis – the pathological proliferation and hyper-
trophy of astrocytes – is a pathological hallmark of the epi-
leptic brain and alterations in distinct astrocyte membrane 
channels, receptors and transporters have all been associated 
with the epileptic state [14]. The concept of the tripartite 
synapse in which astrocytic processes ensheath neuronal 
synapses and contribute to the regulation of synaptic trans-
mission [15] is an excellent explanation how astrocytes can 
influence and modify neuronal function and, consequently, 
dysfunctional gliotransmission plays an important role in the 
pathophysiology of epilepsy [16]. An astrocytic basis of epi-
lepsy has first been proposed by Nedergaard and colleagues 
based on the demonstration that paroxysmal depolarization 
shifts that are involved in the initiation of seizures can be 
triggered by the release of glutamate from extrasynaptic 
sources or by photolysis of caged Ca

2+
 in astrocytes [17]. In 

these studies three AEDs – valproate, gabapentin, and 
phenytoin – decreased the ability of astrocytes to transmit 
Ca

2+
 signalling. It was further demonstrated that astrocytic 

glutamate was released via SNARE-dependent exocytosis of 
glutamate-containing vesicles [18]. Together, these studies 
suggested that astrocytic glutamate release may play an epi-
leptogenic role in the initiation of epileptic seizures under 
pathological conditions. In line with these findings, gene 
expression changes in astrocytes in temporal lobe epilepsy 
were suggested to contribute to an increased release of glu-
tamate by astrocytes [19]. Therefore, astrogliosis in epilepsy 
might be a likely contributing factor to the glutamate over-
flow that is a characteristic of the epileptic brain [20]. How-
ever, the notion that astrocyte-derived glutamate contributes 
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to epileptiform activity has recently been challenged based 
on pharmacological studies performed in hippocampal slice 
models of epileptiform activity [21]. In these studies, TTX 
blocked ictal- and interictal-like epileptiform activity without 
affecting slow inward currents that depend on astrocytic glu-
tamate release. In contrast, NMDA receptor antagonists 
blocked the astrocyte dependent slow inward currents, but 
did not prevent the generation of epileptiform events. Thus, 
based on this study, the non-synaptic glutamate release from 
astrocytes appears not to be necessary for the generation of 
epileptiform activity in vitro.  

In addition to the direct contribution of astrocytes to cal-
cium and glutamate signalling, astrocytes have the capability 
to affect several epileptogenic and ictogenic mechanisms 
more indirectly. Thus, specific inflammatory pathways are 
chronically activated during epileptogenesis and astrocytes 
have been shown to sustain those inflammatory processes by 
activating the interleukin 1 beta system [22]. Astrocytes of 
the epileptic brain are also characterized by structural reor-
ganization and a loss of astrocytic domain organization, 
morphological alterations that are thought to contribute to 
the structural basis for recurrent excitation of the epileptic 
brain [23]. Astroglial gap junctions provide an activity-
dependent intercellular pathway for the delivery of energetic 
metabolites from blood vessels to distal neurons and thereby 
play critical roles in coupling neuronal function to the meta-
bolic state of an organism [24]. In particular, astrocytes play 
important roles in ATP-signalling [16] and astrocytic con-
nexin 43 hemichannels may contribute significantly to extra-
synaptic ATP efflux [25]. It was recently hypothesized that 
ATP released from astrocytes in response to neuronal activ-
ity is a source of surround inhibition to adjacent neurons, a 
mechanism that could prevent seizure propagation [16]. The 
identification of non-neuronal and non-chemical synaptic 
signalling pathways described here offers new and promising 
targets for the therapy of epilepsy [26]. 

ASTROCYTES AND ADENOSINE 

Astrocytes are key regulators of the brain’s endogenous 
anticonvulsant adenosine and an astrocyte-based adenosine 
cycle has been proposed [27, 28]. Astrocytes are a major 
source of ATP that can be released into the synaptic cleft via 
hemichannels [25] or via regulated synaptic release [29]. 
Synaptic ATP is rapidly cleaved by a series of ectonucleoti-
dases into adenosine [30, 31]. In pioneering experiments by 
Newman [32] it was demonstrated in rat retina that activa-
tion of glial cells reduced the firing rate of neurons that dis-
played spontaneous spike activity. This effect could be 
blocked by an adenosine A1R antagonist or by inhibitors of 
ATP cleavage [32]; these findings demonstrated that acti-
vated glial cells can inhibit neurons in the retina by the re-
lease of ATP, which is converted to adenosine by ecto-
enzymes and subsequently activates neuronal adenosine re-
ceptors. In an elegant series of experiments Haydon and co-
workers demonstrated that astrocyte-derived ATP regulates 
synaptic strength and plasticity [29]. In these experiments 
the authors used inducible transgenic mice that expressed a 
dominant-negative SNARE domain selectively in astrocytes 
to block the release of transmitters (including ATP) from 
these glial cells. It was demonstrated that astrocytes tonically 
suppressed synaptic transmission by releasing adenosine 
triphosphate as a precursor of adenosine, an effect that was 

abolished in the mutant mice. These results and related stud-
ies, which demonstrated regulated ATP release from astro-
cytes through lysosome exocytosis [33], indicate that astro-
cytes – via regulating the release of a precursor of adenosine 
(i.e. ATP) – play important roles in the regulation and coor-
dination of synaptic strength, plasticity, and synaptic net-
works [29, 34]. In line with these findings, the inhibition of 
gliotransmission in dominant-negative SNARE transgenic 
mice attenuated the accumulation of sleep pressure, assessed 
by measuring the slow wave activity of the EEG during 
NREM sleep, and prevented cognitive deficits associated 
with sleep loss [35]. Findings from this study indicate that 
astrocytes modulate the accumulation of sleep pressure and 
its cognitive consequences through a pathway involving A1 
receptors [35]. Subsequent studies using adenosine micro-
electrode biosensors demonstrated directly in neurochemical 
online measurements that ATP is a precursor of synaptic 
adenosine [36, 37]. Using similar approaches, it was further 
demonstrated that astrocytic adenosine kinase (ADK) regu-
lates basal synaptic adenosine levels and seizure activity but 
not activity-dependant adenosine release in the hippocampus 
[38]. 

Astrocytes contain two types of equilibrative nucleoside 
transporters [39], which facilitate the rapid equilibration of 
synaptic and intra-astrocytic levels of adenosine [27, 28]. In 
contrast to neurotransmitters that all have their respective 
energy-driven transporter-mediated re-uptake system to ter-
minate synaptic activity of the neurotransmitter, an equiva-
lent system lacks for adenosine. Instead, the intracellular 
astrocyte-based [40] enzyme ADK appears to fulfill the role 
of a metabolic re-uptake system for adenosine. Therefore, 
astrocytic ADK (see subsequent chapters for details) plays a 
key role for the regulation of synaptic levels of adenosine 
[41]. The critical contribution of astrocytes for the regulation 
of synaptic adenosine was further corroborated in neuron / 
astrocyte coculture systems, in which NMDA-evoked neu-
ronal adenosine release was subject to metabolism by added 
astrocytes [42]. 

ADENOSINE KINASE AND ADENOSINE 

Adenosine levels can be reduced by adenosine deaminase 
(ADA, forming inosine), which shows highest expression 
levels in tongue, cells lining the intestinal tract, and thymus, 
whereas its expression in brain is rather low and limited to 
specific nuclei [43-45]. Adenosine kinase (ADK, E.C. 
2.7.1.20) is responsible for the enzymatic phosphorylation of 
adenosine into AMP [46] (Fig. 1). In a comparative study 
performed in brain slices it was demonstrated that inhibition 
of ADK, but not of ADA, led to increases in ambient adeno-
sine resulting in presynaptic inhibition [47]. It was realized 
more than 30 years ago that mammalian cells deficient in 
ADK are capable of excreting accumulating purines includ-
ing adenosine [48]. ADK belongs to the ribokinase family of 
proteins, has an early evolutionary origin and is highly con-
served between species [49], with only a few ADK variants 
from microorganisms being structurally different [50]. Based 
on its low KM for adenosine (0.15 M) and a highly active 
substrate cycle between adenosine and AMP, ADK is con-
sidered the key enzyme for the regulation of ambient adeno-
sine and minor changes in ADK activity can rapidly translate 
into major changes in ambient adenosine [51, 52]. Therefore, 
a genetic knockout or knockdown of ADK in cultured cells 
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is a very effective strategy to induce cellular adenosine re-
lease [53], a strategy that has therapeutic value [54-56]. 
ADK appears to be regulated almost exclusively at the pro-
tein level. Studies with Leishmania ADK demonstrated that 
the enzyme is inactivated by aggregation, a conformation 
that is stabilized by ADP, whereas the active monomer is 
stabilized by a cyclophilin [57]. In contrast, protein phos-
phorylation was excluded as a potential mechanism for 
ADK-regulation [58]. 

 In adult brain, ADK is largely expressed in astrocytes 
[40], and astrocytic ADK was shown to regulate the basal 
synaptic levels of adenosine [38]. Under conditions of acute 
challenge to the brain, e.g. after focal ischemia or during 
seizures, ADK is rapidly downregulated, likely as a physio-
logical response to raise the protective adenosine-tone [59]. 
Physiological alterations of ADK have direct impact on brain 
function. Thus, transgenic overexpression of ADK in brain 
was shown to be associated with reduced adenosine and sei-
zures [60], with increased susceptibility to stroke [61], with 
learning impairment and altered susceptibility to psy-
chomimetic drugs [62], and with changes in myelination 
[63]. Due to its wide implications as a regulator of brain 
function, the pharmaceutical development of ADK inhibitors 
has gained much interest as potential anticonvulsant and an-
tinociceptive agents [64, 65]. 

ADENOSINE KINASE IS OVEREXPRESSED IN  
EPILEPSY 

As indicated above, astrogliosis is a pathological hall-
mark of the epileptic brain. Research from our laboratory has 
shown that astrogliosis in animal models of epilepsy is asso-
ciated with increased levels of the astrocyte-based enzyme 
ADK [28, 66, 67]. Likewise, deficient adenosine signalling 
was found in the hippocampus of kindled rats [68]. The in-
trahippocampal injection of kainic acid (KA) in mice triggers 
hippocampal sclerosis and chronic recurrent seizure activity 

that closely mimics human mesial temporal lobe epilepsy 
[69-73]. During a time span of 4 weeks affected mice de-
velop profound astrogliosis throughout the injected hippo-
campus that is associated with overexpression of ADK in-
cluding an increase of 177% of enzyme activity compared to 
control hippocampus resulting in a global reduction of the 
adenosine-based inhibitory tone [74]. Seizures were sup-
pressed by a low dose of the ADK-inhibitor 5-
iodotubercidine (ITU) [74]. These findings suggested for the 
first time that astrogliosis via increasing ADK expression 
might contribute to the generation of seizures. However, in 
this complex model of epilepsy it was not possible to segre-
gate the effects of other potential contributors to seizure gen-
eration (e.g. mossy fiber sprouting, granule cell dispersion, 
loss of interneurons) from astrogliosis. 

To study selectively the effect of astrogliosis and ADK 
on seizure generation we generated a mouse model of CA3-
selective epileptogenesis that develops focal astrogliosis in 
the absence of other confounding factors such as mossy fiber 
sprouting or granule cell dispersion [75]. In this model, the 
unilateral intraamygdaloid injection of KA leads to acute 
CA3-selective neuronal cell loss that constitutes a trigger for 
subsequent astrogliosis [75]. Three weeks after KA-injection 
profound CA3-selective astrogliosis had developed with 
colocalized overexpression of ADK. Electrographic seizures 
could be recorded from the astrogliotic CA3, but not from 
any other brain region [75]. Strikingly, during epileptogene-
sis seizures coincided temporally with the development of 
astrogliosis and overexpressed ADK [41]. Seizures in this 
model could be suppressed by the ADK-inhibitor ITU or by 
the A1R agonist CCPA. Together, these findings suggest that 
astrogliosis (with overexpression of ADK) is sufficient to 
trigger seizures in the absence of any other epileptogenetic 
histopathological alteration. Based on these findings, phar-
macological inhibition of ADK should be highly effective in 
preventing seizures. Indeed, ADK inhibitors are very effec-

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Major routes of adenosine metabolism. 
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tive anticonvulsant agents that have the potential to amplify 
endogenous adenosine-signalling thereby minimizing side 
effects [64, 76-78]. Most importantly, the inhibition of ADK 
was shown to be effective in a model of pharmacoresistant 
epilepsy [74]. 

ADK expression levels have not yet been evaluated in 
human epileptic brain. However, microdialysis samples indi-
cate lower adenosine baseline levels in epileptic compared to 
control human hippocampus [79]. Human epileptic brain is 
also characterized by changes in A1R expression and down-
regulation [80] as well as upregulation [81] of A1Rs have 
been reported. 

OVEREXPRESSION OF ADENOSINE KINASE 
TRIGGERS SEIZURES 

The studies described above show a close association of 
astrogliosis, overexpression of ADK, and the expression of 
spontaneous recurrent seizures. To address the question, 
whether astrogliosis or overexpression of ADK per se are 
responsible for seizure expression, an ADK transgene was 
ubiquitously overexpressed in brain (Adk-tg mice) [75]. 
Transgenic overexpression of ADK was found to be suffi-
cient to trigger spontaneous recurrent electrographic hippo-
campal seizures at a rate of about 4 seizures per hour, with 
each seizure lasting about 20 seconds [41]. Most impor-
tantly, those seizures were recorded in the absence of any 
other epileptogenic events such as neuronal cell loss, astro-
gliosis, mossy fiber sprouting, or granule cell dispersion [41, 
75]. To provide a further molecular dissection of astrogliosis 
from ADK expression levels, Adk-tg mice were subjected to 
20 minutes of intraamygdaloid KA-induced status epilepti-
cus (SE). This treatment resulted in a degree of acute seizure 
severity and corresponding acute neuronal cell loss that was 
comparable to data from wild-type mice subjected to 30 
minutes of SE [82]. The acute KA-induced injury (i.e. trigger 
for subsequent epileptogenesis) led to an ablation of ADK-
expressing CA3 neurons. During a time span of three weeks 
Adk-tg mice subjected to 20 minutes of SE developed ipsi-
lateral CA3-selective astrogliosis, however without associ-
ated overexpression of ADK, whereas the contralateral hip-
pocampus was still characterized by overexpression of trans-
genic ADK. EEG recordings performed three weeks after 
KA-injection revealed recurrent electrographic seizures in 
the ADK-overexpressing contralateral CA3 (in the absence 
of astrogliosis), but not a single seizure could be detected in 
the ipsilateral injured CA3 that was characterized by astro-
gliosis in the absence of overexpressed ADK [82]. These 
findings further highlight that overexpression of ADK as 
such rather than astrogliosis is sufficient to trigger seizures. 
If this assumption is true, then a genetic reduction of ADK 
should render the brain resistant to seizure development. To 
test this possibility, fb-Adk-def mice were generated that are 
characterized by reduced levels of ADK in forebrain 
amounting to approximately 60% of total expression levels 
in matched wild-type mice. These animals were completely 
resistant to acute KA-induced SE and injury; following in-
traamygdaloid KA injection, injurious seizures were never 
observed and not a single TUNEL-positive cell was found 
24h after KA-injection [75]. However, when KA was paired 
with the A1R antagonist DPCPX wild-type like seizure activ-
ity was restored and the level of the acute CA3-restrictive 
injury closely matched wild-type controls. Co-injection of 

KA with DPCPX permitted us to recreate a wild type-like 
trigger for subsequent epileptogenesis in fb-Adk-def mice, 
however, subsequently those animals were under the control 
of reduced forebrain ADK [75]. Strikingly, three weeks after 
KA-injection, these animals did not show overt signs of as-
trogliosis, ADK levels continued to be reduced and no sei-
zures were detected [75]. These findings suggest that a ge-
netic reduction of ADK renders the brain resistant to the de-
velopment of spontaneous seizures. Therefore, ADK consti-
tutes a valid therapeutic target for the prediction and preven-
tion of seizures in epilepsy. Importantly, ADK regulates ba-
sal synaptic adenosine levels and seizure activity, however 
without affecting activity dependent adenosine-release in 
hippocampus [38]. Together the studies described above 
constitute a direct molecular explanation why pharmacologi-
cal inhibition of ADK is such a powerful tool for seizure 
suppression [64, 65, 78, 83-85]: because endogenous adeno-
sine levels rise during times of stress [86] (e.g. seizures, lack 
of oxygen), agents (e.g. the ADK inhibitor ABT-702 [87-
89]) that amplify this site- and event-specific surge of adeno-
sine could provide antiseizure activity similar to that of 
adenosine receptor agonists [64, 77]. Therefore, pharmacol-
ogical inhibition of ADK is considered to be an efficient tool 
for the inhibition of epileptic seizures [74, 77] and chronic 
pain [90]; these successes were associated with an improved 
therapeutic window compared to A1R agonists [91]. How-
ever, systemic application of ADK inhibitors might not be a 
therapeutic option for epilepsy due to interference with me-
thionine metabolism in liver [92, 93] and the risk of brain 
hemorrhage [90, 94]. 

THE ADENOSINE KINASE HYPOTHESIS OF  
EPILEPSY 

The findings described above form the basis for the ADK  
hypothesis of seizure generation that has been reviewed pre- 
viously [28, 66]. Briefly, any type of injury or stress to the  
brain (e.g. traumatic brain injury, seizures, or stroke) triggers  
an acute surge of micromolar levels of adenosine that go far  
beyond normal levels that are in the 20 to 300 nM range (see  
review from Bertil Fredholm in this issue). The acute surge  
in adenosine is likely a combined consequence of increased  
ATP degradation and decreased adenosine clearance [59,  
74]. These high levels of adenosine can constitute a trigger  
for several downstream effects that all combine to trigger  
subsequent epileptogenesis. Likely pathways involved are:  
(i) Changes in adenosine receptor expression levels. Most  
importantly, a decrease in A1R expression and an increase in  
A2AR expression on astrocytes influence astrocyte prolifera- 
tion and may contribute to the development of astrogliosis  
[95-97]. (ii) Adenosine is an important modulator of the  
brain immune system [98]. It is well known that inflamma- 
tory responses, microglial activation, and changes in the  
blood brain barrier play early roles during epileptogenesis  
[22, 99-101]. Thus, an acute surge in adenosine might trigger  
several immuno-modulatory systems that may contribute to  
trigger subsequent astrogliosis. 

Astrogliosis is a pathological hallmark of several neuro-
logical conditions. Studies from our lab have demonstrated 
that upregulation of ADK is always a consequence of, but 
not a cause for, astrogliosis [41, 75, 82]. Astrogliosis, to-
gether with upregulation of ADK has not only been observed 
in animal models of epilepsy, but also in animal models of 
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stroke and Alzheimer’s disease (Boison, unpublished obser-
vations). Therefore it is fair to assume that astrogliotic 
upregulation of ADK might be a common pathophysiologi-
cal pathway that might explain for instance the increased 
incidence of seizures in patients with Alzheimer’s disease 
[102-104] or following stroke [105]. Thus, according to the 
ADK hypothesis of epileptogenesis, an acute surge of adeno-
sine following any type of brain insult might trigger astrogli-
osis, which in turn leads to overexpression of ADK and a 
resulting adenosine deficiency, which – as pointed out above 
– is sufficient to trigger seizures. 

It is important to note that the ADK-associated seizures 
are frequent, but electrographic and subclinical in nature. 
ADK-associated seizures in the CA3 model of epileptogene-
sis can only be recorded with intracranial electrodes and 
these seizures do not spread, likely because the adenosine 
system in the vicinity of the epileptogenic focus is still intact 
[41, 75]. Interestingly, injection of these animals with a non-
convulsive dose of the A1R antagonist DPCPX can turn 
those electrographic seizures into clinical grade convulsive 
seizures (Boison, unpublished observations). It is tempting to 
speculate that ADK-dependent focal electrographic seizures 
are (i) fairly common, but commonly not diagnosed with 
surface EEG recording electrodes; and (ii) that these seizures 
constitute an early event in epileptogenesis requiring secon-
dary events or a secondary “hit”, leading to network rewiring 
or failure of other endogenous antiepileptogenic systems to 
turn those (undiagnosed?) pre-existing “silent” seizures into 
clinical seizures. In conclusion, dysfunction of the adenosine 
system might constitute a very early event in the epilepto-
genic cascade and targeting the adenosine system is therefore 
an effective means to prevent seizures in epilepsy, but possi-
bly also to prevent epileptogenesis as such. 

FOCAL ADENOSINE AUGMENTATION THERAPIES 
(AATs) FOR THE TREATMENT OF EPILEPSY 

The paragraphs above suggest that augmentation of the 

adenosine system is an effective strategy for the prevention 

of seizures in epilepsy. Based on this neurochemical ration-

ale adenosine augmentation therapies (AATs) have been 

assessed for therapeutic effectiveness [106-108]. While 

pharmacological AAT approaches are very effective in pre-

venting seizures (see above), in general those approaches are 

hampered by significant peripheral and central side effects 

[106]. To circumvent those side effects focal AATs have 

been developed with the premise that focal reconstitution of 

adenosine signalling restricted to a local region of adenosine 

dysfunction (i.e. the epileptogenic astrogliotic “scar”) would 

restore normal adenosine signalling rather than leading to 

excessive amounts of adenosine. These strategies are consid-

ered to be safe since adenosine is an endogenous anticonvul-

sant and subject to normal metabolic clearance. Therefore 

any excessive or detrimental adenosine levels are unlikely to 

be reached in focal AAT approaches. A proof of principle for 

this therapeutic concept was first established by implanting 

adenosine-loaded ethylene vinyl acetate copolymers releas-

ing 20 to 50 ng adenosine per day into the brain ventricles of 

kindled rats [109]. These polymeric implants provided robust 

reduction of stage 5 seizures for at least 7 days [109]. To 

prolong the duration of adenosine release from polymeric 

brain implants, hamster fibroblasts engineered to release 

adenosine based on genetic disruption of their Adk gene were 

encapsulated and thus immuno-isolated into semipermeable 

polyethersulfone-based hollow fibers and transplanted into 

the brain ventricles of fully kindled rats. These implants re-

leased about 40 ng adenosine per hour and provided almost 

complete seizure suppression for a duration of 12 days, 

which corresponded to the life expectancy of the encapsu-

lated cells [110, 111]. The use of encapsulated adenosine 

releasing myoblasts lead to an extension of the therapeutic 

time window to up to 8 weeks [112]. In those studies, it was 

documented that prolonged implant-derived adenosine-

release did not lead to desensitization of adenosine receptors, 

nor to the development of sedative side effects [112]. The 

effectiveness of focal adenosine augmentation for seizure 

suppression was further validated by an independent labora-

tory that used focal adenosine injections to prevent seizures 
in rats [113].  

In order to provide more refined seizure control, mouse 
embryonic stem cells were engineered in our laboratory to 
release therapeutically effective doses of adenosine based on 
a bi-allelic genetic disruption of the endogenous Adk gene 
[114, 115]. These cells were subjected to a defined in vitro 
differentiation protocol to generate adenosine releasing ES-
cell derived neural progenitor cells that can be transplanted 
directly into brain without the risk of tumor formation. Di-
rect implants of these cells into the infrahippocampal fissure 
of immunosuppressed rats formed dense implants within the 
infrahippocampal fissure and some of the cells migrated into 
the ipsilateral CA1 region and differentiated into NeuN-
positive neurons [56]. Most importantly, these implants ef-
fectively suppressed kindling epileptogenesis. The same type 
of graft prevented the development of epilepsy in the mouse 
model of CA3-selective epileptogenesis [75]. 

Embryonic stem cells are ethically controversial and can-

not be used as autologous grafts in patients. In order to de-

velop a cell-based system for the focal delivery of adenosine 

that would be compatible with future clinical applications, 

human mesenchymal stem cells were engineered to release 

adenosine using a lentivirus expressing a micro RNA di-

rected against Adk. This strategy led to efficient knockdown 

of ADK and triggered the release of adenosine from these 

cells [54]. Subsequently, it was shown that infrahippocampal 

implants of these cells in mice attenuated both acute seizures 

and acute injury [54], and ameliorated the consequences of 

KA-induced epileptogenesis [116]. The natural biopolymer 

silk constitutes an excellent substrate to promote the release 

of adenosine from stem cells [53]. Thus, silk-based polymers 

seeded with mesenchymal stem cells derived from a patient 

and engineered to release adenosine might comprise a viable 
system for human epilepsy therapy. 

To assess the therapeutic potential of silk-based adeno-
sine release, silk based brain implants were engineered to 
release defined doses of adenosine with a stable release ki-
netic over several days [117]. Infrahippocampal implants of 
these constructs provided dose-dependent suppression of 
kindling epileptogenesis in rats [117]. Silk-based adenosine 
delivery at a dose of 1000 ng per day was shown to prevent 
fully kindled seizures, but most importantly novel and pow-
erful antiepileptogenic effects of focal adenosine delivery 
were demonstrated [118]. 
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CONCLUSIONS AND OUTLOOK 

Compelling evidence suggests that a focal dysfunction of 
adenosine signalling – caused by astrogliosis-induced over-
expression of ADK – is sufficient to trigger focal electro-
graphic seizures, possibly a very early event in the epilepto-
genic cascade that finally leads to the expression of sponta-
neous recurrent, clinical seizures. Due to the central role of 
this pathway, focal AAT is highly effective in preventing 
seizures and likely a viable strategy to prevent epilepsy from 
developing. Thus, the modulation of adenosinergic signalling 
is a powerful strategy to interfere with epilepsy on different 
levels of its genesis. Is this approach ripe for translation into 
clinical practice? 

Human mesial temporal lobe epilepsy is an ideal medical 
condition for the safe and step-wise introduction of AATs 
into clinical practice. Patients foreseen for surgical removal 
of the epileptogenic hippocampus are normally subjected to 
invasive diagnostics prior to their resection surgery. It would 
be highly feasible to combine pre-surgical diagnostic evalua-
tion that includes intracranial EEG-recording electrodes with 
focal intrahippocampal infusion of adenosine. This proce-
dure is feasible since adenosine is already approved by the 
US Food and Drug Administration (FDA) for intravenous 
infusion to prevent supraventricular tachycardia. Further-
more, experience is available from phase I clinical trials in 
which adenosine was infused into the intrathecal space in an 
attempt to provide a novel strategy for pain control [119-
121]. These examples demonstrate the safety of adenosine 
delivery to a human patient. Furthermore, adenosine is an 
endogenous metabolite and subjected to rapid clearance. 
Therefore it is highly unlikely that toxic levels of adenosine 
can be reached. Transient intrafocal adenosine infusion into a 
patient would allow the following assessments: (i) demon-
stration that adenosine is effective in preventing epileptiform 
discharges in a patient with pharmacoresistant epilepsy; (ii) 
dose escalation studies can be used to identify the most ef-
fective dose range; (iii) finally, the epileptogenic hippocam-
pus would be resected and subjected to detailed histopa-
thological analysis. This procedure is considered to be ethi-
cally acceptable, since a patient would not be deprived of 
current standard of care. In a next step, silk-based adenosine 
releasing polymers could transiently be implanted into the 
epileptogenic hippocampus (e.g. for several days) prior to its 
surgical resection. Thus step-wise procedures are possible to 
implement focal AAT into clinical practice. 

Despite this clinical promise there are also critical ques-
tions that need to be addressed. Preliminary assessment indi-
cates that focal AATs are not associated with overt side ef-
fects [112]. To date however, potential central side effects of 
focal AATs have not been evaluated systematically, since a 
stable dose of adenosine over several days or weeks would 
be necessary for those studies. Future studies are needed to 
address in detail potential CNS-side effects of focal AAT 
including psychomotor and cognitive function. Of note is the 
observation that overexpression of ADK and adenosine defi-
ciency triggers severe cognitive impairment in mice [62]; 
therefore AATs might eventually be beneficial in ameliorat-
ing cognitive impairment, which is a characteristic comor-
bidity of epilepsy. In addition to the therapeutic potential for 
epilepsy, AATs might also be useful for the amelioration of 
adenosine-dependent symptoms in conditions as diverse as 

chronic pain, Alzheimer’s disease, and schizophrenia [27, 
122]. 
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